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To calculate a program means to derive it from a suitable specification by a process of equational reasoning. We
describe a number of basic algebraic identities that turn out to be extremely useful in this task. These identities express
relationships between the higher-order functions commonly encountered in functional programming. The idea of

program calculation is illustrated with two non-trivial examples.
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1. INTRODUCTION

There is a style of functional programming (see, for
example, Refs 1, 6 and 9), which focuses attention on a
small collection of powerful higher-order functions that
capture common patterns of computation. The idea is to
try and express programs in terms of the composition of
particular instances of these useful functions. Explicit use
of recursion is thereby avoided, except as a last resort.

A similar, indeed dual, style can be advocated when it
comes to program proof. The idea here is to try and
conduct proofs through equational reasoning that ex-
ploits the algebraic properties of the collection of higher-
order functions. Explicit use of induction is thereby
avoided. Of course, functions in the repertoire may be
defined recursively, and their properties may be estab-
lished by induction, but once this has been done further
use of recursion and induction is shunned. A proof based
on algebraic reasoning is called calculational. One
advantage of this approach is that, by starting with a
suitable specification of the problem in hand, one can
often derive an acceptably efficient program by straight-
forward calculation.

The purpose of this paper is to review some of the
basic functions and their properties, and use them in one
or two example calculations. The work can be regarded
as an elaboration and extension of Ref. 9. Like
Wadler,® we deal exclusively with functions over finite
lists, a data structure about which a good deal is known.
However, recent evidence shows that an analogous
computational basis can be set up for other data
structures, such as trees and arrays.®

In order to make the material as accessible as possible,
we shall use the notation for functional programming
described by Bird and Wadler.® This is very similar to
that used in Miranda.*® (Our preferred notation (see
Ref. 4) is rather different. For a start, it is more concise
and mathematical. Moreover, the associated semantics is
algebraic rather than domain-theoretic.)

2. MAP AND FOLD

The function map is well known. Informally, map

applies a function to each element of a list; we have
map f [Xy, Xy, ..., X,] = [, x5, ..., FXx,]

The formal recursive definition of map uses pattern

matching with the primitive list construction operator

(:), pronounced cons:

mapf[]=1[]
mapf (x :xs) = fx:mapfxs

* Miranda is a trademark of Research Software Ltd.

An alternative recursive characterisation, sufficient to
define map for all finite lists, is as follows:

mapf[] =[] (1)
map f (xs + [x]) = (mapfxs) # [fx] 2)

In the last equation, the operator + denotes concatena-
tion, and [x] denotes a singleton list, so xs + [x] is the list
xs with x appended as a new last element. This second
characterisation of map is used in a proof by induction
in Section 7.

Probably the most useful law about map is the fact
that it distributes over functional composition:

(mapf)-(mapg) = map (f-g) (3)

This identity, which we shall call map distributivity (it is
called the map-map rule in Ref. 9), says that if we apply
g to every element of a list, and then apply f to every
element of the result, the same effect is achieved by
applying (f-g) to the original list. This particular law
holds for infinite as well as finite lists. However, some
other laws we shall describe hold only for finite lists. To
avoid possible confusion on this point, we shall restrict
our attention to finite lists only. Thus, in this paper all
functional equations, such as (3), are asserted for finite
lists only, whether or not they hold for the infinite case
as well.

Since the expression on the left of equation (3) involves
two traversals of the list, while the right-hand side
involves only one, one could say that this rule is an
example of loop fusion.” Below, we shall see further rules
that can be interpreted as loop fusion rules.

Two more well-known functions are foldr and foldl.
Informally, we have

foldr (®) a[x,, Xy, ..., X,,]
=% @ X®( - (x,®a) "))

and

foldl (®) a [x,, X5, ..., X,]
=0 ((a@x) ®xy) ) DX,

An immediate consequence of these informal definitions
is that if the operator @ is associative with identity
element a, then

foldr (@) a = foldl (®) a 4)

This law is cited in Ref. 6, where it is called the first
duality theorem. It holds only for finite lists. Examples of
the use of foldr and fold! include:

concat = foldr (+) [ ]
sum = foldI(+)0
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product = foldl( x )1
min = foldl(})o0
max = foldl(1)(— o)

Recall, in the definition of concat, that + denotes the
operation of list concatenation. The function concat
takes a list of lists and concatenates them into one long
list. The function sum sums a list of numbers, while
product computes their numeric product. The function
min computes the minimum element of a list of numbers
(by definition, the operator | selects the smaller of its two
arguments), while max computes the maximum. We
have cheated a little in the definition of min and max by
allowing the appearance of two ‘fictitious’ values co and
—oo; these are the identity elements of | and 1%
respectively.

In each of the above examples the conditions of the
first duality theorem hold, so it does not matter whether
we use foldr or foldl. However, the theorem states
equality only for finite lists, and the possibility of
applying such functions to infinite lists does mean that
the situation is not quite so simple. Since we are working
exclusively with finite lists we will not elaborate this
point, but a full discussion is given in Ref. 6.

To avoid saying everything twice, let us now concen-
trate on just one of the fold operators, foldl. There are
two recursive characterisations of foldl that are useful in
proofs by induction. First, there is the formal definition

foldl(®)a[] =a
foldl(®) a(x:xs) = foldl(®)(a @ x) xs

which appears in Ref. 6. Secondly, there is the following
characterisation. Suppose f is a function that satisfies the
two equations

fll=a %)
f(xs # [x]) = (fxs) ® x (6)
for some value a and binary operator ®. Then
f=foldl (®)a

In Section 7 we shall use this second characterisation in
a proof of a useful identity concerning foldl.

Now let us turn to some of the laws. The first concerns
the particular function concat and says that

map f-concat = concat-map (mapf) 7

This law is called map promotion. In words, the result of
concatenating a list of lists, and then applying f to each
element, is the same as applying map f to each component
list and then concatenating the outcomes.

The second law, called fold promotion, takes a basically
similar form: if @ is an associative operator with identity
element a, then

foldl (®) a-concat = foldl (®) a-map(foldl(@®)a) (8)

For example, since sum = foldl(+)0 we have
sum-concat = sum-map sum

In words, this says that to sum a list of lists of numbers
we can either concatenate the lists and sum the results, or
sum each component list and then sum the results.

The fold promotion law requires @ to be associative
with identity element a. If we forgo this condition, we get
another law:

foldl(@®)a-concat = foldl (®) a 9

where ® is defined by the equation
u® x = foldl (@) ux

For example, if we apply both sides of (9) to the list
[xs, ys] and simplify, we get

foldl (®) a (xs + ys) = foldl (®) (foldl (®) axs) ys
(10)

This equation is used in the next section.
A final law, called fold-map fusion (it is called the
reduce-map rule in Ref. 9), says that

foldl (®) a-mapf = foldl (©O) a (1D
where © is defined by the equation
bOx=b®fx

This is another example of a loop-fusion law. In words,
rather than applying f to each element of a list and then
folding with @, we can fold directly with a modified
operator (O, designed to take account of the fact that f
must first be applied to its right argument.

We shall not prove the above identities. These can be
done by inductive proofs similar to the one we shall give
in Section 7.

3. LEFT-ZEROS

The evaluation of a foldl operation on a list requires that
the list be traversed in its entirety. Such a traversal can be
cut short if we recognise the possibility that the operator
involved in the foldl may have left-zeros. By definition, z
is a left-zero of @ if

zZdx=1z2

for all x. An operator may have none, one or many left-
zeros. If z is a left-zero of @, then

foldl (®) zxs =z
for all lists xs. It follows by equation (10) that
foldl (@) a (xs + ys) = foldl (®) axs

whenever the right-hand side is a left-zero of @. In
words, we can stop traversing the list as soon as some
left-zero has been computed.

This idea can be implemented as a modified version,
fastfoldl, of foldl defined in the following way:

fastfoldl (®) paxs =a, ifpavxs=/[]
= fastfoldl (®)p (a @ y) ys,
otherwise

where y:ys = xs

In the new version of foldl a boolean-valued function p
has been included as an extra argument. The intention is
that fastfoldl (@) p should be called with p set to a test
for whether its argument is a left-zero of @®.

Let us now see an application of this simple idea.

4. MINIMAX

Suppose we are given a non-empty list of non-empty lists
of numbers. We want to compute the minimum of the
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maximum numbers in each list. In symbols, we want to
evaluate minimax, where

minimax = min-map max

This is an executable definition, but not the best possible.
In order to return the correct answer it is not always
necessary to inspect every element of every list in the
input.

Rather than think hard about a possible improvement
and then try to justify it, let us just calculate. Recalling
the definition

min = foldl ()
we see that the right-hand side of the definition of

minimax matches the pattern of the fold-map fusion law,
equation (11). We therefore get that

minimax = foldl (®)

where
X O xs = x|, (max xs)

Recalling the definition max = foldl(1) (— o), and
using the fact that | distributes through 4, we can rewrite
the definition of © in the following way:

X © xs = max (map (x|) xs)
= (max-map (x/)) xs

The right-hand side of this equation is also a candidate
for the fold-map fusion law. We therefore obtain

x O xs = foldl (®,) (— ) xs
where
u®d,v=ut(x)v)

The hard work has now been done. It only remains to
observe that x is a left-zero of ®,, that is,

xPM(x)v) = x
for all v. This result means we can implement minimax
by the following program:

minimax = foldl (®) o
x © xs = fastfoldl (®) (= x) (— o) xs

where u @ v = ut(x|v)

The new definition of minimax captures the essential
idea behind the alphabeta algorithm as derived in Ref. 5.

5. SCAN

Corresponding to foldr and fold| are two further higher-
order functions, which we shall call scanr and scanl.
Since the theory of foldr and scanr is dual to that of fold|
and scanl we shall concentrate only on the latter.
Informally, we have

scanl (@) a[x; Xy, ...,x,] = [a,a® x,, (a D x,) @ xy, ...]

Thus scanl applies a foldl operation to every initial
segment of a list and produces a list of results. In
particular, the last element is just the value of the foldl
operation on the whole list, so we have

foldl (®) a = last-scanl (@) a

Formally, we can define

scanl (@) a[ ] = [a]
scanl (®) a(x:xs) = [a] # scanl (®) (a ® x) xs

The important point here is that each element in a scanl
can be computed in terms of the preceding element using
just one extra @ operation. Thus it requires just n
evaluations of @ to compute the value of scanl on a list
of length n.

The most important identity concerning the function
scanl is called the scan lemma. Let inits be the function
that returns the list of initial segments of a list, in
increasing order of length. Thus, we have

X, = [[1 D41, [[xy,%,], ...

The scan lemma says that

map (foldl (®) a) -inits = scanl (®) a

inits [x,, X,, ...,

12)
The usefulness of this lemma lies not in the relationship
it expresses (which is obvious given the informal
definition of scanl), but in the relative efficiency of the
two sides of the equation. Evaluating the expression on
the left for a list of length n requires O(n?) operations
involving @, while the expression on the right requires
only O(n) such operations. Therefore, when applied
from left to right, the scan lemma ensures an order-of-
magnitude increase in efficiency.

There are a number of other identities concerning
scanl of which we cite just one. The fold-scan fusion law
says that

foldl (®) a-scanl (®) b = fst-foldl (O) (a® b, b)
(13)

where fst is the function fst (a, b) = a and the operation
© is defined by the equation

(uv) Ox=(U®w,w) where W=Vv®X

This is another example of a loop-fusion law that shows
when two traversals of a list can be combined into one.
We shall give an example of the fold-scan fusion law in
Section 8.

6. SEGMENTS

The function inits, which returns the initial segments of
a list, was introduced above. The function tails, which
returns the final segments, is similar:

aXo] = [[%, X ooy X1, -0 [%,1, [ 1]

Note that tails returns the final segments in decreasing
order of length.

The functions inits and tails can be characterised
formally in a number of ways, one of which is by a scan
operation. For example, we have

inits = scanl (®) []

tails [x,, x,, ..

where
xs @ x = xs H [x]

A recursive characterisation of tails, useful in proofs by
induction, is:

tails[1=[[1]] (14)
tails (xs +# [x]) = map (+ [x]) (tailsxs) + [[ 1]
(15)
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Here the function map (+ [x]) appends x to the end of
every element in a list of lists.

The function segs returns a list of all segments of a
given list. One formal definition of segs is

segs = concat- map tails - inits

This definition expresses the process of taking all the
final segments of each initial segment, and concatenating
the results. For example,

segs [1,2, 3]
=[10101012],[2]1.[1.[1.2,3],[2,3], (3], [ 1]

The empty segment appears four times in this list, since
there are four initial segments of [1, 2, 3].

There are other definitions of segs, but the above is a
particularly convenient one to work with. We shall see an
example of its use in Section 8.

7. HORNER’S RULE
Consider the following algebraic identity:
(Xq X Xy X X3) + (X5 X X3) + X3+ 1
=((Txx;+1)xx,+1) xx3+1

The equation generalises to an arbitrary list [x,,X,, ...,
x,] of numbers and we will refer to it as Horner’s rule.
Expressed in terms of the functions we have introduced
above, we can write Horner’s rule in the form

sum-map product - tails = foldl (®) 1
where © is defined by
XQy=(xxy)+1

The usefulness of Horner’s rule turns on the fact that it
can be generalised. The general formulation of Horner’s
rule is as follows.

Lemma 1
Suppose that @ and ® are two operators such that ®
distributes (backwards) through @, that is,

x®Y)®z=(x®2) D (Y®2)
Suppose further that a is a left-identity of @. Then

foldl (®) a-map (foldl (®) b) - tails = foldl (®) b
(16)

where © is defined by the equation
XQy=(xQy)®b

Proof
Abbreviating the left-hand side of (16) by lhs, we shall
show that

lhs[]=Db
lhs (xs # [x]).= (Ihsxs) © x

from which we can conclude that
lhs = foldl (®) b

by the characterisation of foldl discussed in Section 2.
To shorten the proof, it is convenient to introduce two
abbreviations:

sum = foldl (®) a
prod = foldl (®) b

In particular, it follows from the definition of prod
and equation (6) that:

prod- (# [x]) = (® x) -prod

This fact is used below.
We will spell out the proof in some detail, with
justification for each step (given before the step itself).

Case [ ]

lhs [ ] = definition of composition

sum (map prod (tails[ 1))

= equation (14)
sum (map prod [[ ]])

= equations (1) and (2)
sum [prod [ ]]

= definition of prod and equation (5)
sum [b]

= definition of sum and equations (5) and (6)
a®b

= assumption that a is a left-identity of @
b

completing the case.

(17

Case xs + [x]
lhs (xs + [x])
= definition of composition
sum (map prod (tails (xs + [x])))
= equation (15)
sum (map prod (map (+ [x]) (tailsxs) + [[ 1]))
= equation (2)
sum ((map prod (map (+ [x]) (tailsxs)))
+ [prod [ ]])
= equation (5)
sum ((map prod (map (+ [x]) (tailsxs)) + [b])
= definition of sum and equation (6)
(sum (map prod (map (+ [x]) (tailsxs))) ® b
= map distribution law (3)
(sum (map (prod- (+ [x])) (tailsxs))) ®b
= equation (17)
(sum (map ((® x) -prod) (tailsxs))) ® b
= map distribution law (3)
(sum (map (®x) (map prod (tailsxs))) @ b
= lemma; see below
((sum (map prod (tailsxs))) ® x) ® b
= definition of lhs
((Ihsxs) ®x) @b
= definition of ©®
(lhsxs) O x
completing the case
The subsidiary lemma used in this calculation is as
follows:
sum (map (®x) ys) = (sumys) ® x

for all nonempty finite lists ys. Again, the proof is by
induction.

Case [y]

sum (map (® x) [y]) = equations (1) and (2)
sum [y ® x]
= definition of sum
a®(y®x)
= a is a left-identity of @
(a®y)®x
= definition of sum

(sum [y]) ® x
completing the case.
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Case ys + [y], for non-empty ys
sum (map (®Xx) (ys + [y]))
= equation (2)
sum ((map (® x) ys) + [y ® x])
= definition of sum and equation (6)
(sum (map (® x) ys)) @ (y ® x)
= induction hypothesis
((sumys) ® x) ® (y ® x)
= hypothesis that @ distributes through @
((sumys) ®y) ® x
= definition of sum and equation (6)
(sum (ys + [y]) ® x
completing the case, and the proof of Horner’s rule.
The above proof is fairly unattractive. Not only is
there a need to introduce abbreviations to make
expressions more readable, a need that would not arise if
we used a more succinct notation, there are also many
more brackets than one can reasonably handle. The
reason is that proofs by induction require us to formulate
expressions in which functions are actually applied to
arguments. A style of expression that relies on functional
composition (-) rather than functional application, is
more sparing in its use of brackets and therefore
preferable.
Let us now proceed to an application of Horner’s
rule.

8. MAXIMUM SEGMENT SUM

The maximum segment sum problem is a famous one
and its history is described in J. Bentley’s Programming
Pearls.* The problem is to compute the maximum of the
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