Short notes

Some Properties of the Rotation Lattice of
Binary Trees

We study special elements of the rotation lattice
of binary ordered trees introduced in a previous
paper.’ In this lattice, we point out a Boolean
sublattice. Rotation is generalised to binary
unordered trees.
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1. Introduction

In a (rooted, ordered) binary tree, every node
except the root has a parent. Every internal
node O has a left and a right child. External
nodes [] have no children. A tree is said to be
of weight n if it has n external nodes. Let B,
denote the set of binary ordered trees with n
internal nodes (i.e. of weight n+1): card B, =

2n
( )/(n+1).
n

Rotation is a well-known transformation —

on B, such that a subtree %
hL

L h

of a tree of B, is replaced by the

subtree
Fe

L b

Rotations maintain the symmetric order of
the nodes of a tree and are used in the design
of data structures.

The external nodes of a tree ¢ are numbered
by a pre-order traversal of ¢. Given t€ B,, the
weight sequence?® of ¢ is the integer sequence
(w,(1), ..., w,(n)), where w, (i) is the weight of
the largest subtree of ¢ whose last external
node is i.

For example:

g ey

11312 12312 12315

Using the fact that ¢ > ¢’ iff w, (i) = w,, (i) for
all i, we have shown? that (B, ~) is a lattice

with zero f and unit %
A ’
\\‘ ,I,

We have w, =(1,1,...,1) and w, =(1,2,3,
...,n). Moreover, w,,,, (i) = inf(w,(i),w, (i))
and w,,, (i) = sup (w, (i), w,, (?)) for all i.
Unfortunately, this lattice is not distributive
since it contains the following pentagon:

/%f%”\
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However, we give in this short note some
algebraic properties of this rotation lattice
using weight sequences.

2. Algebraic properties of B,

Theorem 1

For all n, B, is a pseudocomplemented lattice
which satisfies the Stone identity.

Proof

t* is a pseudocomplement of ¢ iff t A t* =0
and ¢ A ¢ = 0implies that #' > t*. Thus w, * (i)
= lifw, (i) + landw, (i) = iifw, (i) = 1.Using
weight sequences, we see that for all teB,:
vt =1.

Definition 1

Let S, denote the subset of trees te B, such
that w,() =1 or i for ie[l,n]: card S, =
2"

Theorem 2

The rotation ordering>of B, partially
orders S, and makes S, into a Boolean lattice.
For ¢ and 7€ S,, we have 1 A '€ S, and the
join in S, is the same as the join in B,:t V
res,.

Proof

Following Gratzer! (p. 49), we have S, = {r*
|teB,}. For tand r'€S,, w,,,, (i) = inf(w, (2),
w,, (i) and w,,, (i) = sup (w, (D), w,, (1)) for all
ie[l,n].

S, diagram:

g

1231
1134

1234

If we label the internal nodes of a tree € B,
by the integers from 1 to » in the in-order
traversal, the integer sequence which is gener-
ated by the pre-order traversal of ¢ is called a
tree permutation.? It is well-known that p is a
tree permutation of a tree of B, iff it contains
no subsequences (p;, p;, p;) such that i <j <k
and p, < p; < p;. We give a similar character-
isation of S :

Theorem 3

p is a tree permutation of a tree of S, iff it
contains neither subsequences (p,,p;,p,) such
that i<j<k and p, <p,<p; nor sub-
sequences (p;.p;,,p,) Such that i’ <j <k’
and p,, < p,, < p;,-
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Proof

By induction on n. Indeed, if p is a tree
permutation of a tree of S, then p = (n,p’) or
p = (p,n), where p’ is a tree permutation ofa
tree of S,_,.

3. Special elements of B,

Lemma 1

S, is the set of trees e B, which are dis-
tributive, i.e. tV (' AL)=(EVI)A@VT)
for all ¢, t"€ B,.

Lemma 2

Let ¥, denote the set of trees € B, which are
standard,i.e. ! AV )= AV AL)
forall /',t"eB,.

Then teV, iff there exists ke[l,n] such that
w,()=1for 1 <i<kandw,(i)=ifork+1
<i<n. Thuscard V, = n.

Theorem 4!

te S, iff the binary relation R(¢) on B,, defined
by /' R(t)t" iff t v =1tV t”is a congruence
relation.

Theorem 5!

te V, iff the binary relation R’ () on B, defined
by Y R(t)t"iff (' A ") Vv t, =1 Vv 1" for some
t, >t is a congruence relation.

peoe//:sdyy wouy papeojumo(

olwo

o
c
ks
Q

T

N,

£

1214

4. Rotation on binary unordered trees

We can define a metric on B, in the following
way:* given two trees 1,1 € B,. the rotation
distance of ¢ and ¢, denoted d(¢,1’), is the
minimum number of applications of >and !
which will transform ¢ into . An algorithm
for computing d(,1) is given in a previous
paper.*

Let C, denote the set of binary rooted
unordered trees with n internal nodes. C,, is
the quotient set of B, by the equivalence
relation ‘isomorphism between rooted trees’.

Definition 2
The rotation «»in C, is defined as follows: for
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Tand T eC,: T T iff there exist te T and
t'eT such that t->1 or t' >1t.

It is worth noting that T« T may occur.
We can also define a metric on C,.

Definition 3
Given T and T e€C,, the rotation distance of

/

_dy ﬁ__*

%

SHORT NOTES

T and T, denoted D(T,T),is 0if T=T or
the minimum number of applications of «»
which will transform Tinto T if T+ T'.
Note that D(T, T") < d(¢, ') for all te T and
t' e T". Unfortunately, isomorphism between
rooted trees is not a congruence on the lattice
B, . C, diagram (equivalence classes of C,, are
represented by a tree of B, for convenience):

N

~

An open problem is to determine the com-
plexity of computing D(T, T").
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A Recursive Performance Formula of the
Disc Modulo Allocation Method for Binary
Cartesian Product Files

In this paper an efficient recursive formula for
evaluating the performance of the Disc Modulo
method of allocating binary Cartesian product
files to multi-disc systems is presented. It
significantly improves the recently derived per-
formance formula by the authors.
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1. Introduction

The file allocation problem is an important
and interesting aspect of database design. This
problem can be defined as follows. Given a
preconstructed file system, the task is to
allocate all buckets of the file to a fixed
number of independently accessible discs in
such a way that the average response time,
over all possible partial-match queries, is
minimised (i.e. the concurrency of disc access
is maximised). Here a file is a set of records, a
bucket is a package of records in a file and a
partial-match query is a request to retrieve all
buckets satisfying the conditions specified by
the query itself. For a file stored on m(m > 2)
independently accessible discs, the response
time to a query is dominated by the maximum
number of buckets needed to be accessed by
the query on a particular disc.

Since the binary Cartesian product file
(BCPF for short) has practical importance
and is the commonly assumed file structure
for partial-match retrieval,® 8 in this paper we
shall concentrate particularly on the N-
attribute BCPF allocation problem. By an N-
attribute BCPF we mean a set of N-attribute
records for which each attribute domain
contains only two elements, say 0 and 1, and
each bucket can be uniquely identified by an
N-tuple [b,,b,,...,b,] where each b, = 0 or 1.

Du and Sobolewski’ proposed a heuristic
allocation method called the Disc Modulo
(DM for short) allocation method. In the DM
allocation method, each bucket [by, by, ..., b4]
is assigned to disc (b, +b,+...+b,) modm,
where m is the total number of available discs.

It was shown in Ref. 7 that, under many
conditions commonly occurring in practice,
the DM allocation method is optimal. Here
‘optimal’ means that the average response
time of all partial-match queries is minimal.
However, it is not optimal in general. Never-
theless, in the past few years the DM allocation
method has been explored by many re-
searchers.!™

Let 1,,,,(¢%) denote the response time for a
partial-match query ¢* with n unspecified
attributes when we apply the DM allocation
method to assign all buckets of a BCPF to an
m-disc system (m >2 and discs labelled as
units 0,1,...,m—1). Chang and Chen*
showed that

tu@H=max{ ¥ C,l0<i<m—1,

rmod m=i
(1.1)
and C, is the coefficient of x" in polynomial
(x+x)", n<r<2n.

However, the evaluation of (1.1) will take
excessive time if n becomes large. And it
should be pointed out that the number of
attributes of a BCPF is usually large. In the
next section we shall first show that, in fact

tDM(q:) = E Cf'

rmod m=|n/2]mod m

Furthermore, we shall present a very efficient
recursive formula for evaluating

by C,
7 mod m=|n/2]mod m

Conclusions are given in Section 3.

2. A Recursive Performance Formula of the
DM Allocation Method for BCPFs

From (1.1) we have

tou(qy) =
max { > @.1)
(n+r)ymod m=i
and C,,, is the coefficient of x**" in (x + x?)",
0<r<n.

C,, l0<i<m—1,

Since (n+r,) mod m = (n+r,) mod m if and
only if r, modm =r,modm and the co-
efficient of x"*" in (x + x?)" is identical to that

n

r
hence (2.1) can be further expressed as

tDM(q:)=max{ = (n)
r mod m=i r

n
Now, let us use S{™ to denote 3 ( )
r

of x"in(1+x)"(i.e.C,,, = ( )forO <r<n),

0<i<m—1}.
22

rmod m=i

Then
tou(gy) = max{S{M,S™, ..., S™ 1 (2.3)

In the following, we claim that Sf:/)ﬂ
the largest one among S{™’s.

is

mod m

Lemma 2.1

(n+l) _ Q(n) (n)
SE = §m 4§

P ymoam fOr 0 <i<m—1.

2.4)
Proof

Note that foreach 0 < i< m—1,

n+1
= ()
rmod m=i r
Since n+l = n)+ " ),wehave
r r r—1
spwe 3 (Mo oz (7)-sp
rmod m=i r rmod m=i r—1

(n+1) _
S0 =

n
+ Z .
rmod m=i r—1
However,
n n
» = » ,
rmod m=i r—1 ' mod m=(i—1) modm \/

(n)
(i-1) modm >

where r' = r—1. Therefore, we have

(n+1) _ Q(n) (n)
St _Si +S(t—l)modm'

Q.E.D.
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