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Kinds of slots, also called koses, were introduced previously by the author. A kos represents a binary relation. When
relations are specifically portrayed thus in a data base, then novel inheritance mechanisms become feasible.
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1. STANDPOINT ON FRAMES

For practical purposes, a data structure can be called a
Jrame if it has the following features:

— It offers access to all information about one subject;

— The information is partitioned into values for slots
within the frame;

— Each slot is of a named kind;

— A slot is uniquely defined by stating what kind of slot
it is and which frame contains it;

— The frame as a whole can be treated as the set of its
slots;

— The slot values may include frames, or ways of tracing
them.

In all the literature about frames, a few key distinctions
stand out. I shall take a particular position on three of
them. Other stances are quite acceptable, but serve the
present purpose less well.

Position 1. Frames, their representation and inherit-
ance between them are worthy of study.

Not everyone agrees with this. Brachman suggests that
inheritance is only an issue of implementation.®

Position 2. A frame will be treated as a passive data
structure.

This contrasts with the stance chosen by Young and
Proctor,* who treat a slot in a frame as an active entity
which searches for its own value. They follow Lenat, who
suggested that a slot may be regarded as a function on its
frame. Our position will be modified slightly when we
consider inheritance, which is an active process.

Position 3. A frame is a set of slots; and each slot holds
a value and naught else.

Various authors have taken much more complex
views. For instance, Winston and Horn give specific code
for storing and retrieving many facets in each slot.2
Charniak presents a relatively clear view, although his
frames consist of more than just slots.® See Fikes and
Kehler® for a survey. The slots considered here will have
no facets. Most information which would reside in facets
is kept in the slot’s kind.

Knowledge representation by frames is rivalled by
another technique, production systems, such as Prism."’
The production system approach stemmed from a sound
foundation, the notion of a grammar,'® but has moved
rather a long way from it since. So much good work has
been done with it that it cannot be rejected out of hand;
but productions are less attractive than frames because
as Frost remarks, productions cannot describe a domain
adequately.'® They only describe actions upon data, and
when to perform actions. Productions leave unanswered

all questions about the form of data. (For this reason,
Prism admits non-productions as data too.) This matters
particularly for introspective programs, in which the
program’s data encompass the program’s own actions.

In the author’s previous article there is an outline of a
database structure which includes a frame for each kind
of slot, called a kos.' Slots themselves are usually
regarded as featureless objects. This attitude is acceptable
as long as one is not interested in programs which can
extend their own type system. Unless the program is to
have this capacity, all kinds of slots can be encoded
rigidly. In fact, most authors do not distinguish a kind of
slot from particular slots of that kind. For instance,
Young and Proctor?®! write:

The slots create, inst, read and write have...special
status.... The procedures which fill these slots are called
‘interface procedures’.

Here, the second occurrence of the word slots has to refer
to individual slots, because only an individual slot can be
filled. The first occurrence refers to kinds of slots because
create and inst are kinds, not particular slots. In this case
there is no confusion because Young and Proctor regard
a kind as no more than a name.

When a data base portrays koses thus, as ‘first class’
objects, any program using it has scope to create new
kinds of relations between data. This is not true of
current standard products. Koses also permit novel
inheritance mechanisms, which will be described
below.

2. INTERPRETATION

A frame base can be regarded as an incomplete portrayal
of a theory. At any stage, the frame base depicts a finite
subset of all theorems. This subset grows as new frames
are created and new entries are added to slots. A task is
an attempt to extend this subset.

Inserting an entry in a slot is like establishing a link in
a network. Brachman, Fikes and Levesque describe
two semantics for such links.* One treats a link as a
description, which amounts to an axiom of the underlying
theory. The other interprets a link as an assertion, which
is either proved or else makes a statement about the ‘real
world’. There ought not to be any such dichotomy, since
there is none in predicate calculus. I think their attitude
has two causes:

(1) They distinguish between axioms, and theorems
derived from the axioms. In classical predicate calculus,
there is. no such distinction.
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(2) They distinguish between some abstract theory
which may apply to many states of the real world, and a
particular real world. Predicate calculus would normally
treat both abstract and real world as parts of a single
theory.

The approach presented here is meant to follow predicate
calculus more closely. The theory encompasses both real
world and abstract description. They may be distin-
guished by the user, if some concepts classify abstract
theory and others classify real world entities, but the
database portrays them all uniformly. Axioms corres-
pond to the links in the initial state of the frame base ; but
when the program has added extra links, portraying
derived theorems, the new links are indistinguishable
from the old.

@ Each atomic datum is a constant.

@ A frame represents a compound term. Each crea-
tion calls some function with particular arguments. The
created frame corresponds to the term whose leading
symbol is this function, and with the arguments as sub-
terms.

® A name of any frame is a constant. The program
extend the theory’s language by adding new names. Each
name comes with an associated axiom: The name equals
the term for its frame.

@ A concept can be viewed in two ways. Firstly, it
depicts a term, as does any frame. Secondly, if the
concept can be defined by a predicate formula, then it
also corresponds to the predicate which is its definition.
(This predicate may be encoded in a language of
functions, and stored in some slot in the concept’s
frame.) This dichotomy is acceptable. It is similar to the
portrayal of predicate formulae by Gédel numbers,
which are constants.

Among others, Charniak has viewed some (maybe all)
frames as portraying one-place predicates.® In this
treatment, those which do are concepts; those which do
not are not. However, there is evidence that human
concepts cannot always be defined thus.'*18
@ A kos K whose internal format is set corresponds to a
binary relation. If a slot F. K of kind K occurs in frame
F, then this relation is true of all pairs (F, x) where x is in
the slot. It may be true of other pairs (F, y) as well. Any
such y may be added to F.K.

@ A kos whose internal format is singleton depicts a
representable function, whose domain is the set of all
possible frames with slots of this kind (including frames
not yet created). The relation representing it would
correspond to another kos, identical to the first except
that its internal format is set.

@ If K is a kos depicting a binary relation R, then the
dual kos depicts the reverse of R.

Whenever a frame F, contains a slot of kind K, and the
slot contains an entry which is a frame F,, then F, may
have another slot whose kind is DK, the dual of K. In this
slot, there will be an entry F,.

@ The pattern of a concept contains all koses for
relations and functions invoked in the concept’s defini-
tion. The pattern kos is described in Hutchinson.!

@ The examples kos depicts the satisfaction predicate S,
which is defined in terms of a truth predicate 7. This
takes one argument {P(¢)>, where P is a formula with
one free variable, and ¢ is a term. S is true with arguments
P and ¢ if P is in positive form and is true on this term.

Thus entries in an examples slot represent theorems of
the form P(0).

Consistency of truth predicates is discussed by Kripke,
Martin' and Feferman.®

@ The generalisations kos depicts implication between
predicates. An entry in such a slot records a theorem of

the form Vx. (P(x) > Q(x))

where the slot is in the concept defined by P, and the
entry is the name of the concept defined by Q.

@ Storage is a way of recording theorems. If the user
stores an entry in a slot, this entry plays the role of an
axiom which extends the theory. If the program stores
something at run time, then it is a derived theorem. Since
the frame base only depicts a finite part of the theory,
failure to retrieve is interpreted as ‘unknown’.

@ Creation will occur while the program tries to fulfil
tasks. Each task can be phrased as

try to find an entity with certain properties P.

This corresponds to an attempt to prove some sentence
of the form Ix. P(x).

The search for such an x is performed by creating terms
which might satisfy P, until one does. Heuristics guide g
the choice of what to create. Universally quantified & @
sentences cannot be proved directly by searching. If such =
a sentence Vy.S( y) is encoded, then the program can try o
to prove it by proving the equivalent:

dx. P(x)
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where P(x) means
‘x is the name of a proof of Vy.S(y)’.

There are two distinct sorts of predicate which may
arise in this design. Predicates which define concepts
must remain true, once established as true for a particular
argument. The argument cannot become an example of
the concept, and then cease to be one later on. These are
the predicates of the underlying theory. The other sort of
predicate can occur as a condition in a heuristic.
Heuristics are designed to reduce entropy by selecting
exceptional features. Something which appears excep-
tional at one stage of the program’s evolution may seem
normal later on. A condition in a heuristic can test the
state of the frame base — e.g. has some concept got no
known examples? It may not correspond to any feature
of the underlying theory.

One can extend this formalism to cover relations of
more than two arguments. Suppose that some such
relation R is true on the tuple

Xo X1, Xy o, X)),

Then the program may contain an associated kos K, and
a slot of its kind in the frame for X,,. The value of this slot
is the set of such n-tuples (X, X,, ..., X,). For each cyclic
permutation of R, rotating left by i places, there will be
another kos K, whose slots will be found in frames X,.
This slot’s value will contain n-tuples

( i+1° l+2’ ""Xn’ XO’ ttt i-l)'

The slot for a dual kos in K will contain the n-tuple of
koses
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(K, K,, ..., K,).
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3. INHERITANCE

Each slot has two associated values: its local value, and
its full value. The local value is what is stored directly in
the slot by pointers in the computer’s memory. The full
value is the value employed in the frame base’s
interpretation, and includes all inherited contributions as
well.

The classic form of inheritance is through a partial
order, represented by IS-A or AKO links.” 2° This occurs
between concepts. Brachman lists many of the confusions
surrounding it.> Another form depends on INST links,
which connect concepts with their instances. Some
authors do not distinguish INST from IS-A.*® As Frost
said in his spoken presentation, even if all ambiguities
and confusions surrounding IS-A were resolved, it would
still not be adequate to describe all natural and practical
forms of inheritance.!® By contrast, the structure with
koses allows much more versatile and realistic inherit-
ance.

A common feature of inheritance algorithms is the
following cycle. In order to find an inherited value for
some slot F.K

First find some related frame F,

and a related kos K,

and then the local value of F . K’ will contribute to the

full value of F.K.

Many systems supplement this. KRL has a subtle
searching pattern-matcher whose depth of search is
chosen dynamically.' KEE permits simple deduction
while searching (e.g. that if a slot has at least 16 values
then it has at least 10 values. See Fikes and Kehler, p.
912).° Pure inheritance without any supplement is typified
by Smalltalk.

In most published cases, it seems that

(@) K’ = K or else K’ = default value.

(b) F is found from F through an IS-A or INST link,
or something similar. In particular, the choice of
F is independent of K. There is only one path of
entities F* from which F can inherit.

This is true for instance of Eiffel'®, and of Smalltalk even
when supplemented with ‘superclasses’.? The path may
branch; for instance, if the IS-A slot in F holds several
entities, then F may inherit from any or all of them.
This is what Touretzky'® and Cardelli® call ‘multiple
inheritance’. It will not be discussed here. Instead, we
concentrate on how to find other frames F’.

Each kos K has a slot called its inheritance path. This
holds another kos K” (which may be the same as K). K”
is used to trace frames F’ with contributing slots F . K.
The kos K" may be either K or K”, depending on the
particular inheritance strategy for K. The strategy will be
a function, held in some other slot in K. There appear to
be four standard strategies.

(1) No inheritance. The full value of F.K is its local
value, or a default. The value of K. inheritance path
is nil.

(2) Inheritance through itself. In this case, K’ and K”
are both K.

The frames F' are precisely those occurring in the full
value of F.K. The internal format of K will be set, or
some other format such as list, bag, tree, or partial order
which has a natural projection onto set. Its entry type
will be the type of F, or some generalisation of it.

Inheritance of a kos through itself appears to be
fundamental. In all cases studied, K” inherits through
itself.

(3) Inheritance through a parent kos. In this case K is
K, and K” is some other kos.

In F, there is another slot F.K” which is inherited
through itself. The frames F are those occurring in the
full value of F.K”. They all have the same type as F.

(4) Inheritance through values. In this case, K and K”
are distinct, and X is K”.

As in (2), the frames F are just those occurring in the full
value of F.K. However, the entry type of K may not be
the type of F, and there may be no slot of kind X’ in
F.

Case (1), no inheritance, is worth mentioning lest it be
forgotten. Slots of kind name are never inherited.

The IS-A hierarchy provides an example of inheritance
mechanism (2). The frame F is a concept, and K is
generalisations. The generalisations of one concept are its
immediate generalisations in the local value of F. K, and
their immediate generalisations, and so on. The dual kos,
specialisations, is also inherited through itself.

Another example of (2) occurs among heuristics. A
heuristic is said to be ‘weak’ if it can be applied in many
cases, and ‘strong’ if its conditions are restrictive. In
each heuristic’s frame H, there is a slot called weaker
heuristics whose full value is the set of all other heuristics
with weaker conditions. This slot is inherited through
itself. So also is its dual, stronger heuristics.

The examples slot in any concept C is inherited
through its parent kos, specialisations. The full value of
C.examples consists of its local value together with the
local examples in all specialisations of C.

Each heuristic H has a slot of conditions, which is also
inherited through a parent, weaker heuristics. Its value is
a partial order with each node a particular condition. H
is only applicable if all conditions are fulfilled. The
conditions are ordered because some of them only make
sense when others hold.

The dual kos of examples is inst. This is inherited
through its values. The local value of F.inst is a set of
concepts C which have F as an example. The full value of
F.inst consists of these concepts and all their general-
isations, so K" and K” for inst are both generalisations.

Each condition for heuristics has a frame of its own,
say Cond. This contains a slot called restricted heuristics,
whose full value contains all heuristics whose scopes are
restricted by Cond. This slot is also inherited by
mechanism (4), through its own values. The local value
of Cond. restricted heuristics contains a few heuristics H.
The full value contains these heuristics H, and all
stronger ones too. The inheritance path of restricted
heuristics is stronger heuristics.

Among these examples, a pattern is emerging.

— If K is inherited through itself, then so is its dual
kos.

— If K is inherited through a parent kos, then the dual of
K is inherited through its own values, and vice versa.
Moreover, the inheritance paths of K and its dual kos
are themselves duals.

Inheritance mechanisms can be described in terms of
the relations to which koses correspond. Say kos K
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corresponds to relation R. An object y will be in the full
value of slot F.K iff FRy is true. Say we define another
relation Fry, which is true iff y is in the local value of
F.K. Also, say P is the transitive relation corresponding
to the inheritance path K” of K.

(1) No inheritance:
R=r.
(2) Inheritance of K through itself:
R is the transitive closure of r.
(3) Inheritance of K through a parent K”:
R is the smallest relation for which
(a) VxVy (xry - xRy)
and
(b) VxVyVz (xPz & zry - xRy).
(4) Inheritance through values:
R is the smallest relation for which
(@) VxVy (xry - xRy)
and
(b) VxVyVz (xrz & zPy - xRy).

Proposition 1

In (3) and (4), the conditions (b) still hold when r is
replaced by R:

(30") VxVyVz (xPz & zRy — xRy)
(40") VxVyVz (xRz & zPy - xRy).

Proof

In both cases, it follows from the fact that P is transitive.

It is interesting to conjecture what other forms of
inheritance might occur. They would differ in their
closure condition (b). If the inheritance path can only
consist of one other kos, then (3) and (4) seem to be the
only possibilities. If we allow two koses in the inheritance
path, corresponding to relations P and Q, then the
closure condition could be any of

(5b) VxVyVz,Vz, (xrz, & z, Pz, & z, Qy - xRy)
(6b) VxVyVz,Vz, (xPz, & z,rz, & z, Qy - xRy)
(7b) VxVyVz,Vz, (xPz, & z, Qz, & z, ry > xRY).
These new mechanisms are distinct from the first four.

Only (6) satisfies an analogous proposition, because the
relation between x and y defined as

3z (xPz & zQy)

may not be transitive, even when P and Q are. Any more
elaborate condition containing three or more parents will
not satisfy it either.

Proposition 2

If r is given, and P,...,P, are arbitrary transitive
relations, and R is the smallest relation for which

(a) VxVy (xry - xRy)
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4. ELABORATIONS ON INHERITANCE
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specialisations into a loop.
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bound to actual values when the condition is evaluated.
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