2. R. Floyd, The syntax of programming
languages — a survey. IEEE Transactions
on Electronic Computers EG-13 (4), 346
353 (1964).

3. F. Jalili, A general incremental evaluator
for attribute grammars. Science of Com-
puter Programming 5, 83-96 (1985).

4. N. Jones and M. Madsen, Attribute influ-
enced LR parsing. In Semantics Directed
Compiler Generation. Lecture Notes in
Computer Sciences no. 94, pp. 393—407.
Springer, Heidelberg (1980).

5. D. E. Knuth, Semantics of context free
languages, Mathematical Systems Theory,

SHORT NOTES

2 (2), 127-145 (1968) and 5 (1), 95-96
(1971).

6. D. R. Milton, Syntactic Specification and
Analysis with Attributed Grammars. Tech-
nical Report 304, Computer Science De-
partment, University of Wisconsin, Madi-
son (1977).

7. G. Papakonstantinou and J. Kontos,
Knowledge representation with attribute
grammars. The Computer Journal 29 (3),
241-246 (1986).

8. K. J. Raiha, Bibliography on attribute
grammars. SIG-PLAN Notices 15 (3),
35-44 (1980).

9. M. Sideri, S. Efremidis, G. Papakonstan-
tinou and E. Skordalakis, Error recovery
using attribute grammars. First European
Workshop on Fault Diagnostics, Reli-
ability and Related Knowledge-Based
Approaches.

10 M. Sideri, S. Efremidis and G. Papakon-
stantinou, Implementation of the System
SDP. Research Report, National Tech-
nical University of Athens (1986).

11. D. Watt, Rule splitting and attribute
directed parsing. In Semantics Directed
Compiler Direction. Lecture Notes in
Computer Science no. 94, pp. 363-392
(1980).

Rapidly Converging Iterative Formulae for
Finding Square Roots and their
Computational Efficiencies

A derivation is given of rapidly converging
iterative formulae for finding square roots
which include, as special cases, some recently
published examples. Their computational ef-
ficiencies are investigated for sequential and
parallel implementation. It is concluded that the
most efficient method is equivalent to sequential
application of the Newton Raphson formula; a
simple modification is suggested which brings
the advantage of root bracketing at little extra
computational cost.

Received June 1988

1. Introduction

Recently there has been renewed interest in
the calculation of square roots.!'%3 The
Newton Raphson method is well known and
has second-order convergence; some aspects
of its computer implementation have been
discussed by Bentley.! A third-order method
has been given by Moler and Morrison,? and
a family of related methods was presented by
Dubrulle.® A question arises as to their
computational efficiencies for both sequential
and paralle] implementation. Below we derive
formulae with kth-order convergence (for any
integer k> 1) from elementary numerical
methods and study their complexities; the
study applies to the methods of Moler and
Morrison? and Dubrulle,® since they use
special cases of our formulae.

2. The iterative formulae

We wish to find a function F(x) which
generates an iterative sequence {x,} from a
starting value x, by means of the equation

xn+1 = Ec(xn)’ n 2 O (l)
such that
Xx,>t+/N=+=h, ?2)

say, as n tends to infinity with convergence of
order k, the sign of the limit being the same as
that of x,. Thus we want

F(th)=+h 3
- and
F(£h) =0, i=12,..,k—1. (4

Let us impose the condition that F(x) be
antisymmetric with the same sign as x, so that
there is no possibility of generating a sequence
which oscillates between positive and negative
roots. The conditions (3) and (4) suggest
functions involving the kth power of (x+ h).
We can verify easily that the formulae

PN (i e i S
[h+*F (h—x)"]

satisfy our conditions. They only involve A2,
that is N, and clearly have the same sign as x.
They lead to stable iterative schemes because
they contain no cancellation terms or terms
which may produce rounding errors (provided
that k is not too large, leading to large
binomial coefficients).

3. Convergence

Consider

FAN(N —x2)k
[(h+2)* F (h—x)*

The quantity E gives a measure of the deviation
of x from the root, and Equation (6) enables
us to study the behaviour of its sign. If k is
even the sign of E does not change. The
convergence is monotonic from above or
below, save for possibly the initial estimate
according to the choice of upper or lower sign
in Equation (5). With the lower sign and k odd
the sign of E does not change, and the
convergence is monotonic from above if the
initial estimate exceeds the root and from
below otherwise. The most interesting situ-
ation occurs with the upper sign and k odd,
for then the sign of E alternates so that any
pair of consecutive values of the sequence {x,}
brackets the appropriate (positive or negative)
root.

Because use of Equation (5) leads to high-
order convergence we assume that con-
vergence is guaranteed provided the starting
value is close enough to the root. Let us
examine the range of possible starting values
for guaranteed convergence. We need only
consider convergence to the positive root with
a positive starting value, because the iterative
formulae have the same signs as x. From
Equations (1) and (5) we find

E=N-[FX(P = ©6)

Xpp = h(1£r)/(AFry) Q)]
where
ra=(h—x,)/(h+x,). ®
Hence for the (n+ 1)th error
h=x,,1 = F2hry /(1 F 7). 6

We find after manipulation from Equation (7)
with n replaced by n—1 and Equation (8)

r,=Frk_. (10)

Repeated application of Equation (10) yields
r, in terms of r, and we see from Equation (9)
that if k > 1 the error decreases as n increases
provided that r_is less than unity in magnitude,
which it is for any (non-zero) positive starting
value. Thus we get convergence for any

positive starting value with k > 1; the nearer
the starting value is to the root the faster is the
convergence. For the special case kK = 1 the
sequence remains fixed at the starting value
(lower sign) or oscillates between it and N
times its reciprocal (upper sign).

From Equation (5) we find

Fi(x) = N/kx
~kN/x
=x/k

The reader may easily see the corresponding
behaviour of Fj;(x) by noting that it is
N/F(x). The convergence is initially slow if
we start far from the root. In the problem of
evaluating Pythagorean sums, v/(a%+ b?), of
use in computer graphics applications, a
starting value which leads to rapid con-
vergence is the larger of the magnitudes of a
and b. For such sums Dubrulle® has derived,
differently, an iterative formula which is the
same as F(x).

if x is small,
if x is large for odd k,

if x is large for even k. (400

4. Computational efficiency

We need not consider the case with k equal to
unity, since it does not lead to a converging
iterative process. For other values of k we seek
the number of operations required to evaluate
the iterative formulae. The formula F}(x) is
closely related to the Newton Raphson for-
mula and we examine it first. For even k (2m,
say) this function can be expressed as a
constant times x plus a ratio of polynomials
each of degree m—1 in x2, the ratio being
divided by x; the division by x can be
incorporated in the numerator polynomial.
For odd k& (2m+ 1, say) the function has the
form of a ratio of polynomials each of degree
m in x?, the ratio being divided by x; this
division can also be incorporated in the
numerator. We must, at least, calculate a
polynomial of degree k/2—1 in x? for even k
and degree (k—1)/2 for odd k.

Traub,* in a study of the complexity of
iterative processes, stated a measure of the
multiplicative efficiency as the ratio of log, (k)
to the number of multiplications and/or
divisions required, not including those by
constants. For the Newton Raphson process
(k = 2) the efficiency is unity, but for any
value of k other than a power of two, even
with as efficient as possible evaluation of
polynomials (e.g. Paterson and Stockmeyer)®
we find below that it is less than unity.
Kung® has shown that unity is the upper limit
of the efficiency for iterative processes which
converge to quadratically irrational numbers.

It is obvious that calculation of F}(x) by
direct evaluation of the polynomials has ar
efficiency below unity except for k = 2, the
Newton Raphson formula. However, these

THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989 93

¥20¢ I4dy 60 U0 1senb Aq ze0ze/c6/) /2g /2101 e/|ulwoo/woo dno-olwsapeoe//:sdiy wolj papeojumoq

functions satisfy a recurrence relation which is
helpful to their evaluation. From Equation (5)
we see that

FORON |
[Fi(x)+ F{(x)]

It is of interest to note that certain convergents
to periodic continued fractions representing
quadratic surds also satisfy this recurrence
relation as shown by Frank;’ such con-
vergents, where the surd consists of a square
root only, can be thought of as special cases of
the estimates generated by Fy(x). If we set i =
J we obtain from Equation (12) an expression
of the same form as the Newton Raphson
formula. Hence if k is a power of two, 2 say,
we can evaluate F}(x) by / applications of
Newton’s method with an efficiency of unity.
If k is not a power of two the efficiency cannot
be exactly unity because of the logarithm in its
definition, and hence must be less than unity
in this case.® Hence the greatest computational
efficiency is obtained when k is a power of
two, where the iterative process is equivalent
to multiple applications of the Newton Raph-
son method.

When several processors are available the
calculation of the polynomials may be done in
parallel. Furthermore, if the processors are
arranged in a tree-like structure the evaluation
of each polynomial can be broken down into
parts to be evaluated concurrently in a
logarithmic cascade (Kogge).® We generalise
the efficiency such that log, (k) is divided by
the number of steps involving division and
multiplication (except by constants) where at
each step several multiplications and/or di-
visions may be done concurrently; we do not
consider the cost of the processors here. We
have seen that we should at least choose k
even for greatest efficiency. The number of
steps is equal to the number required to
evaluate one polynomial plus one for the
ratio, which is the lowest integer upper bound
of 1+log, (k—2) for k not two; the efficiency
is maximised to unity only for k = 4. For k =
2 the efficiency is unity but extra processors
are unnecessary. The use of several processors
does not produce an efficiency greater than that
of the sequential application of the Newton

F?-t—j(x) =

SHORT NOTES

Raphson process; except for k = 2 and 4 even
with parallel processing we cannot achieve the
same efficiency. The multiple application of
the Newton process cannot be accelerated in
time by parallel processing because each
application of it must await the completion of
the previous one.

It was observed in Section 2 that we obtain
an algorithm with a root-bracketing property
by using the function F}(x) with k odd. In the
light of the previous paragraph let us choose
k=2'+1; we use [applications of the
Newton Raphson method to obtain F3i(x)
and, noting that F}(x) = N/x from Equation
(5), we have

NIF3(x)+x]
[xF3(x)+ N]

The efficiency falls from unity by around 2/!if
/is not too small; in a parallel implementation
it falls by around 1// giving little advan-
tage. The extra cost incurred to obtain root
bracketing is not great.

We turn to the evaluation of the function
F,(x). For even k it is best evaluated as N
divided by Fj(x), this single extra operation
making its use slightly less efficient. Sequential
Newton Raphson, / times, followed by division
yields an efficiency around 1—1//. For odd k
the function is the product of x and a ratio of
polynomials of degree (k—1)/2 in x2; the
multiplier x can be absorbed in the denomi-
nator polynomial. The efficiency is not greatly
enhanced by parallel computation. In general
the function F;(x) is less useful than F(x).

Fe(x) = (13)

5. Conclusion

Iterative processes based on formula (5) have
kth order convergence to 4/ N for any positive
starting value and to —+/N for any negative
starting value. The convergence is slow at first
if the magnitude of the starting value is very
small or very large. The processes are stable.
No significant gain is obtained by the use of
parallel processors (even when measured by
latency alone). The most efficient formula is
equivalent to multiple applications of the
Newton Raphson method. It can be modified
simply at little extra computational cost to
give root bracketing (Equation (13)).

The formulae (5) include a number of
recently published iterative expressions.?3®
The above remarks apply to all of them.
Those of Morrison and Moler? and Dubrulle?
are equivalent to F,(x). The formula I
derived differently® is equivalent to F;(x) for k
odd and F;(x) for k even; I withdraw the
suggestion® that parallel computation of it
would be beneficial !

M. J. JAMIESON

Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ.

References

1. J. Bentley, Programming pearls — birth
of a cruncher. Communications of the
Association for Computing Machinery 29
(1986), 1155-1161.

2. C. Moler and D. Morrison, Replacing
square roots by Pythagorean sums. /IBM
Journal of Research and Development 27
(1983), 577-581.

3. A. A. Dubrulle, A class of numerical
methods for the computation of Py-
thagorean sums. IBM Journal of Research
and Development 27 (1983), 582-589.

4. J. F. Traub, Computational complexity
of iterative processes. SIAM Journal on
Computing 1 (1972), 167-179.

5. M. S. Paterson and L. J. Stockmeyer, On
the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM
Journal on Computing 2 (1973), 60-66.

6. H. T. Kung, The computational com-
plexity of algebraic numbers. SIAM Jour-
nal on Numerical Analysis 12 (1975),
89-96.

7. E. Frank, On continued fractions and
binomial quadratic surds. Numerische
Mathematik 4 (1962), 85-95.

8. P. M. Kogge, The Architecture of Pipe-
lined Computers, McGraw-Hill, Washing-
ton, New York, London (1981).

9. M. J. Jamieson, A note on the con-
vergence of an iterative scheme for solving
a quadratic equation. The Computer Jour-
nal 30 (1987), 189-190.

Announcement

10-14 Jury 1989
ECOOP 89

European Conference on Object-Oriented
Programming

East Midlands Conference Centre, University
of Nottingham

ECOOP 89 will be the third annual European
Conference on Object-Oriented Programming.
The conference will present the latest research
in the object-oriented paradigm, and will
provide a focus for discussion and exploration
of practical applications of object-oriented
systems. There will be one-day tutorials and
three days of presentations of invited and
refereed papers, with associated workshops
and panel sessions. One half-day session will
focus on papers describing object-oriented
research from Esprit projects.

The topics to be addressed at ECOOP ’89
include but are not limited to: Languages,
Theory, Implementation, Applications, Data-
bases, User interfaces, Design, Tools and
environments, Concurrency and Teaching.

Other activities

Proposals are invited for workshops, panels,
demonstrations, videos or other activities
covering issues relevant to the object-oriented
paradigm. Send a one- or two-page proposal,
including the organiser’s name, affiliation,
address and phone number to the Programme
Chairman before 27 February 1989.

Call for Exhibitors

If you or your company is interested in
reserving exhibition space at ECOOP 89,
please advise Julia Allen.

94 THE COMPUTER JOURNAL, VOL. 32, NO. 1, 1989

Conference venue

The East Midlands Conference Centre is
situated on the campus of Nottingham Uni-
versity, two miles away from the city centre
and its InterCity rail network. The MI
motorway is five minutes drive away, while
the East Midlands International Airport can
be reached in 20 minutes. The high-speed
InterCity 125 train takes about 13 hours to
London.

For accommodation, there are comfortable
study bedrooms available within the Uni-
versity campus. Alternatively Nottingham has
numerous 3- and 4-star hotels.

Programme Chairman
Steve Cook, Queen Mary College

General Enquiries
Julia Allen, British Informatics Society Ltd,
13 Mansfield Street, London WIM 0BP, UK

O

UMO

o
o)
Qo
@
o
=3
o
3

=

=
=
©

g//:s

Q
Q
Q.

Iwa

o
]
c
©

¥202 Iudy 60 uo 1senb Aq 2£0ZrE/E6/ 1L /2E/811e/|ulWoo/WoD

