Priority Semaphores

B. FREISLEBEN! anp J. L. KEEDY?*

! Fachbereich Informatik, Technische Hochschule Darmstadt, Alexanderstr. 24, D-6100 Darmstadt, F.R.G.
2 Department of Computer Science, University of Newcastle, NSW 2308, Australia

Neither low-level mechanisms such as semaphores nor higher-level mechanisms such as path expressions provide a simple
means of solving synchronisation problems involving the scheduling of processes or classes of processes according to
different priorities. This paper presents a new set of primitives which are easy to use and simple to implement. Their use
is described in terms of the familiar reader—writer problem and the general scheduling problem involving arbitrary levels
of priority with support for pre-emption and shared access by certain process classes. An efficient implementation, which
reduces to a minimum the number of calls required to the process scheduler, is then described.

Received May 1987

1. INTRODUCTION

Dijkstra’s semaphores’ with P and V operations have
been demonstrated to be adequate and sufficient to solve
a wide variety of synchronisation problems. However,
solutions for some classes of problem can be rather
cumbersome and difficult to discover. In consequence
there has been a shift of opinion in favour of higher-level
language constructs such as monitors*® and path
expressions* to facilitate solutions for complex syn-
chronisation problems. It has become common practice
in proposing such solutions to demonstrate that they can
be implemented via semaphores, the implicit assumption
being that because semaphores can be used to provide a
possible implementation they probably will be. In
consequence, an increasing number of operating systems
support P and V operations in the system kernel as the
only synchronisation mechanism.

This situation can be compared with the view that
because add integer and negate integer operations are the
only necessary primitives for implementing all real and
integer arithmetic operations, these are the only primi-
tives which should be supported at the machine in-
struction level. Such a view is of course unacceptable, at
least on the grounds of efficiency, and in practice a much
wider range of integer and floating-point operations is
provided as machine instructions in all modern com-
puters.

In this paper we likewise propose an extended set of
synchronisation operations which can be used to com-
plement P and V operations and thus simplify the
programming of a particular class of synchronisation
problems, namely those problems involving the sched-
uling of individual processes or classes of processes
according to different priorities.

2. PREAMBLE ON SEMAPHORE
IMPLEMENTATION AND CLASSES OF
PROCESSES

In an earlier paper® we discussed how P and V operations
can be efficiently implemented by combining indivisible
machine instructions with commutative queuing routines.
The P operation is formed by combining the dect
instruction (which decrements a semaphore variable by
one and sets a condition code to show whether the result
is negative, zero or positive) with the suspend routine

* To whom correspondence should be addressed.

(Fig. 1). Likewise the V operation consists of a tinc
instruction (which increments the semaphore variable by
one and sets a condition code indicating its value before
the execution of the instruction) together with the activate
routine (Fig. 1).

P macro: if dect(sem) <O then suspend(sem-
queue)

V macro: if tinc(sem) <O then activate(sem-
queue)

Figure 1. P and V macros based on machine instructions.

The suspend and activate routines can be considered as
part of the system kernel, and must be commutative in
the sense that activate wakes up exactly one process and
that the sequence suspend;activate has the same net effect
as activate ; suspend.

We also demonstrated in the same paper how these
primitive constituents of semaphores can be combined in
different ways to produce efficient solutions for a variety
of more complex synchronisation problems. One such
problem of particular relevance to the present paper
concerns the claiming/releasing of resources by the first/
last process of a particular class on behalf of other
processes in the class (equivalent to the PP and VV
procedures proposed by Campbell and Habermann* to
implement simultaneous execution in path expressions).
The solution is described in Fig. 2.

PP(sem): P(preliminary);
if tinc(count) =0 then P(sem);
V(preliminary)

VV(sem): if dect(count) =0 then V(sem)

Figure 2. PP and VV operations.

Preliminary and count are auxiliary semaphores shared
by the class of processes. The VV operation is simpler
and more efficient than the normal semaphore-based
solution because mutual exclusion for the count variable
is achieved by the tinc/dect instructions rather than
through use of an extra semaphore.

3. PREVIOUS SOLUTIONS FOR
ORDERING PROCESS EXECUTION

In terms of problems involving the ordering of process
execution, the P and V operations on semaphores are

24 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥202 I4dy 01 uo 1senb Aq 806 L E/v2/ 1 /zg/eIome/|ufwoo/woo dno-olwsapeoe//:sdiy Wwolj papeojumo(q



PRIORITY SEMAPHORES

well suited to ensuring that only one process at a time
may execute a critical section. Assuming an initial value
of one for a semaphore, the P operation in effect inhibits
all processes except the first from continuing and the V
operation releases a single process (if one is waiting)
from its inhibited condition. Likewise PP and VV
operations, themselves composed of semaphore oper-
ations as discussed above, are well suited to ensuring that
a class of processes may concurrently execute a critical
section while excluding processes of other classes. Both
kinds of operation can be clearly observed in the initial
solution for the ‘reader-writer’ problem given by
Courtois, Heymans and Parnas.® In that example the
various semaphore operations ensure that readers exclude
writers and that a writer excludes both readers and other
writers. However, if both readers and writers are waiting
when a writer executes the V operation, then it is
arbitrary which proceeds first (if we accept, as is usual,
that no assumptions about priority are built into the V
operation).

Should we wish to control the order of further
execution without changing the assumptions about
semaphores, it becomes necessary to introduce further
semaphores. If readers are to be given priority over
writers, this can be arranged by nesting the writer code
within a further P and V pair on an extra semaphore,
thus ensuring that writers only wait at the P(w) operation
if no other writers are present (Fig. 3).® In effect writers
inhibit other writers before contending with readers for
use of the database, by means of the P(extra) operation.

integer readcount; (initial value = 0)
semaphore mutex, w, extra; (initial value =1)

READERS WRITERS

P(mutex);

readcount:= readcount +1; P(extra);

if readcount =1 then P(w); P(w);

V(mutex);

{read database} {update data-
base}

P(mutex); V(w);

readcount: = readcount—1; V(extra);

if readcount =0 then V(w);

V(mutex);

Figure 3. The reader priority solution using semaphores.

While this solution is straightforward, giving writers
priority turns out to be much more complex, as is shown
in the solution proposed by Courtois, Heymans and
Parnas.® The reason for this complexity is that while
semaphores are well suited to inhibiting other processes,
they cannot directly be used by one class of processes to
inhibit other classes of processes. (This is the reason why
the PP and VV operations are in effect used in both the
reader and writer code, although in the problem
statement only the readers form a class which can share
the database.) It appears to be solutions such as this
which have led to the view that semaphores are too
primitive for normal use and should be hidden by higher-
level language constructs.

However, when we examine higher-level solutions for
the same problem we find that they too are non-trivial.
As an example consider the path expression solution
proposed by Campbell and Habermann,* which appears
in Fig. 4. This complexity can probably be attributed to

the assumption that higher-level constructs will be
implemented via a kernel which provides P and V
operations as the only synchronisation tools.

path readattempt end

path requestread, {requestwrite} end

path {openread; read}, write end
where

readattempt = begin requestread end

requestread = begin openread end

requestwrite = begin write end

READ = begin readattempt; read end

WRITE = begin requestwrite end

Figure 4. The writer priority solution using path expressions.

In earlier papers™ ® we have questioned this assumption
and have proposed that additional low-level syn-
chronisation tools can greatly simplify problem solutions
at a higher level. One example of this was a ‘reader—writer
semaphore’ which directly solves the problem under
discussion.® It could be argued, however, that reader—
writer semaphores provide a very specific solution for a
particular problem. For this reason we now propose an
alternative, which can be applied to a wider class of
problems involving the scheduling of processes and
classes of processes such that different classes of processes
have different levels of priority and may need to use
resources either in mutually exclusive or in shared
mode.

4. THE HIGH-LEVEL SOLUTION

The aim of our proposal is to provide a simple and easy-
to-use method of ensuring that individual processes or
classes of processes can access a critical resource
according to priorities assigned to the various classes of
processes. To achieve this we propose two macros.

request(xX,p): used by a process or
class of processes to request
resource x with priority p.

release(x): used by a process or class
of processes to release resource x.

Using these macros we can very simply formulate a
solution for all the priority scheduling problems described
above (Fig. 5). The critical resource is represented by a
new, special kind of semaphore, called a priority
semaphore. It is assumed that there are k levels of
priority, with 1 being the highest and k the lowest
level.

resource: priority_semaphore;
PROCESS IN CLASS i, 1<=i<=k

request (resource, 1i);
use resource
release (resource);

Figure 5. The general priority scheduling solution using priority
semaphores.

The above code represents a solution for all problems
involving the scheduling of processes or classes of
processes according to different priorities. The priority

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 25

¥202 I4dy 01 uo 1senb Aq 806 L E/v2/ 1 /zg/eIome/|ufwoo/woo dno-olwsapeoe//:sdiy Wwolj papeojumo(q



B. FREISLEBEN AND J.L.KEEDY

semaphore can be initialised appropriately to specify
whether the processes in a particular class can share
access or must have mutually exclusive access to the
resource. Since the solution consists entirely of a request/
release pair, it offers a maximal degree of simplicity. It
now remains for us to consider whether the proposed
macros can be implemented efficiently.

S. IMPLEMENTATION

The proposed implementation, like the semaphore
implementation discussed in Section 2, is based on the
principle that the kernel’s scheduling routines should
only be called if a queuing operation is actually necessary,
in order to reduce the calling and process scheduling
overheads to a minimum.

To achieve this we propose that a priority semaphore
is a data structure embedded in the user program, and
has several fields (Fig. 6).

type priority_semaphore =

record
preempt: boolean
preempted: boolean
active: integer
class: array [1l..k] of
record
owned: boolean
shared: boolean
proccount: integer
end
end

Figure 6. The data structure for a priority semaphore.

The first two fields (preempt and preempted) have been
included in the data structure to ensure (if appropriate)
that newly arrived processes in a low priority class with
shared access are not permitted to enter the critical
region while there are waiting processes of higher priority.

When the boolean field preempt is initialised to ‘true’,
newly arriving processes in the currently active class, if it
is a sharing class, may only proceed if there are no higher
priority processes waiting. The boolean field preempted is
set to ‘true’ to indicate that higher-priority processes
have been delayed for this reason. If preempt is initialised
to ‘false’, newly arrived processes in a currently active
(sharing) class are permitted to continue regardless of
waiting processes of higher priority.

The field active counts the number of processes
currently using the resource. Each process class is
represented by the three fields owned, shared and
proccount. The field owned is set dynamically when the
corresponding class has been granted access to the
resource, and shared is initialised to specify whether the
corresponding class has shared access or not. The
proccount field holds a count of the number of waiting
processes in the corresponding class. Two indivisible
machine instructions (described in a PASCAL-like
notation) operate on this structure (Fig. 7).

These instructions are used in combination with the
process scheduler’s normal suspend and activate routines
to build the desired macros. However, the activate
routine may be extended to allow the caller to specify
how many processes should be activated. This reduces
the calling overheads to the kernel if several processes of

a shared class have to be activated. The macros can then
be programmed as shown in Fig. 8.

The request macro starts with the execution of the
priority-P instruction. A calling process can only gain
access to the critical resource either if no other process is
present or if it belongs to the currently active (shared)
class and no higher-priority process is waiting (if preempt
is set). Otherwise, a condition code is set to indicate that
the process has to wait, which is effected by the
subsequent call of the suspend routine in the request
macro. It is assumed that the process scheduler maintains
a separate queue for each priority class of the priority
semaphore, and that a process is suspended by inserting
it into the appropriate queue.

The release macro starts with the execution of the
priority-V instruction. A calling process will only cause
further actions if it is the last active process of a class. In
this case the waiting process or process class with the
highest priority is determined by sequentially scanning
the proccount fields starting with class[1]. The first non-
zero proccount entry determines the waiting process or
class with the highest priority. A successful search is
indicated by setting a condition code which is passed
back to the release macro, and this results in calling the
activate routine of the process scheduler. If the waiting
class with the highest priority is allowed to have shared
access to the resource all processes in the queue are
activated together.

From the process scheduler’s viewpoint there is no
reason to distinguish between normal semaphore queues
and priority semaphore queues (except in so far as
activate may specify how many processes should be
woken up). We assume that these routines are com-
mutative, as discussed in Section 2. This is necessary
because a process may be interrupted in the request
macro between the priority- P instruction and the suspend
call with an intervening execution of release.

An efficient implementation is clearly possible. If the
active and proccount fields are represented by 6 bits each
and all remaining fields by one bit each, then a priority
semaphore to support 3 priority classes with a maximum
of 63 waiting processes in each queue and 63 concurrently
active processes in a shared class can be implemented in
a single word of a 32-bit computer. An extension to
support more than 3 priority classes requires that the
fields owned, shared and proccount for each additional
class are contained in additional machine words. How-
ever, a solution involving several words of memory
would complicate the microcode to handle the case
where a semaphore crosses a page boundary. An
alternative solution can be achieved by redefining the
request and release macros in such a way that several
individual priority semaphores (with three classes) are
manipulated. The solution is described in detail in
Ref. 9.

The machine instructions can easily be implemented in
microcode. The main advantage is that the kernel’s
scheduling routines are called only when a queuing
operation is actually necessary. It would, however, be
possible to implement the operations entirely as kernel
primitives if microcoding facilities are not available. A
microcoded implementation carried out for an ICL
PERQ revealed execution times of about 8 microseconds
for priority-P and 5 microseconds for the priority-V
instruction.

26 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥202 I4dy 01 uo 1senb Aq 806 L E/v2/ 1 /zg/eIome/|ufwoo/woo dno-olwsapeoe//:sdiy Wwolj papeojumo(q



PRIORITY SEMAPHORES

const maxclass = maximum number of process classes
maxproc = maximum number of processes in a class

instruction priority-P (prsem: priority_semaphore;
claimant: 1..maxclass;
var condition_code: boolean);
begin with prsem do
begin
if active=0 or
(class[claimant]. owned and class
[claimant]. shared and not preempted)
then begin
class[claimant]. owned: = true;
active: = active+1;
condition_code: = false;
end
else begin
condition_code: = true;
class[claimant].proccount: = class[claimant]. proccount +1;
if preeempt and not preempted
then begin
i: = maxclass;
while i > claimant and not preempted do

begin
if class[i].owned then preempted: = true;
ir=1-1;
end;
end;
end;
end;
end.

instruction priority-V (prsem: priority_semaphore;
var restart: 1..maxclass;
pc: integer;
condition_code: boolean);
var i: integer;
begin with prsem do
begin
active: = active—1;
condition_code: = false;
if active=0
then begin
for i: =1 to maxclass do class[i].owned: = false;
preempted: = false;

i: =0;
repeat i:=1i41;
if class[i].proccount >0
then begin

class[i]. owned: = true
restart: = i;
if class[i].shared
then pc: = class[i].proccount
else pc: =1;
class[i].proccount: = class[i].proccount-pc;
active: = pc;
condition_code: = true;

end;
until i =maxclass or condition_code;
end;
end;
end.

Figure 7. Machine instructions to support priority semaphores.

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

27

¥202 Iudy 01 uo 1senb Aq 806 L ¥E/v2/ 1L /zg/e1one/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



B. FREISLEBEN AND J. L. KEEDY

macro request(x: priority_semaphore; p: 1..max-
class);

var cc: boolean;
begin priority-P(x, p, cec);

if cc then suspend (p-queue);
end.
macro release(x: priority semaphore);
var cc: boolean;

p: integer;

n: integer;
begin priority-V(x,p,n,cc);

if cc then activate(p-queue,n);
end.

Figure 8. The priority semaphore macros.

REFERENCES

1. E. W. Dijkstra, Cooperating sequential processes. In Pro-
gramming Languages and Systems, edited F.Genuys.
Academic Press, London (1968).

2. P. Hansen Brinch, The programming language concurrent
Pascal. IEEE Transactions on Software Engineering SE-1
(2), 199-207 (1975).

3. C. A. R. Hoare, Monitors: an operating system structuring
concept. Comm. ACM 17 (10), 549-557 (1974).

4. R. H. Campbell and A. N. Habermann, The Specification
of Process Synchronisation by Path Expressions. Lecture
Notes in Computer Science, vol. 16, Springer, Heidelberg
(1974), pp. 89-102.

5. J.L.Keedy and B. Freisleben, On the efficient use of

6. CONCLUSION

Not only are some common synchronisation problems
involving the ordering of processes with different
priorities difficult to solve with semaphores, but they
may also lead to rather complex solutions using higher-
level constructs such as path expressions. We have
presented an alternative approach based on priority
semaphores which is easy to apply to a variety of
problems and can be very efficiently implemented. The
implementation can be generalised for an arbitrary
number of process classes with shared or mutually
exclusive access and is capable of dealing with both pre-
emption and non-pre-emption cases.

semaphore primitives. Information Processing Letters 21
(4), 199-205 (1985).

6. P.J. Courtois, F. Heymans and D. L. Parnas, Concurrent
control with readers and writers. Comm. ACM 14 (10),
667-668 (1971).

7. J. L. Keedy, K. Ramamohanarao and J. Rosenberg, On
implementing semaphores with sets. The Computer Journal
22 (2), 146-150 (1979).

8. J. L. Keedy, J. Rosenberg and J. Ramamohanarao, On
synchronising readers and writers with semaphores. The
Computer Journal 25 (1), 121-125 (1982).

9. B. Freisleben, Mechanismen zur Synchronisation paralleler
Prozesse. Informatik Fachberichte 133. Springer, Heidel-

berg (1987).

Announcement

12-13 OcTOBER 1989

International Workshop on Raster Imaging
and Digital Typography, Ecole Polytechnique
Fédérale, Lausanne, Switzerland (sponsored
by the Eurographics Association)

Raster image processors for non-impact print-
ers and plotters require highly sophisticated
algorithms and performant hardware. Outline
character acquisition, design, manipulation
and rasterisation, as well as graphic and image
rendering are of major concern to scientists
and engineers involved in the development of
raster imaging devices.

Contributions include:

® Shape acquisition (curve fitting)

® Shape manipulation

©® Character design

® Character representation and transforma-
tion

Measuring type quality

Character structures (generation/recog-
nition)

Page description languages

Rasterisation algorithms

Rasterisation accuracy

Fast rasterisation hardware

For further information contact one of the
following :

Debra Adams, XEROX PARC, 3333 Coyote
Hill Road, Palo Alto, CA 94304, USA. Tel:
(415) 4944417, telefax (415) 4944022 ; e-mail:
adams.pa@Xerox.COM.

Dr Jacques André, INRIA/IRISA - Rennes
Campus, Université de Beaulieu, F-35042
Rennes Cédex, France. Tel: (33) 99 36 20 00;
telefax: (33) 99 38 38 32; telex: 950 473F
UNIRISA ; e-male: jandre@irisa.irisa.fr; jan-
dre@jrisa.uucp.

Professor Roger Hersch, LSP/EPFL, 37
Avenue de Cour, CH-1007 Lausanne, Switzer-
land. Tel: (4121) 47 43 57/693 43 57; telefax:
(4121) 473909/693 39 09; e-mail: hersch
@elde.epfl.ch.

18-20 OCTOBER 1989

Communicating to the World, Garden City
Hotel, International Professional Communi-
cation Conference

The theme for 1989 fits well with the New
York location, and underscores the inter-
national character of communication. The
health and growth of world culture in infor-
mation-based societies truly depends on
expert communicators creating comprehen-
sible messages.

The three-day conference will focus on
topics related to the conference theme, and on
other issues of concern to technical pro-
fessionals. We encourage your proposals for
original papers, complete sessions devoted to
an issue, demonstrations, panel discussions or
workshops.

Topics

® International communications systems

28 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

® Managing communications

® Usability testing and communications
research

® On-line database systems

® Computer bulletin boards

® Sharing information internationally by
satellite

® Buying and managing communication
technologies

® Partnerships: university and industry

® Networking: pros and cons

® Wide-area networks

® Impact of networks on communication
patterns

® The editing process in a desktop environ-
ment

® Communicating in multi-cultural markets

©® Computer-aided graphics

® Handling professional and public infor-
mation in multi-national environments —
banks, airlines

©® Communicating technology to the public

® Translation of technical information

©® Marketing and proposal development

® Graphics for multi-cultural applications

©® Automating proposal preparation

® Video for proposals, reports or public
information

® Managing for productivity in the con-
temporary communication environment

For general IPCC 89 information contact :

Mr Richard M. Robinson, Grumman Cor-
poration, MS C39-05, Bethpage, NY 11714,
USA. Tel: 516-575-5472.

¥202 Iudy 01 uo 1senb Aq 806 L ¥E/v2/ 1L /zg/e1one/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



