functions satisfy a recurrence relation which is
helpful to their evaluation. From Equation (5)
we see that

FORON |
[Fi(x)+ F{(x)]

It is of interest to note that certain convergents
to periodic continued fractions representing
quadratic surds also satisfy this recurrence
relation as shown by Frank;’ such con-
vergents, where the surd consists of a square
root only, can be thought of as special cases of
the estimates generated by Fy(x). If we set i =
J we obtain from Equation (12) an expression
of the same form as the Newton Raphson
formula. Hence if k is a power of two, 2 say,
we can evaluate F}(x) by / applications of
Newton’s method with an efficiency of unity.
If k is not a power of two the efficiency cannot
be exactly unity because of the logarithm in its
definition, and hence must be less than unity
in this case.® Hence the greatest computational
efficiency is obtained when k is a power of
two, where the iterative process is equivalent
to multiple applications of the Newton Raph-
son method.

When several processors are available the
calculation of the polynomials may be done in
parallel. Furthermore, if the processors are
arranged in a tree-like structure the evaluation
of each polynomial can be broken down into
parts to be evaluated concurrently in a
logarithmic cascade (Kogge).® We generalise
the efficiency such that log, (k) is divided by
the number of steps involving division and
multiplication (except by constants) where at
each step several multiplications and/or di-
visions may be done concurrently; we do not
consider the cost of the processors here. We
have seen that we should at least choose k
even for greatest efficiency. The number of
steps is equal to the number required to
evaluate one polynomial plus one for the
ratio, which is the lowest integer upper bound
of 1+log, (k—2) for k not two; the efficiency
is maximised to unity only for k = 4. For k =
2 the efficiency is unity but extra processors
are unnecessary. The use of several processors
does not produce an efficiency greater than that
of the sequential application of the Newton

F?-t—j(x) =

SHORT NOTES

Raphson process; except for k = 2 and 4 even
with parallel processing we cannot achieve the
same efficiency. The multiple application of
the Newton process cannot be accelerated in
time by parallel processing because each
application of it must await the completion of
the previous one.

It was observed in Section 2 that we obtain
an algorithm with a root-bracketing property
by using the function F}(x) with k odd. In the
light of the previous paragraph let us choose
k=2'+1; we use [ applications of the
Newton Raphson method to obtain F3i(x)
and, noting that F}(x) = N/x from Equation
(5), we have

NIF3(x)+x]
[xF3(x)+ N]

The efficiency falls from unity by around 2/!if
/is not too small; in a parallel implementation
it falls by around 1// giving little advan-
tage. The extra cost incurred to obtain root
bracketing is not great.

We turn to the evaluation of the function
F,(x). For even k it is best evaluated as N
divided by Fj(x), this single extra operation
making its use slightly less efficient. Sequential
Newton Raphson, / times, followed by division
yields an efficiency around 1—1//. For odd k
the function is the product of x and a ratio of
polynomials of degree (k—1)/2 in x2; the
multiplier x can be absorbed in the denomi-
nator polynomial. The efficiency is not greatly
enhanced by parallel computation. In general
the function F;(x) is less useful than F(x).

Fe(x) = (13)

5. Conclusion

Iterative processes based on formula (5) have
kth order convergence to 4/ N for any positive
starting value and to —+/N for any negative
starting value. The convergence is slow at first
if the magnitude of the starting value is very
small or very large. The processes are stable.
No significant gain is obtained by the use of
parallel processors (even when measured by
latency alone). The most efficient formula is
equivalent to multiple applications of the
Newton Raphson method. It can be modified
simply at little extra computational cost to
give root bracketing (Equation (13)).

The formulae (5) include a number of
recently published iterative expressions.?3®
The above remarks apply to all of them.
Those of Morrison and Moler? and Dubrulle?
are equivalent to F,(x). The formula I
derived differently® is equivalent to F;(x) for k
odd and F;(x) for k even; I withdraw the
suggestion® that parallel computation of it
would be beneficial !

M. J. JAMIESON

Department of Computing Science,
University of Glasgow,
Glasgow G12 8QQ.
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Announcement

10-14 Jury 1989
ECOOP 89

European Conference on Object-Oriented
Programming

East Midlands Conference Centre, University
of Nottingham

ECOOP 89 will be the third annual European
Conference on Object-Oriented Programming.
The conference will present the latest research
in the object-oriented paradigm, and will
provide a focus for discussion and exploration
of practical applications of object-oriented
systems. There will be one-day tutorials and
three days of presentations of invited and
refereed papers, with associated workshops
and panel sessions. One half-day session will
focus on papers describing object-oriented
research from Esprit projects.

The topics to be addressed at ECOOP ’89
include but are not limited to: Languages,
Theory, Implementation, Applications, Data-
bases, User interfaces, Design, Tools and
environments, Concurrency and Teaching.

Other activities

Proposals are invited for workshops, panels,
demonstrations, videos or other activities
covering issues relevant to the object-oriented
paradigm. Send a one- or two-page proposal,
including the organiser’s name, affiliation,
address and phone number to the Programme
Chairman before 27 February 1989.

Call for Exhibitors

If you or your company is interested in
reserving exhibition space at ECOOP 89,
please advise Julia Allen.
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Conference venue

The East Midlands Conference Centre is
situated on the campus of Nottingham Uni-
versity, two miles away from the city centre
and its InterCity rail network. The MI
motorway is five minutes drive away, while
the East Midlands International Airport can
be reached in 20 minutes. The high-speed
InterCity 125 train takes about 13 hours to
London.

For accommodation, there are comfortable
study bedrooms available within the Uni-
versity campus. Alternatively Nottingham has
numerous 3- and 4-star hotels.

Programme Chairman
Steve Cook, Queen Mary College

General Enquiries
Julia Allen, British Informatics Society Ltd,
13 Mansfield Street, London WIM 0BP, UK
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