Improved Matrix Product Computation using
Double-Pipeline Systolic Arrays

A volume-efficient retimed hexagonal array for
computing matrix product is described. The
new array requires the same time as the well-
known hex array of Kung and Leiserson but
uses only half the hardware. The design is
separated out on to two planar layers which
communicate with each other only at the array
boundaries, and requires the same number of
input-output connections as the traditional
array. Individual cells compute with an ef-
ficiency of e = 2/3.
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1. Introduction

In this short paper we examine the extension
of double-pipe splittings for the derivation of
a fast volume-efficient systolic matrix product
array. The concept of double pipes for
improving linear systolic arrays was intro-
duced by the authors.! By extensions in Ref. 2,
the general D pipe was shown to be a variant
of the well-known parallel processor tree
forms for matrix vector and matrix product
operations which yield O(log, n) and O(n log,
n) time respectively. We conclude that the
linear systolic arrays of Kung and Leiserson,?
which have attracted a great deal of attention
with the rapid advances in VLSI technology,
were simply special cases of this processor tree
which traded off processors against speed and
efficiency. The subject of this paper is to
demonstrate that the double-pipe splitting of
Ref. I extends in a straightforward manner to
the matrix product computations and the
hexagonal array of Ref. 3. In addition, and by
way of illustration, we also present a three-
dimensional design for the matrix product
calculation. Representation of systolic arrays
in space rather than the plane has received
little attention to date, although Rosenburg?
presents a case study of 3-D design which
indicates that the extra dimension for wire
routing should yield significant savings in
space. Caulfield er al.® have also presented a
method for implementing systolic array pro-
cessing using optical computing and free-
space transmission of data. In contrast to
these designs our array is limited to just two
planar layers (or laminars), which only require
communication between laminars at the edge
of the design. In addition we can improve cell
efficiency and reduce the total cell count while
leaving the array bandwidth unchanged.

2. Additive splittings

In the case of a general additive splitting the
matrix product can be written in the form

C=A4B=S AB, j=1)m (L1)

i=1

for two nxn band matrices 4 and B of
bandwidths w, and w, respectively. The
double-pipe splitting has m =2 and the
form,

AB=(A,+4,)(B,+B), (1.2

where A4, and B, for n = 6 have the forms,
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Now consider that the result of the product
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(1.3a) has the form
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and taking advantage of the zero patterns of
A,, B, and C, produces a special hex array
with re-timed dataflow,® and re-placed cells’
as shown in Fig. 1.

This array requires at most T = 3n/2+
min (Jw,/2],[w,/2]) ips cycles, and follows
from the facts that only a single neutral
element is associated with every two genuine
input data elements, and the effective band-
widths of 4, and B, are bounded by [w,/2]
and [w,/2] respectively. As a result the hex
array for producing C, requires approximately
wy wy/4 cells. This is one-quarter that of a
normal hex for matrix product and improves
efficiency from e = 0.5 to e = 0.66 and com-
putes twice as quickly. These advantages are
retained for the remaining partial products
(1.36-d) by converting them all to a normal
form with the same matrix structure as (1.3a)
by simple computation preserving row and
column interchanges.

For (1.3b6) C, and B,, interchanges are
performed by swapping columns i and i + 1 for
i = 1(2)n— 1 producing matrices C, and B,. In
(1.3¢) C; and 4, produce C, and 4, by
interchanging row i and i+ 1 for i = 1Q2)n—1,
while for (1.3d), Ay, B, and C, are permuted
to produce A4,, B, and C, by a two-step
process, first interchanging rows i and i+ 1 of
A, and C,, and secondly swapping columns i
and i+1 of B, and C, for i = 1(2)n—1. The
resulting normal form of (1.3) is

(@ C,=4,B,, (b) C,=4,B, () C;=4,B,, (d) C,=4,B,

0 ¢ O
€y 0 cy
0 ¢ O
€ 0 ¢y
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and can be solved on the same array as (1.3a)
using four passes, and requires a time T =
4(3n/2)+4 min (Iw,/2],[w,/2]) = 2(3n+ min
(wy, w,)); that is, twice the time of the original

hex scheme but a quarter of the cells. It also |

has the interesting property of preserving the
bound AT2% as (4/4)(2T)? = AT?, where 4
and T are the area and time requirements of
the original hex.

3. Double-pipe hexagonal schemes

A D'-pipe hex design using two layers is now
easily constructed by placing these smaller
hexes on separate layers and noticing that C,
and C, have the same structure, as do C, and
C;. Hence two passes form the full matrix
product by computing C, and C, on separate
layers on the first pass and C,, C; on different
layers on the second pass.

Like the double pipe for matrix vector in
Ref. 1, the final results C,+C, and C,+C,
can be overlapped with hex operations by
introducing an upper boundary of [w,/2]1+
[wy/2]—1 adders to each hexagonal array.
Because the arrays actually compute using
(1.4) the order of the matrix elements must be
restored before the addition takes place.
Fortunately the localised permutations used
to derive (1.4) keep the recovery simple, as
C,, C; and C, have the forms

(1.4)
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Example: AB = C with 4 and B matrices from splitting of form (1.2)

Figure 1. Normal form of single layer of double-pipe hex.
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(b) Production of full result for main diagonal column.

Figure 2. Snapshots of double-pipe adder/delay arrangement.

Simply swapping the dxagonal elements of
each diagonal 22 block in C, and C and
adding C, and C, (or vice versa) produces the
correct result and can be achieved using only
a single delay with each adder (see Fig. 2).

4. Conclusion

Our main result can be stated simply as the
following theorem.

Theorem

The matrix product of two n*n matrices 4
and B of bandwidths w, and w, can be
computed on a D! pipe hex in at most T =
3n+min(w),w,)+2 cycles using 2(Jw,/2]
[wy/2]) inner product cells and 2(jw,/2]+
[w,/2]—1) adders and delay cells.

That is, we can compute the matrix product
in the same time complexity as the 2-D (planar)
scheme of Kung and Leiserson® with only half
the hardware and improved cell efficiency
using two planes (or layers) connected only at
the edges. Furthermore, the input and output

bandwidth — although modified - requires the
same number of connections. In addition, by
using the ordinary data positioning of Kung
and Leiserson on this new array, problems of
smaller bandwidth can be solved separately in
parallel using different layers.

In a 3-D setting connections at the edge of
layers are highly desirable from the viewpoint
of manufacturing multi-layer designs. We also
point out that as a true multiple-layer tech-
nology (even one restricted to a couple of
layers) is some way off the design can be
incorporated into fast circuits at the board
level.

Finally we observe that Robert® and Robert
and Tchuente'® independently applied the
double-pipe technique to improve the solution
of linear systems by linear back-substitution
arrays. The extension of double pipes to the
hexagonal LU-factorisation of Kung and
Leiserson is not as straightforward, because
the LU array is undecomposable,! preventing
the use of the technique used here. Robert
improved LU-factorisation by using 22
block partitioning to form an implicit double

pipe. However, in Ref. 2 it is shown that
higher block sizes will not improve on Robert’s
scheme. This indirectly demonstrates .that
double pipes will not benefit systolic arrays
involving explicit feedback of complete results.
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