A Query Facility to a network DBMS

N. PARIMALA, N. PRAKASH, B. L. N. RAO anp N. BOLLOJU
R and D Group, CMC Ltd, 115 Sarojini Devi Road, Secunderabad 50003, India

A query facility to a network DBMS is described wherein it is possible to retrieve and update the data in the database.
Apart from the existential and universal quantifiers, some additional quantifiers, which are found useful in a database
environment, are provided for. A facility, called the discourse Sacility, by which a set of related queries can be asked is
also explained. In this, the data retrieved in a query can be used in subsequent queries.

Received April 1987, revised June 1987

1. INTRODUCTION

A query facility for a DBMS was first proposed for a
relational model of data.? Also, a criterion was laid down
to evaluate such a query facility. It was postulated that in
order for such a facility to be meaningful it should have
the power of the relational calculus. In other words, any
formula expressible in the first-order calculus should be
expressible in the query system.

The facilities available with a network DBMS, on the
other hand, were for a long time restricted to the use of
DML languages embedded in host languages. This is,
perhaps, because the DBTG Report! gave a specification
only for the DML and its embedding in Cobol. However,
some database management systems have tried to provide
a query facility with a network data model as well. For
example there is a system called Seed, which is a
CODASYL-based system and offers a query facility
called Harvest. This system, however, provides only
for retrieval and gives no language for updating the data
base. Also, only the existential quantifier is available.
The universal quantifier cannot be used in this system.

Admin® is a DBMS based on the network model of
data. It provides a query facility, called Query, which
allows one to perform retrieval as well as update to the
data base. Both the existential and the universal quantifier
are available in Query. Further, some more quanti-
fication forms are provided for in this system, as these
are found useful in a database environment. For example,
instead of using just the existential quantifier one might
like to say ‘there exists at least 3°. A discourse capability
is also available within Query. Using this facility the user
can ask a bunch of related queries in a conversational
mode.

In this paper we shall explain the features of Query.
A brief overview is given in Section 2. The retrieval
commands are explained in Sections 3 and 4. The
discourse facility is given in Section 5. The examples in
these sections will refer to the schema of Fig. 1 unless
mentioned otherwise.

During the course of this paper, reference is made to a
corec type and a coset type. These terms correspond to a
record type and a set type of CODASYL. The reason®
behind departing from CODASYL terminology is that
we make a fair number of departures from the
CODASYL notions of a record type and a set type.
Consequently, we chose the relatively neutral terms corec
and coset to denote these two types.

2. OVERVIEW

When extracting information from the database, a query
can ask for data from just one corec type or more than
one corec type. We refer to the former as a single-variable
query. A query which asks for information from more
than one corec type will be referred to as a multi-variable
query.
The general format of a retrieval query is

{command) {target listy WHERE {condition)

where {command) is either the FETCH or the EXPLODE
command (see below),

target list) is a list of fields, belonging to one or more
corec types, that has to be retrieved and

{condition) is a boolean valued expression.

Functionslike 4VG, SUM, MAX, etc. can be used in the
target list. The result of a query can be sorted and output
in a pre-specified format. Also, tuples of the target list
which have the same value in a certain field can be
grouped together.*

The various commands that modify the contents of the

database are*

Connect to create a link between an owner record and
one or more member records of a coset type

Disconnect to remove a link from a number of member
records and their respective owner records

Newowner to transfer one or more member records
from one coset occurrence to another in the same
coset type

Delete to delete one or more occurrences of a corec
type

Store to store an occurrence of a corec type

Update to modify the fields of a corec type either to a
new value or to an arithmetic expression involving
the fields of the same corec type.

3. SINGLE-VARIABLE QUERY

Essentially such a query asks for data from one corec
type and does not use the relationships defined across
corec types.

Example. Get the names and age of all employees who
are less than 30 years old and have a salary greater than
2000 or are greater than 30 years and have a salary of less
than 2000.

FETCH employee . ename, age
WHERE (E.salary > 2000 AND E.age < 30)
OR (E.salary < 2000 AND E.age > 30)

THE COMPUTER JOURNAL, VOL. 32, NO. 1 1989 55

¥202 I4dy 60 U0 1senb Aq LG6L1E/SS/ L /2g 2101 e/|ulwoo/woo dnoolwsapede//:sdiy Wwolj papeojumo(q

N. PARIMALA, N. PRAKASH, B. L. N. RAO AND N. BOLLOJU

3.1 Explode

The problem of explosion is handled by the explode
command. Explosion takes place whenever (a) there is a
relationship between elements of the same corec type; or
(b) there is a relationship between two corec types, as for
example in the parts explosion problem. We shall
consider each of these in turn.

Consider Fig. 1.

Department

|dname l budget i loc]

DEPTFUNC DEPTEMP

Function Employee

enamel age] salaryl status —l GROUP

EMPQUAL
Qualific
degree year
Figure 1.
Part
pname P#
SUB SUPER
Link
Figure 2.

Example. Get all the employees working under H.
Ramesh

EXPLODE employee .ename WHERE ename =
‘H. Ramesh’

This is executed, using the self-cycle GROUP as
follows. First, the employee satisfying the condition is
found. Thereafter, the coset occurrence in which this
employee is the owner is identified. All members in this
occurrence are to be output. Thereafter, the various coset
occurrences with these members as owners are deter-
mined. Again, the members in these coset occurrences
are output. This process repeats till such time as the coset
occurrences constructed are all null.

It can be seen that explode command essentially
outputs a hierarchy of corec occurrences rooted in the
occurrence satisfying the condition. Whenever explosion
takes place, the root occurrence, the member records
connected to this, and recursively the member records
connected to the records found are output.

In the foregoing we have considered an explode
command with a condition. It is possible for no condition
to be specified in this command. For example:

EXPLODE e.ename

In such commands, the roots of the hierarchies are those
corec occurrences which do not take part in coset
occurrence as members. The rest of the method of
handling explode is the same as outlined earlier.

So far we have assumed that there is only one self cycle
for a corec type. Whenever there is more than one self
cycle QUERY lists out all these on the screen and asks
the user to select one. Explosion, thereafter, takes place
with the chosen self cycle.

Now, let us look at (b) above. For this, we shall refer
to Fig. 2.

Example. Get the names of parts which are used in an
engine

EXPLODE part.pname where pname = ‘ Engine’

This is executed using the coset types SUB and SUPER.
First, a part named engine is found. Then the member
records, Link, in the coset type SUB are found. For each
link record thus selected a part is got by finding the
owner record in the coset type SUPER. The above
process is repeated for each part that is found. This
process, for a part, terminates if there is no link record
connected to it.

We have assumed, above, that (a) the cosets of
traversal are SUB and SUPER; and (b) the order of
traversal is first SUB followed by SUPER. In order to
determine (a) and (b) the following is done.

First, all coset types with the corec in the explode
command as owner and another corec type as member
are found. If there are only two coset types than these are
picked up. In case there are more than two the user is
asked to select two among them. After the two coset
types have been identified the user is always asked to
specify the order in which they are to be used.

4. MULTI-VARIABLE QUERY
4.1. Path

A multi-variable query involves two or more corec types.
In order to extract information across corec types the
linking information provided by the coset types is to be
used. It then becomes necessary to identify the cosets
linking these corec types.

All the corec types in the target list together with those
referenced in the condition are called the referenced
corec types. A path is a traversal along coset types such
that all the referenced corec types are included in the
traversal. Also, there is a start corec type from which the
traversal begins. This can be any one of the corec types
of the target list. We have chosen the first corec type in
the target list to be the start corec type.

Further, if more than one coset type is defined between
two corec types, only one of these coset types is included
for any given path.

It is possible that for a given query there exists more
than one path, by using which the records can be found.
Consider an example.

Example. Fetch names of departments and names of
all employees in them.

FETCH dname, ename
If we look at the network of Fig. 1 there exist two paths

56 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥202 I4dy 60 U0 1senb Aq LG6L1E/SS/ L /2g 2101 e/|ulwoo/woo dnoolwsapede//:sdiy Wwolj papeojumo(q

A QUERY FACILITY TO A NETWORK DBMS

R1

L 1]

S12

R2
525 523
RS R3
534
Figure 3a.

(;
LA

—
VN
N

r42

r4l

ri2

r23 “—r34

\\‘r33
rs3 ,\
r43

between department and employee. One of these is
DEPTEMP and the other path is along the two coset
types DEPTFUNC and FUNCEMP. Each of these paths
will give a different answer. If the former is chosen then
we would get all the employees connected to a depart-

Figure 35.

ment. Traversing via the two cosets DEPTFUNC and
FUNCEMP would give the employees who are con-
nected to the department via their functions. If there is an
employee who is working in a department but has no
function assigned to him the path DEPTEM P would list
the employee, whereas the latter path would not.

Whenever there is more than one path which can be
used to answer the query, the path of interest has to be
identified. One method of identification of the path of
interest would be to specify the path in the query itself.
Instead, the system tries to help the user to identify the
path rather than insist on the user specifying the
information. In order to do so the system first determines
all the paths that exist among the referenced corec types.
If there is only one path, that path is used for fetching the
records. In case of more than one path all the paths are
displayed on the screen and the user is asked to make his
choice.

When the system was first released to the users all the
paths were flashed on the screen. It was later found out
that users tend to choose the shorter (in terms of number
of cosets) paths. Also, in most cases, the path which had
cosets directly linking the corecs to be retrieved was
chosen. In the above example DEPTEMP was chosen
more often than the second path. Taking into account
the user reaction, changes were made to the manner of
displaying paths. To start with, all the paths were
arranged in an ascending order, where the number of
cosets contained in a path was the ordering criterion.
Thereafter, all paths having the same number of cosets
were flashed, starting with the lowest number.

4.2. Evaluation

In this section we shall consider the processing strategy
that is adopted to answer a query. For this purpose
consider the schema given in Fig. 3a and the instance
diagram as given in Fig. 35.

Let R1, R2, R3, R4, RS be the referenced corec types
and R/ the start corec type in a query.

Let the path be S12, S23, S34, S25 where Sij is a coset
type between Ri and Rj.

The process starts by finding the first occurrence, ri1,
of RI. Now, rl1 is established in S12 and r21, the first in
the coset occurrence of S12 is found. Similarly, 37 and
r41 are found. Further, r21 is established in S25 and r51
is found. These records contain the values of the target
list as well as those required for evaluating the boolean
valued condition. We shall refer to this bunch of records
as result tuple.

Using the result tuple the condition is first evaluated,
and if found true, all the values of the target list obtained
from these records are output. If there is no condition,
the values of the target list obtained from these records
are listed.

Now, the next result tuple is found. This is done by
moving to the next record in the occurrence of last coset
type of the path. In our example, the next result tuple
is
rll r21 r31 r4l r52

Now, the end of the coset occurrence of S25 is reached.
Therefore, the next record r42 in S34 is found. It is
established in the coset type and navigation is resumed.

As a general rule, the process of moving back in the

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 57

¥202 I4dy 60 U0 1senb Aq LG6L1E/SS/ L /2g 2101 e/|ulwoo/woo dnoolwsapede//:sdiy Wwolj papeojumo(q

N. PARIMALA, N. PRAKASH, B. L. N. RAO AND N. BOLLOJU

path is repeated till either (a) a next record in some coset
type is found; or (b) the end of the occurrence of the first
coset type in the path is reached. When this happens, an
attempt is made to find the next record of the start corec
type. If it exists the process outlined above is repeated ; if
not, all the records have been found and the process
halts.
In our example the result tuples are

rll r21 r31 r4l1 r5l
ril r21 r31 r4l r52
rll r21 r31 r42 r51
ril r21 r31 r42 r52
ri2 r23 r33 r43 r53

4.3. Quantification
In QUERY there are a total of five quantifiers.

ANY [n]
ALL
JUST n
UPTO n
RALL

where n is a positive integer. A default value of I is
assumed for n in ANY.

The meaning of the first four quantifiers is given
below. Here, whenever we talk of occurrences we shall be
referring to the occurrences of the quantified corec type.
Also, the condition is that one which applies to this corec

type.

Example. FETCH dname WHERE ANY E
(salary > 2000)

In this example, E is the quantified corec type and
(salary > 2000) is the condition applying to it. The
explanation of the quantifiers is as follows:

ANYn at least n occurrences should satisfy the

condition

exactly n occurrences should satisfy the

condition

UPTOn 0 or more but not more than n occurrences
should satisfy the condition

ALL all the occurrences should satisfy the con-
dition.

JUST n

The basic processing strategy for handling quantifiers
will be explained with the help of examples.

(1) ANY
FETCH dname WHERE ANY 3 E(salary > 2000)

Let the path be DEPTEMP. Let there be a counter
initialised to zero. The process starts by picking up the
first occurrence of the start corec type, department.
Thereafter, the first employee linked to it in DEPTEMP
is found, the result tuple constructed and the condition,
salary > 2000, is checked. If it holds, the counter is set to
I, if not, the counter remains at zero. In either case, the
next occurrence of employee linked to DEPTEMP is
found. The process of checking the condition, operating
the counter and finding the next employee is repeated.
As this process continues the system keeps monitoring
the counter. If the counter becomes 3, it is clear that ‘at
least 3 employees having salary > 2000’ are connected to
this occurrence of department. Hence the field, dname,

can be output. Clearly, there is now no point in picking
up the next occurrence of employee in DEPTEMP linked
to this occurrence of department. Therefore, the next
occurrence of department is picked up, the counter is
reset to zero and the process repeats.

On the other hand, it is possible that as the new
occurrences of employee in DEPTEMP are found, the
counter never reaches 3. In such a case the particular
occurrence of DEPTEMP will be exhausted. Since the
condition on at least 3 employees will not be satisfied, the
dname value of the department occurrence will not be
output. As before, the next occurrence of department is
picked up, the counter is reset to zero and the process
repeats.

The foregoing continues till the occurrences of depart-
ment are exhausted.

(2) JUST
FETCH dname WHERE JUST 3 E (salary > 2000)

The basic method of processing this is the same as that 8
outlined for ANY. The only difference lies in the manner 5
in which the counter is handled.

It is necessary to pick up employee occurrences in
DEPTEMP till one of the following holds.

(a) The counter becomes 4 and the coset occurrence
may or may not be exhausted. In such a case the
department does not have ‘exactly 3 employees with
salaries greater than 2000’ attached to it. Hence, dname ©
is not output. Additionally, there is no point in continuing 2
further processing of this coset occurrence. Therefore, a %
new occurrence of the start corec type, department, is §
picked up; the counter is reset to zero and the process 3 3
repeats.

(b) The counter is less than 3 and the coset occurrence
is exhausted. Again, the department does not have
‘exactly 3 employees with salaries greater than 2000’
attached to it. The same action as in (a) above is
taken.

(c) The counter is 3 and the coset occurrence is
exhausted. In this case, the department has exactly 3
employees with a salary larger than 2000. Hence the
name of this department is output. The next occurrence
of department is picked up; the counter is reset to zero
and processing resumes.

peojumo(

no-olwepeoe//:sdiyy w

(3) upTO
FETCH dname WHERE UPTO 3 E (salary > 2000)

Again, the basic processing scheme is that outlined for
ANY except that the counter is handled in a different
way. It is necessary to pick up new employee occurrences
in DEPTEMP till one of the following holds:

(a) The counter becomes 4 and the coset occurrence
may or may not be exhausted. The department has more
than 3 employees with salary greater than 2000. Hence,
it is not a candidate for output. The next occurrence of
department is picked up, the counter is reset to zero and
the process continues.

(b) The counter is less than or equal to 3 and the coset
occurrence is exhausted. In this case, the department has
up to 3 employees with salary > 2000. Hence, the dname
value for this occurrence of department is output. The
counter is reset to zero, the next occurrence of department
is found and the process repeats.

¥20Z Iudy 60 uo 1senb Aq LG6LYE/SS/LIZE /a1 Ul

58 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

A QUERY FACILITY TO A NETWORK DBMS

4) ALL
FETCH dname WHERE ALL E (salary > 2000)

In this case there is no need to maintain a counter. As
each new occurrence of employee in DEPTEMP is
found, it is checked, as before. If salary > 2000 holds, the
next occurrence of employee is found. If, however, even
one occurrence is found for which this condition does not
hold, ‘all employees of the department do not have a
salary > 2000’. Hence the department is not a candidate
for output. In this case the next occurrence of department
is found and the process repeats.

If, on the other hand, the coset occurrence is exhausted,
this must be because each employee occurrence in it
satisfied the condition on salary. Hence the dname value
of department can be output. Again, the next occurrence
of department is found and the process repeats.

(5) RALL. We shall now consider the quantifier
RALL. RALL is used to indicate that all record
occurrences of the corec type, and not just the ones
connected to an occurrence of the start corec type,
should be used in the evaluation of the condition. Let us
take an example for the schema of Fig. 4.

Supplier

sname loc

SUPQTY

Qty

quantity

PARQTY

Part

P# pname colour

Figure 4.

Example. Get the names of suppliers who supply all
the red coloured parts.

FETCH sname WHERE RALL P (colour = ‘red’)

The query can be rephrased as ‘Print the names of the
suppliers provided all the parts in the data base having
the colour red are connected to the suppliers’. Therefore,
first, all occurrences of part which satisfy the condition
of colour equal to red are found. Thereafter, the first
occurrence of start corec type, supplier, is found. If all
the part occurrences selected earlier are also connected to
the supplier occurrence the name of the supplier is
output. On the other hand, if even one occurrence of the
selected occurrences is not connected no value is output.
As before, in both cases the next occurrence of the start
corec type, if found, is picked up for further processing.

Whenever more than one RALL is present in a
condition each RALL is evaluated separately and then
the query itself is evaluated. Consider Fig. 1.

Example

FETCH dname WHERE RALL E (salary > 2000) and
RALL Q (degree = ‘M.S.”) and budget > 10000

Here RALL E would be first evaluated to find out all the
employees who earn more than 2000. Thereafter, all the
qualifications with the degree M.S. would be fetched.
Now the fetch command is executed. The name of a
department is printed out if its budget is greater than
10000 and all the above selected employees and qualifi-
cations are linked to it.

5. DISCOURSE

When a database is queried it is possible that there is a
sequence of related queries which finally give the result
the user is looking for. Consider the following sequence.
Find the employees whose salary is greater than
2000.
Get their qualifications.
For all these employees who have an M. Tech.
degree, find their functions.
Find the funding sources for these functions.

The above sequence is dictated by a thought process
which is a natural way of seeking information. If a
system does not support such a sequence of querying, the
user may first have to write down the sequence and then
frame a long and complicated query.

In QUERY a facility by which a sequence of queries
can be asked is said to be a ‘Discourse’ facility.

Every query in a discourse mode gets data from the
environment given to it by the previous commands. This
environment is referred to as a context. A context is
defined to consist of:

(a) a set of chosen corec types and sets of selected
occurrences of these;

(b) non-chosen corec types and all occurrences of
these;

(c) chosen path;

(d) non-chosen coset types.

Example
FETCH ename, degree WHERE salary > 2000

Here the chosen corec types are employee and qualific.
The selected occurrences of employee are those who earn
more than 2000 and the selected qualific occurrences are
those which are connected to the selected employee
occurrences. The non-chosen corec types are department
and function. The chosen path is EMPQUAL. The
set of non-chosen coset types contains DEPTFUNC,
FUNCEMP and DEPTEMP.

The user enters into discourse using the command
SET DISCOURSE. Once this command is executed the
context is defined to be database context or DB context.
When the context is DB context:

(a) the set of chosen corec types is empty;

(b) all the corec types of the subschema belong to the
set of non-chosen corec types, hence all occurrences of all
corec types are available;

(c) there is no chosen path; and

(d) all the coset types of the subschema belong to the
set of non-chosen coset types.

The first query after the SET DISCOURSE command
operates in the DB context. Once this query gets
successfully executed a new context gets defined. Norm-

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 59

¥202 I4dy 60 U0 1senb Aq LG6L1E/SS/ L /2g 2101 e/|ulwoo/woo dnoolwsapede//:sdiy Wwolj papeojumo(q

N. PARIMALA, N. PRAKASH, B. L. N. RAO AND N. BOLLOJU

ally, this new context is the context for the query to
follow (see later). The context available at any instant of
time during a query session is referred to as the current
context.

Only the occurrences of corec types available in the
current context are used for evaluating the query. That
is, for any referenced corec type, which is also in the set
of chosen corec types, only the selected occurrences of
the corec type are used. Also, if a corec type is not a
chosen one, all the occurrences of the corec type are used
in the evaluation process.

Consider now the path that will be chosen for
evaluating the query. If all the referenced corec types of
the query are included in the chosen path, the chosen
path of the current context is used, and no new path is
constructed. On the other hand, if there are corec types
in the referenced corec types which are not included in
the chosen path, a new path is constructed using the
coset types from the set of non-chosen coset types. This
path must include the chosen path as a part of the path.
In other words, the new path is an extension of the path
in the current context. It is possible that more than one
path can be found which has the chosen path as a part of
it. In this case the path-asking mechanism is invoked and
the user is asked to make a choice.

Consider now the manner in which a query which is
successfully executed updates the current context.

(a) All corec types which appear in the target list of
the query are added to the set of chosen corec types.

(b) If a corec type has been newly added to the set of
chosen corec types, the set containing all the occurrences
of the corec type that qualified for being output is added
to the sets of selected occurrences of chosen corec types.
On the other hand, if a corec type of the target list
already existed in the set, the old set of occurrences of
this corec type is replaced with the set of occurrences
which were selected in this query.

(c) If any corec type of the target list was in the set of
non-chosen corec types, that corec type is removed from
the set.

(d) For each corec type which was newly added to the
set of chosen corec types all the occurrences are removed
from the set of occurrences of non-chosen corec types.

(e) The path used to answer this query becomes the
chosen path.

(f) If any coset type from the set of non-chosen coset
types was used in constructing the path, this coset type is
removed from the set. Further, in case more than one
path existed, the coset types of each of these paths are
removed from the set. This is because for all the corec
types of the chosen path which may appear in a query to
follow, the chosen path is always used. Therefore, even
though these corec types may be linked to each other via
many paths, to retain the coset types of all the alternate
paths in the set of non-chosen coset types is not
meaningful. These paths can never be chosen later on
during the discourse.

It must be noted that even though only some fields of
a corec type may be asked for in the target list, each
occurrence with all its fields is available in the context.
Therefore, in a subsequent query it is possible to ask for
fields which are difficult from the ones in the previous
query. Consider an example.

Example
FETCH ename where salary > 2000
FETCH employee . status

The second fetch command gives the status of those
employees whose salary is greater than 2000. It must also
be noted that the above method of specification of a
context does subsetting operation on the corec occur-
rences in the database.

In some cases it may be desired to digress from the
current context and move to another one, but resume the
interrupted discourse from the point of interrupt.
Therefore, it is necessary to provide a means to save and
restore contexts. The current context can be saved by
using the command

MARK CONTEXT <{context-name)

Context-name is the name by which the current context
is saved. The current context itself does not change. A
saved context can be asked for using the command

SET CONTEXT {context-name)

Once this command is executed {context-name) becomes
the current context. The current context which existed at
the time SET CONTEXT {context-name) was executed
is lost unless it has been explicitly saved.

It is possible to move from a discourse mode to a non-
discourse mode during a query session. This is done by
using the command

SET NO DISCOURSE.

When such a movement occurs the saved contexts are
not destroyed. These contexts can be used in another
discourse session within the same query session.

All saved contexts are maintained till either (a) the
query session is over, or (b) the context is explicitly
deleted using the command

DESTROY {context-name).

If an update command is given, the current context is
updated; it is possible that the record being updated is in
one or more saved contexts. However, no change is made
to any of the saved contexts that might get affected by
this command.

In some cases it may be desired that the chosen path
should not be used during a discourse. Consider an
example. Let the schema be as shown in Fig. 5.

Suppose we are interested in finding out persons and
buildings, distinguishing between those who live in
buildings and those who own buildings. Therefore, we
first find the buildings and the persons living in them.
The context at this time consists of Person, Building, the
path LIVES and the collection of Person and Building
records which are linked via the coset type LIVES. But
now it is not possible to know the persons who also own
buildings, as OWNS is not available in the context. The
only method of doing this is by discarding the chosen
path and selecting the new path OWNS. This is possible
in QUERY by specifying the command

ALL PATHS

This command tells the system that the chosen path is to
be made nil, and all the coset types of the subschema are
to be made available as non-chosen coset types. However,

60 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥20¢2 I4dy 60 U0 1senb Aq LG6L1E/SS/L/2E/eI01e/|ulwoo/woo dnoolwapede//:sdiy Wwolj papeojumo(

A QUERY FACILITY TO A NETWORK DBMS

Department
dname loc
EMPLOY
Person
name salary
LIVES WORKS OWNS
Building
bname address]

Figure 5.

the rest of the information in the context remains
unchanged. In the above example, ALL PATHS would
make both LIVES and OWNS available as non-chosen
coset types of the context. Therefore, it is now possible to
ask for persons and buildings. The system will display
the two paths, namely LIVES and OWNS. The user can
choose OWNS. It must be noted that since the selected
occurrences of chosen corec types are maintained in the
context after the command ALL PATHS, choosing
OWNS will give the names of people who live in
buildings and who own buildings.

5.1. Constructing new contexts

It may sometimes be desired to construct new contexts
out of previously available ones. For this purpose the
union (+), intersection (*) and difference (—) operators
can be used.

These operators are binary in nature and are defined
on compatible contexts. Two contexts C/ and C2 are
said to be compatible if the chosen corec types of CI
are identical to those of C2. The binary operations are
performed with the occurrences of chosen corec types
and will be explained later.

Since it is possible that the chosen path of CI is
different from the chosen path of C2, the question that
naturally arises is regarding the path that is defined for
the newly constructed context. In general there is no way
by which this path can be determined by the system. To
understand this, consider each operation by which a new
context can be constructed.

If the operator is union, the choice of either the chosen
path of CI or that of C2 can create difficulties. This is
because if the path of CI is chosen the records of C2 may
not get accessed, and vice versa. This would make the
union operator ineffective.

If the operator is intersection, either the path of C1 or
the path of C2 can be chosen, because the records arising
out of the intersection operator are in both the contexts.

If the operator is difference, CI-C2, the path of CI
only can be chosen as the path of the new context, since
all the records in the new context are also in CI.

It is also possible that the user wishes to choose an
altogether new path for the newly constructed context.
Consider an example. Let the schema be as shown in Fig.
5. Let it be required to find the names of people and
buildings such that these people own, live and work in
these buildings.

Fetch the persons and buildings where they live in.
Choose the path LIVES

FETCH person.name, building . bname
MARK CONTEXT living

SET DISCOURSE

Fetch the persons and buildings which they own. Choose
the path OWNS

FETCH person.name, building . bname
MARK CONTEXT owning

Get the persons who live in the building they own
MAKE CONTEXT (owning * living)

Get the persons and buildings which they own, live and
work in. Choose the path WORKS

FETCH person.name, building . bname

In the foregoing, first, those people and buildings are
identified in which the people live. The context is saved
and marked as ‘J/iving’. Thereafter, the context is set to
database context and those people and buildings are
identified which the people own. Again, the context is
saved and marked as ‘owning’. Now a new context is
created, which is the intersection of the two saved
contexts. Thus those buildings are known in which
people live and which they own. Now the next fetch
command asks for information about people and
buildings where these people work. It must inherit the
data constructed out of the Make operation but must
traverse the WORKS relationship to answer the query.
Clearly, the user requires facilities to choose an altogether
new path after a new context is constructed. The system
flashes all paths between person and building and the
user chooses WORKS. The data retrieved give the
desired result.

It must be noted that the foregoing could also have
been achieved by saving three contexts — living, owning
and working respectively. Thereafter, an intersection of
all these would have answered the query.

From the foregoing it is clear that the specification of
the chosen path of the newly constructed context is best
left to the user. Therefore, at the time the command to
make a new context is issued, the system assumes that all
the coset types of the subschema are available as non-
chosen coset types and the chosen path is null. When the
first query is issued in the new context, all paths that can
be used to answer the query are flashed on the screen and
the user is asked to choose one of these. This path then
becomes the chosen path and the process continues as
explained earlier.

There is only one question remairing about the new
context. This is regarding the way the occurrences of the
chosen corec types are arrived at. Consider the example
given above.

Let the result tuples for the context living be (P1, B2)
and (P2, BI). Further, let the result tuples for the
context owning be (P1, B3) and {P2, Bl). Now, itisclear

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 61

¥202 I4dy 60 U0 1senb Aq LG6L1E/SS/ L /2g 2101 e/|ulwoo/woo dnoolwsapede//:sdiy Wwolj papeojumo(q

N. PARIMALA, N. PRAKASH, B. L. N. RAO AND N. BOLLOJU

that there is only one person living in the building he
owns. This is P2 and the building in question is B/. Thus,
it is necessary that at the time the new context is created,
the intersection operator should be performed over the
result tuples of the two contexts.

It is important to notice that at the time the ‘mark
context living’ command is issued, the result tuples of
that context are not available. Instead, the path, LIVES
and the occurrences of Person, namely P, P2 as well as
the occurrences of Building, namely B/, B2 are available.
Similarly, at the time the ‘ mark context owning’ command
is issued, the path OWNS and the occurrences of Person
and Building respectively are available. Therefore, at the
time Make context is issued, the result tuples of the two
contexts ‘living’ and ‘owning’ are to be generated.
Section 4.2 specified the manner of creating result tuples
by a process of navigation which used the knowledge of
occurrences of the various corec types and the path
selected for this purpose. Applying the same principle,
result tuples of the two contexts living and owning can be
created.

Once the result tuples of the two contexts are created,
it is possible to apply the construction operators over
these as follows.

If the operator is union, then the union operation is
performed on the result tuples of C/ and C2. Similarly,
intersection gives the tuples which are both in CI and C2
and difference gives the result tuples which are in CJ and
not in C2.

Once the required operation is performed over the
result tuples and the result tuples qualifying for the new
context have been arrived at, the qualifying occurrences
of the chosen corec types of the new context are known.
Hence, the sets of selected occurrences of chosen corec
types are known. In the foregoing example the chosen
corec types are Person and Building. The qualifying
occurrences of these in the new context are P/ and Bl
and the sets of selected occurrences are {PI} and {BI}
respectively.

REFERENCES

1. CODASYL DDLC Report, Information Systems, pp.
247-320.

2. E.F.Codd, A Data Base Sublanguage Founded on the
Relational Calculus. Research Report RJ 893, IBM
Research Laboratory, San Jose.

Summarising, then, the context which is constructed
out of previously defined contexts inherits the chosen
corec types of these and sets of selected occurrences are
created as explained above. Further, the new context
inherits the non-chosen corec types and the occurrences
of these. There is no chosen path, and all the coset types
in the subschema are available as non-chosen coset
types.

6. CONCLUSION

In this paper we have explained the query facility for a
network DBMS. Since, in a network model, the rela-
tionships across corec types are predefined, these can
be used to answer the query. This reduces the complexity
of a query and also shifts the burden of identifying these
relationships from the user to the system. The user can
thus only ask for the information he wishes to seek and
have a neater interface. The problem of explosion can
also be handled in a simple way.

In the system described here, we have introduced a
number of additional quantifiers like JUST, UPTO and
RALL. A discourse facility is also given where the user
retrieves related information by a sequence of queries.
This obviates the need to specify a single long complicated
query to extract the same information. Further, since
operations can be performed on contexts, more infor-
mation can be obtained than would be possible in a non-
discourse facility. For example, in the schema of Fig. 5,
the query ‘get the names of persons and buildings where
the persons live in the building they own’ cannot be
answered in a non-discourse facility.

Acknowledgements

We would like to thank R. Krishnan and V. V.R. S. S.
N. R. Kumar for helping with the implementation.

3. Naveen Prakash et al., Data definition facilities in admin.
The Computer Journal, 26 (4), 329-335.

4. N. Parimala et al., QUERY — A User Interface. Technical
Report 1/87, CMC Ltd, Secunderabad.

62 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

¥202 I4dy 60 U0 1senb Aq LG6L1E/SS/ L /2g 2101 e/|ulwoo/woo dnoolwsapede//:sdiy Wwolj papeojumo(q

