A note on the DMC data compression scheme

T. BELL aAND A. MOFFAT*

Department of Computer Science, University of Canterbury, Christchurch, New Zealand

Until recently, the best schemes for text compression have used variable-order Markov models, i.e. each symbol is
predicted using some finite number of directly preceding symbols as a context. The recent Dynamic Markov
Compression (DMC) scheme models data with Finite State Automata, which are capable of representing more complex
contexts than simple Makov models. The DMC scheme builds models by ‘cloning’ states which are visited often.
Because patterns can occur in English which can be recognised by a Finite State Automaton, but not by a variable-
order Markov model, the use of FSA models is potentially more powerful.

A class of Finite State Automata, called Finite Context Automata, is defined, which are equivalent to variable-order
Markov models. For the initial models proposed, the DMC scheme is shown to have no more power than variable-order
Markov models by showing that it generates only Finite Context Automata. This is verified in practice, where
experiments show that the compression performance of DMC is comparable to that of existing variable-order Markov
model schemes. Consequently, more sophisticated models than Finite Context Automata still need to be explored in

order to achieve better text compression.

Received November 1986, revised May 1987

1. INTRODUCTION

Rissanen and Langdon® have described an approach to
data compression where a model is created of the data
to be compressed, and the data are coded with respect
to the model. Because efficient methods exist for coding,
the main problem has been to find suitable models.

A simple model might assign a fixed probability to
each input symbol. A more sophisticated model assigns
each symbol a different probability for each possible
preceding symbol. This is called a first-order Markov
model. In general, Markov models predict a symbol
using some finite number of immediately preceding
symbols, which are called the Markov context. The larger
the Markov context used to predict the next symbols, the
less code space is needed to code each symbol. Unfor-
tunately, the use of very large contexts is difficult in
practice because a large sample would be required to
estimate suitable probabilities accurately, and a large
amount of memory would be required to store them.

A popular approach is to use ‘variable-order Markov
modelling’, where for each input symbol the model
identifies the longest Markov context that it can estimate
probabilities for, and uses that context for coding.
Langdon and Rissanen use a combination of zero- and
first-order Markov contexts in their ‘Double-adaptive
File Compression Algorithm’.* Cleary and Witten
achieved good results with a Markov model which used
contexts typically ranging from zero- to fourth-order.?
Even the Ziv-Lempel coding schemes have been shown
to have underlying variable-order Markov models,
typically using approximately third-order contexts for
prediction.?

Although Markov models have been successful, they
only approximate to the true behaviour of English text.
For example, the fact: ‘opening quotations (and paren-
theses) are almost always followed by closing quotations
(and parentheses)’ cannot be captured in a Markov

* Present address: Department of Computer Science, University of
Melbourne, Parkville, Victoria 3052, Australia.

model. Also, a verb may have a lot of influence on a
noun, regardless of the number of adjectives in between.
For example, in ‘I stroked the fat cat’ and ‘I stroked an
old black cat’, a Markov model would give the greatest
weighting to the adjectives ‘fat’ and ‘black’ to predict
the word ‘cat’, when it is really predicted by the verb
‘stroked’.

Cormack and Horspool describe the Dynamic
Markov Compression (DMC) scheme, an adaptive data
compression scheme which uses a Finite State Automaton
(FSA) as the model.® The scheme starts with a simple
initial model, and adaptively adds states by ‘cloning’
states under certain conditions. This approach is poten-
tially more powerful than variable-order Markov
modelling because an FSA can represent the type of
dependencies just described. The purpose of this paper is
to show that, surprisingly, the DMC scheme does not use
the full power of an FSA, but is actually a variable-order
Markov model.

This is done by defining a subset of FSAs, called Finite
Context Automata (FCAs) in Section 2, which are
shown to be equivalent to variable-order Markov models.
In Section 3 DMC (with its simplest initial model) is
shown to be equivalent to variable-order Markov models
by showing that the initial model is an FCA, and that
cloning states in an FCA always produces another FCA.
In Section 4 a class of FSAs is defined which includes all
initial models proposed for DMC, and the main theorem
is extended to include these initial models. This is done
by viewing DMC models as having transitions on symbols
rather than bits, where a symbol is a fixed-size string of
bits (typically 8-bit bytes).

Definitions

A Finite State Automaton (FSA) is a quadruple (S, 4, x,
s), where S is a finite set of states, 4 is a finite set of
symbols (alphabet),

U:SxA—-S

is the next state function, and se S is the starting state.
Let A* be the set of all strings, including the empty

16 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥20z Uotey ¢ uo 1senb Aq G88L1E/91/1/2g/e10me/|ulwoo/woo dno-olwsapeoe//:sdiy Wwolj papeojumo(q

A NOTE ON THE DMC DATA COMPRESSION SCHEME

Figure 1. The DMC cloning operation.

string, with elements drawn from A. The empty string is
denoted as A. For convenience, u is extended to A*:

u:SxA*-S
by the recursive definition:
us, A) =s,
u(s,p.a) = u(u(s,p),a) for peA* acA.

The DMC scheme uses an FSA (S, B, 1, s), where B =
{b1,b,, ..., b,}. For practical reasons, B is normally the
binary alphabet {0, 1}. Each transition in the FSA has a
probability assigned to it based on how frequently it is
used. The cloning function takes an FSA and a heavily
used transition, u(u,e), and creates a new state ¢, as
shown in Fig. 1 for B = {0, 1}. The new state is created so
that statistics for the heavily used transition can be
recorded separately, which should, in turn, lead to a
better model of the input data and thus a more concise
output representation.

Formally, the cloning function, J, takes the FSA,
(S,B,u,s), a state/symbol pair (u,e), ueS,eeB, and
generates a new FSA, 6((S, B, u, 5), (u,€)) = (S, B, i, 5)),
with

0] §=Su{t}

() W(ue)=r,
W(s,a) = u(s,a), seS,aeB,s+u or
Wt a)=py(t,a), t=uue)),

In what follows, the concatenation of strings is extended
to the concatenation of sets of strings. If {/,,1,,1,...1} is
a set of ¢ strings, and m is a string, then

a=+e,
aeB.

by by Ay m={l,.ml,.ml;.m..[, m}.
If {m,,my,m,...m,} is a set of r strings, then
ol .. L} Amy,my,my .. om} =
{lim:Vi=1..q,j=1..r}
Concatenation with the empty set yields the empty set.

2. FINITE CONTEXT AUTOMATA

Let F = (S, A4, u, s) be a deterministic FSA. For a machine
F there will be a set (possibly empty) of strings /e A* that
have the special property of forcing F into a particular

0

Figure 2. An FSA generated by DMC.

Figure 3. An FSA.

state, no matter what original state Fis in, i.e. u(s, () =
u(s;, 1) for all s, S;€S. Strings outside this set, i.e. non-
synchronising strings, are of special interest, and will be
defined to be the set D(F):

D = D(F) = {le A*: u(s;, 1) # p(s;, 1),

for some s,,5,€S}

For example, for the model in Fig. 2, which might have
been generated using the DMC algorithm, D = {A, 0},
and for the model in Fig. 3, D = {A, 0,00, 000,...0%...}.

Define a Finite Context Automaton (FCA) to be an
FSA, F, where D(F) is finite.

For an FSA, for any m¢ D, u(s,, m) is always the same,
regardless of s, so it can be denoted as u(m). For a
particular state s, define its context to be the set of all
strings which are in this manner guaranteed to result in
transitions terminating at s, i.e.

context(s) = {m: m¢ D and u(m) = s}.
Define
¢(s) = context(s) N (4.D— D),

where, informally, ¢(s) is a minimal set of suffixes which
will result in transitions to state s from anywhere in the
machine.

In Fig. 2, c(s,) = {1}, c(s,) = {10} and c(s,) = {00}, and
in Fig. 3, c(s;) = {100, 10000, ... 1(00)*...}, c(s,) = {10,
1000, ... 10(00)*.. .}, c(s3) = {1}.

From the above definitions, observe that for an FCA,
where D is finite, that:

(@) If mec(s) then u(s, A*m) = s, i.e. A*m e context(s).

(b) c(s) is finite

(¢) U,e(s)=A.D—D

(d) c(s)ne(s) = B for s, +
Observations (a) and (b) together imply that the current
state is always determined by some finite-size suffix of the
input string, and that any information- preceding this
¢(s;) will not be taken into account in the encoding. In
DMC models, each state assigns probabilities to each
outgoing transition. Showing that every DMC model is
an FCA will be sufficient to demonstrate that the
probability of each symbol is chosen based on some finite
number of preceding symbols, that is, that DMC is a
variable-order Markov model.

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 17

¥20z Uote\ ¢ uo 1senb Aq G88L1E/91/1/2g/a101e/|ulwoo/woo dno-olwapeoe//:sdiy wolj papeojumoq

T. BELL AND A. MOFFAT

Observations (¢) and (d) show that the context function
partitions the set A* into the context sets, and the finite
set D.

3. MAIN THEOREM

Before proving the main theorem, the following obser-
vations are made about the cloning function.

Observation 1

Transitions on strings in the cloned model which do not
end at the state ¢ end up at the same state as they did
before cloning, i.e.

For seS, meB*, u'(s,m) =1t = u'(s,m)= u(s,m).

This happens because on each transition the 4’ function
is only different from the u function when the transition
is to . Because the new transitions out of ¢ and ¢’ are the
same as the old transitions out of #, strings which pass
through those states in the cloned model leave from them
to the same state as they did in the original model.

Observation 2

For se S, me B*, if u(s,m) + u'(s, m) then u(s, m) = t and
u'(s,m) = t’. This follows from the converse of Obser-
vation 1, given that ¢’ ¢ S.

Lemma 1

Let / be a string of k symbols, and p be the first k—1 of
- these,ie./=p.a,pe B*, aeB.If y/(s,,I) = t, and w1
=1, then u(s;, p) + u(s;, p).

Proof

Suppose u(s;, p) = p(s;, p). Since the machine is deter-
ministic and u'(s;, /) * p/(s;, 1), it must be that u'(s,, p) +
(s, p). By Observation 2, the only target which is
different after cloning is #, which afterwards is ¢ or ¢". This
implies that

H(siP) = (s, p) = 1,

and

W(sp,p) =1, W (spp) =1 (or y'(s,p) =1, W(s,p) = 1),

which implies:
{ = W(s,p.0) = f (s, p),0) = (¢, 0) = 4 (1,)
=W (spp),a) = (s,p.a) =1,

which is a contradiction. A similar contradiction occurs
if 4/(s;,p) = ¢ and u'(s;, p) = t, so the lemma follows.

Main theorem

Every model generated by DMC when started on the
initial ‘one-state Markov model’, F = (S, B, 4, s,), is an
FCA, where S = {s5,}, B={b;,b,...b,}, u(s,, b) = s,.

Proof

The proof is by induction. The initial model, F, has one
state only, s,, and every string leads to that state. This
means that D = ¢, which is finite, so Fis an FCA. The

rest of the proof shows that cloning an FCA produces an
FCA, by showing that if D is finite then D’ is finite.

D' = D((S', B, ,5,))
= {: pls, 1) # W (5,1), 5,5,€ 8"}

By Observation 2, the only strings with new targets are
those with ¢ or ¢’ as their targets, and the empty string.
Hence,

D/ = {l: lu(si’ l) * #(sj’ l)’ si’sjes} U {l' #/(si, 1)
=L u(s,l)=1,s,5€STU{A}

The first term is the set D, and the middle term can be
altered using Lemma 1, giving

D cDu{l:1=p.a,u(s,p) +
,u(sj’p)’ S SjeS’ ae B} U {A}

S DU U,eplp: uls,p) * us;,p), s, 5,€S}.aU{A}
=DUD.BU{A}

which is finite.
This then completes the proof.

4. OTHER INITIAL MODELS

Although the ‘one-state Markov model’ (Fig. 4a) is a
suitable initial model, Cormack and Horspool achieved
slightly better compression by using more sophisticated
initial models which correspond to bytes or words, rather
than bits. In order to do this, and still retain the simple
alphabet of B = {0, 1}, these initial models contain cycles
of h bits, typically with & = 8. One of the structures
suggested is a ‘tree’, which is shown in Fig. 45, for h =
3. Also suggested is a ‘braid’ structure, which is a
generalisation of a tree, with 4 levels (typically 8), and
2" nodes at each level (256). A given h-bit sequence
follows transitions from any top-level node down the
braid, and back to a unigue top-level node.

We are most interested in behaviour at the A-bit
symbol level, where 4 is the length of cycles in the initial
model. With this object, it is convenient to redefine the
transition and cloning functions to allow for transitions
drawn from the alphabet 4 = B", bit strings of length A.
Fig. 5 shows an initial model, F,, and its corresponding
3-bit symbol-level equivalent. Viewing DMC models at
the symbol level is possible because cloning only creates
cycles with lengths which are multiples of A, so only

(a) (b)

Figure 4. Initial models proposed for DMC: (a) one-state
Markov model; () binary tree.

18 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥20z Uotey ¢ uo 1senb Aq G88L1E/91/1/2g/e10me/|ulwoo/woo dno-olwsapeoe//:sdiy Wwolj papeojumo(q

A NOTE ON THE DMC DATA COMPRESSION SCHEME

000, 001,

010,011, C@
100, 101,

110, 111

Gy

000
001,010,
191 110, 001,010, — 000
011,100,
101,110,
11

G,

000
001, 010,
011, 100,
}(1): 110, 001, 010, 000
011, 100,
101, 110,
11

G,

Figure 6. The effect of cloning on a symbol-level equivalent. G, and G, are the equivalents of F, and F, respectively. F, = o(F, (s, 0)),

F3 = 6(5’ (-"39 0»9 Gz = 65(619 (Sl, 000))’ Gs = Gz-

nodes cloned from the starting state, s,, are visited after
each 4 bits of input. This can be verified by considering
the effect of cloning a state which is part of a cycle (see
Fig. 1). Fig. 6 shows how cloning s, is reflected in the
symbol-level equivalent, G,, and how cloning other states
has no effect on the equivalent (G;). This new view
ignores dependencies between bits, but retains the model
structure as far as A-bit symbols are concerned.

The set of nodes cloned from s, is the set of all nodes
visited from s, after a multiple of 4 bits:

S, = {s: Ime A*, u(s,,m) = s}
The symbol-level transition function is
By Sy x A* > S,
(8, 0) = u(s, 1), s S,, le A*.

A bit-level cloning only results in a change at the symbol
level when the cloning is on a transition which is the last

bit of a symbol. Thus the bit-level cloning d&(u,e)
transforms the symbol-level model, F, to F', where

F =06,F,U) if wuuees, withU=/{(s,a):s€S,,
a=a,a,...a, us,a,a,...a,_,) =u,a, = e};
F = F otherwise.

The new cloning function, J,(F, U), is very similar to
6‘ 6h((s}n Aa #h’sl)’ U) = (S;n A7 ﬂ;;’ sl)’ Where

1 S, =S,u{r}

2) w(u,e)=1tVYu,e)eU,
H(s, @) = (s, a), s€ S, (s,a) ¢ U,
m(t'sa) = p(t,a), ac A.

The two initial models suggested for DMC translate into
two types of model at the symbol level, with the new

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 19

¥20z Uote\ ¢ uo 1senb Aq G88L1E/91/1/2g/a101e/|ulwoo/woo dno-olwapeoe//:sdiy wolj papeojumoq

T.BELL AND A. MOFFAT

alphabet 4 = B". The ‘tree’ model corresponds to the
zero-order Markov model:

E) = (S = {sl}’Auuhasl)a
(s, a) =s,, VaeA.

The ‘braid’ model corresponds to a first-order Markov
model, with 2" nodes, each node being labelled with one
of the 2" symbols in the alphabet:

E=(S={s,:ac A}, A, n,,s,),
Vae A,

with

with (s, a) = s, SES,

and s, is any s,€S.

From this, D(F)) = &, and D(F,) = {A}, both of which
are finite, so all the initial models are FCAs at the symbol
level. Of course, initial models which are not FCAS
could be supplied to DMC, but it is difficult to find such
a model which offers any advantage over the FCA
models proposed.

Because the symbol-level view of the model has a
cloning function isomorphic to those used in the proofs
in Section 3, the results of that section hold for the
symbol-level model. In particular, all models generated
by DMC are FCAs at the symbol level, when started
with any of the suggested initial models. For example,
with an 8-bit initial model, every byte (character) is
predicted using some finite number of preceding bytes.
The probabilities used for prediction will be affected by

REFERENCES

1. T. C. Bell, A unifying theory and improvements for existing
approaches to text compression. Ph.D. thesis, Department
of Computer Science, University of Canterbury (1987).

2. J. G.Cleary and I. H. Witten, Data compression using
adaptive coding and partial string matching. JEEE Trans.
Comm. COM-32 (4), 396-402 (1984).

3. G. V. Cormack and R. N. Horspool, Data compression

interactions within the bit patterns of the symbols, but
the overall probability used to encode any symbol is
selected entirely by a Markov context.

5. CONCLUSION

It has been shown that DMC uses an underlying variable-
order Markov model. This has been done by viewing the
model at the symbol level rather than the bit level, where
the size of a symbol is implied by the initial model. In
practice, DMC achieves compression comparable to
Cleary and Witten’s Partial Match scheme (which also
uses a variable-order Markov model); DMC appears to
be a little worse for text files, but significantly better for
non-homogeneous binary files. Although the DMC
scheme models text with an FSA, the FSA is restricted to
be an FCA, and the use of unrestricted FSA — and more
sophisticated — models of text for data compression still
needs to be explored.

Acknowledgements

The authors would like to thank John Cleary for
suggesting this line of research, Ian Witten for helpful
suggestions and comments on the work, and Nigel
Horspool for supplying the DMC program and his
helpful comments.

using dynamic Markov modelling. The Computer Journal,
30 (6), 541-550.

4. G. Langdon and J. Rissanen, A double-adaptive file com-
pression algorithm. JEEE Trans. Comm. COM-31 (11),
1253-1255 (1983).

5. J. Rissanen and G. Langdon, Universal modeling and
coding. IEEE Trans. Inf. Theory, 1T-27, 12-23 (1981).

20 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

O
o
2
S

¥20Z Yode €| uo1senb Aq G88L¥E/91L/1L/ZE/8191e/|UulWwoo/wo2 dno-olwepeoe//:sdiy wolj pepeo)

