An Optimising Compiler for a Modern Functional Language

ADRIENNE BLOSS*, P. HUDAK anND J. YOUNGt

Yale University, Department of Computer Science, New Haven, CT 06520, USA

One of the factors hindering the use of functional languages has been their relatively poor performance in comparison
to more traditional languages such as C and Pascal. During the last decade tremendous progress has been made in
building implementations of functional languages but the approaches adopted have employed specialist hardware and|or
compiler optimisations that have been developed specifically for functional languages. Building specialist hardware may
be the best long-term solution but in the short run it is possible to increase the use and acceptance of functional
languages by exploiting the performance of commercially available machines. The goal of the project described in this
paper has been to design an optimising compiler that produces fast code for functional languages on conventional

sequential and parallel machines.

Received November 1988

1. INTRODUCTION

One of the factors hindering the use of functional
languages has been their relatively poor performance in
comparison to more traditional languages such as C and
Pascal. However, during the last decade tremendous
progress has been made in building efficient imple-
mentations of functional languages. Much of this
progress has come about through the realisation that the
performance problem lies less with functional languages
themselves than with attempts to implement them using
conventional architectures and compilation strategies.
Most modern approaches employ specialised hardware
and/or compiler optimisations that have been developed
specifically for functional languages.

Elsewhere in this issue the reader will find discussions
of novel computation models, or abstract machines, that
support the evaluation of functional languages directly.
Most of these are variants of graph reduction, which
mimicks the reduction rules of the lambda calculus. A
model such as graph reduction can be implemented
either by building specialised hardware that supports the
model directly, or by mapping the model onto con-
ventional hardware. Building specialised hardware may
be the best long-term solution, but for the short run we
would like to increase the use and acceptance of
functional languages by exploiting the performance of
commercially available machines. Thus our goal has
been to design an optimising compiler that produces fast
code for functional languages on conventional sequential
and parallel machines.

Of course, the design of such a compiler for con-
ventional uniprocessors is non-trival, to say the least.
Imperative languages have their roots in the so-called
‘von Neumann architecture’, or uniprocessor, whose
structure is reflected in constructs such as the assignment
statement. But functional languages do not have such a
machine bias — their roots are more closely tied to
abstract models such as the lambda calculus — and their
constructs bear little resemblance to traditional hard-

* Current address: Department of Computer Science, Virginia
Polytechnic Institute and State University, Blacksburg, VA.

1 Current address: Laboratory for Computer Science, Massa-
chusetts Institute of Technology, Cambridge, MA.

ware. Thus it is not surprising that mapping graph
reduction onto conventional hardware is difficult. Fur-
thermore, many of the optimisation techniques that are
successful for imperative languages are either ineffective
or simply not applicable for functional languages. On the
bright side, certain kinds of optimisations that would
normally be considered intractable for imperative langu-
ages become viable with functional languages because
of their simpler and more uniform semantics. For both
these reasons, new methods are required to optimise the
performance of functional languages.

Yale’s Lisp and Functional Programming Research
Group has advanced the state of the art of compiler
technology for uniprocessors to the point where Lisp and
functional programs are rapidly approaching the per-
formance of conventional programs on standard bench-
marks. Our technology is best described as a combination
of low-level implementation techniques that take
advantage of conventional hardware, and a host of high-
level optimisations that reflect the unique characteristics
of modern functional languages. The work can be
summarised in two major areas:

1. An efficient implementation of Lisp. T is a lexically
scoped dialect of Scheme that was developed at Yale;
Orbit,'" '8 the T compiler, produces very efficient code
for conventional uniprocessors through a combination
of conventional compilation techniques (such as rep-
resentation strategies, register allocation, and memory
management), and an innovative compilation strategy
for higher-order functions (i.e. closures). The code
generation strategy for closures views registers, stacks,
and heap-allocated cells uniformly as different rep-
resentations of environments. This uniform viewpoint
permits the construction of nested environments, in
contrast to ‘flat’ strategies for implementing en-
vironments that begin with lambda-lifted code or ‘super-
combinators’.

2. A T-based implementation of a non-strict functional
language. ALFL® is a non-strict functional language,
similar to SASL, that was developed at Yale for both
instructional and research purposes. The ALFL compiler
translates ALFL programs into T code, thus taking
advantage of Orbit’s ability to compile higher-order

152 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/2e/e1Pme/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

A.BLOSS,P. HUDAK AND J. YOUNG

functions and exploit the low-level features of con-
ventional machines. Of course, ALFL’s non-strict, purely
functional semantics requires (alternatively, provides
opportunities for) additional optimisations, and we have
implemented the following:

(a) Strictness analysis and termination analysis, which
allow the compiler to overcome the overhead of lazy
evaluation by evaluating arguments before function
calls whenever possible.

(b) A flexible call interface strategy that matches func-
tion/argument strictness properties depending on
context.

(¢c) Path analysis, which permits the detection of ‘single-
threaded data structures’ which may be updated
through destructive operations rather than by copy-
ing.

(d) Partial evaluation, which unfolds functions and
simplifies expressions.

(e) Uncurrying, which at the expense of ‘fully’ lazy
evaluation vastly improves the efficiency of most
function calls.

The ALFL compiler also has a flexible user interface
that allows the user to control the optimisations listed
above and that generally aids in program development.

One of the unique aspects of modern functional
language implementations is captured in the methodology
that underlies many of the new compilation strategies.
In conventional languages one normally relies on an
operational semantics to invent and justify particular
optimisations or code generation strategies. But with
functional languages it is often denotational semantics
that provides such insights and justifications. In particu-
lar, abstract interpretation has proven to be a very
powerful tool; it forms the theoretical basis for many of
the optimisations described in this paper.

Although reasonably robust and currently in use at
several institutions, the ALFL compiler will soon be
abandoned in favour of a version that will compile
HaskeLL, the newly proposed functional language
standard. The new compiler will use the core of the
current ALFL compiler, including all of the optimisations
discussed in this paper, but because HASKELL is a
strongly typed language we expect the new compiler to
perform even better than the current one.

In this paper we will concentrate on the ALFL
compiler itself, rather than the Orbit compiler (details of
which may be found in refs 17 and 18). In particular, we
will concentrate on the optimisation techniques which
are crucial to good functional program performance on
conventional uniprocessors. Despite this concentration,
the paper is only a summary of results — space limitations
preclude detailed discussion — but there are ample refer-
ences for the interested reader. In addition, there are
many aspects of the ALFL compiler that we do not
discuss at all. Among these, the most important is code
generation strategies for ‘thunks’ (described in detail in
ref. 13), but we also omit more standard analyses and
transformations such as type inference (which we use to
improve our code generation strategies) and translations
for pattern-matching and list comprehensions. An
excellent summary of standard techniques may be found
in ref. 23.

For the sake of consistency and clarity, all of our
programming examples will be written in HASKELL

instead of ALFL (the primary semantic difference being
that HASKELL is statically typed, whereas ALFL is not). In
addition, we will use Scheme instead of T in describing
the result of our compilation strategies.

2. ASUMMARY OF OPTIMISATIONS

For each of the optimisations described in the intro-
duction, we present in this section a motivating example
in HASKELL, an intuitive description of how the opti-
misation works and why it helps, and a discussion of its
implementation status in the ALFL compiler. In the next
section we will discuss a unifying framework, namely
abstract interpretation, through which the analyses
necessary to support each of the optimisations can be
expressed and implemented.

2.1 Strictness Analysis
2.1.1 Motivation

The non-strict semantics of ALFL requires lazy evalution,
in which expressions are not evaluated until (and unless)
their values are demanded. Lazy evaluation increases the
expressive power of a language in two ways:

(1) It increases the power of functional abstraction.
Suppose while programming we notice the repeating
patterns* ‘p x1=x2; x3’ and ‘p y1 =y2; y3°. Using
good abstraction principles we may decide to replace
these by ‘f x1 x2 x3” and ‘f y1 y2 y3’, respectively,
where:

fabc=pa=Db;c.

However, note that with a strict language an expression
such as ‘f x1 x2 x3’ will result in the evaluation of all
three arguments, whereas in the original program only
one of x2 and x3 would get evaluated. Thus if x is O
the call ‘f (x = = 0)x(1/x)’ would cause an error, while
the original program would not. The implication is
significant: with a strict language, functional abstraction
can change the semantics of a program. Using lazy
evaluation in a non-strict language, however, f’s argu-
ments are not evaluated until they are demanded; in the
example above the value of 1/x will never be demanded,
and so the use of f does not affect the semantics of the
program.

(2) It allows the definition of infinite structures. Since
expressions are not evaluated until their values are
required, we can define constructs such as infinite lists.
For example, the infinite list of ones is defined below:

ones = 1:ones.

In a strict language evaluation of ones would of course
not terminate, but with laziness each element of the list
is evaluated only as it is required, and the ‘infinite’ part
of the list always remains unevaluated.

The easiest way to implement lazy evaluation is to
delay the evaluation of any expression which will not be
immediately needed, including all arguments passed to
user-defined functions, and insert appropriate code to
force the evaluation of the delayed expressions when they
are needed. However, this can be extremely inefficient.
Consider a compute-intensive program such as tak, a
benchmark from the Gabriel suite.® This function is

* “p=>c;a” is like “if p then c else a” in a conventional language.

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 153

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

AN OPTIMISING COMPILER FOR A MODERN FUNCTIONAL LANGUAGE

highly recursive, and resembles the inner loops of many
functional programs:

tak 18126
where tak xyz = ~(y < x) =2;
tak (tak (x—1)yz)

(tak (y—1)zx)

(tak (z—1) xy)
Note the call-intensive nature of this program —if we
were to compile this into Scheme using no optimisations,
the program would spend most of its time delaying and
forcing values:

(LETREC ((tak (LAMBDA (Dx Dy Dz)

difficult to establish that ‘eventually’ y < x would be
true, and so z must also be evaluated. Assuming z is L,
however, we can prove that the recursive calls ‘(tak
(y—1)zx)’and ‘(tak (z—1) xy)’ will not terminate, so
the value of ‘tak xy L’ is either L or ‘tak (tak (x—1)y
1)L L°. From this it follows by induction that for any
x and vy, ‘takxy L’ diverges. Of course, proving
divergence of a program in the general case is undecid-
able; we discuss our approximation techniques (which
lose precision while gaining computability) in sections 3
and 4.

(IF (NOT (< (FORCEDy) (FORCEDx)))

(FORCE Dz)

(tak (DELAY (tak (DELAY (— (FORCE Dx)) 1)) Dy Dz))
(DELAY (tak (DELAY (— FORCE Dy) 1)) Dz Dx))
(DELAY (tak (DELAY (— FORCE Dz) 1)) Dx Dy)))

)))
(tak (DELAY 18) (DELAY 12) (DELAY 6)))

where DELAY is a syntactic form for delaying the
evaluation of its argument, and FORCE is the inverse
syntactic form which induces the evaluation of its
(delayed) argument.*

However, it is possible to determine that tak will
always need to evaluate all three of its arguments — it is
strictin x, y, and z, and so no value need ever be delayed.
Thus we can produce the following code:

(LECTREC ((tak (LAMBDA (xyz)
(IF (NOT (< yx))
z
(tak (tak (—x1)yz)
(tak (—y1)zx)
(tak (—z1)xy))))))
(tak18126))

which is essentially what one would write if programming
directly in Scheme.

2.1.2 Analysis and optimisation

Intuitively, strictness analysis'® '®-2° is an interprocedural
analysis that determines when an argument to a function
is actually needed to compute the result of a call to that
function. If a particular argument will always be needed,
then we can be certain that it is safe to evaluate it before
the call — thus avoiding the delay.

Formally, we say that f'is strict in its first argument if
fL = 1; that is, the application of f to a divergent
argument also diverges. This is slightly stronger than the
intuitive notion of ‘need’, but having proven this it is
surely safe to pass an argument to f by value, since either
the argument converges —and we have done nothing
untoward — or the argument diverges, and the function
call would have too.

It may come as a surprise to learn that it is often
easier to prove that a function is strict rather than that
the function will always evaluate its argument. For
instance, in the case of tak presented earlier, it is clear
that x and y must always be evaluated, but it would be

* The obvious way to delay and force values in Scheme is to use

‘nullary closures’, but there are more sophisticated ways as well, which
are beyond the scope of this paper; see ref. 13 for details.

2.1.3 Implementation status

Strictness analysis is fully implemented in the ALFL
compiler for both first-order and higher-order functions.
While the value of higher-order strictness analysis when
not combined with a ‘collecting interpretation’ has been
disputed,® the increased complexity and analysis time
that comes with a full collecting interpretation has so far
discouraged its incorporation into the strictness analyser.
Collecting interpretations are discussed further in Section
3.3.

2.2 Termination analysis

The previous optimisation depended heavily on the
ability to prove that a particular function application
diverged. Similarly, if we can prove that an expression is
guaranteed to terminate, then other optimisations are
available to us. In particular, it is safe (although not
necessarily more efficient) to evaluate the expression
rather than delay it.

2.2.1 Motivation

Suppose we are in a context in which we know that x has
already been evaluated, but we are unable to prove that
f is strict. Now consider the call ‘f (x+1)’. Since for
integers it is clear that x+1 will terminate, we could
compile this call as:

(LET ((x1 (+x1)))
(f (TRIVIAL-DELAY x1)))

where TRIVIAL-DELAY is like DELAY except that it
takes advantage of the fact that its argument is already
evaluated and can thus avoid, for example, the overhead
of capturing the current environment. In most situations
this will be more efficient.

2.2.2 Analysis and optimisation

We say that an expression e terminates if the expression
is guaranteed to converge under any circumstances.

154 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

A.BLOSS,P.HUDAK AND J. YOUNG

More formally, an expression e terminates if there exists
no environment in which the value of e is L.

As the previous example demonstrates, it is also
possible that an expression might be particularly well-
behaved under other assumptions we have made in
compiling the program at hand. In particular, we may
have decided through strictness analysis that the variable
x is to be passed in by value to a particular function. In
this case, it is not fair to say that within the function the
expression x+1 does not terminate just because the
value of x+ 1 is L in an environment in which x is bound
to L, because we have made the assumption that x will
be passed in by value, and thus will never take on the
value L. We call this conditional termination, because it
depends upon other assumptions being made by the
compiler.

2.2.3 Implementation status

Both unconditional and conditional termination analyses
have been fully implemented in the ALFL compiler. In
addition, although termination analysis could be imple-
mented in a local manner, we in fact do full inter-
procedural analysis, using the same approximation
techniques as we use for strictness analysis

2.3 Collected termination
2.3.1 Motivation

Delayed values are not only expensive to create, but are
also expensive to access in comparison to undelayed
values which can be accessed ‘for free’. In order to
decrease the use of delayed values in ALFL loops, we use
a third optimisation called collected termination.

For example, in our source language the effect of a
Fortran ‘do loop’ might be obtained as follows:

do 10 init_al ...init_an
wheredo i al...an =
(i==0) =finalize al...an;
do (i—1) (next_alal...ani)

(next_an al...an i)

Clearly do is strict in i, but it is only strict in aj if finalise
is strict in its jth argument and some next_ai is strict in
its jth argument, where do is also strict in ai. While it is
not likely that this circular condition will hold, it is
possible that some of the next_ai expressions can be
easily proven to terminate. If both init_ai and next_ai
always terminate, then ai can safely be passed in by
value. In general, if all occurrences of a particular
argument to a function can be shown to terminate, then
it is safe not only to evaluate that argument before
entering the function, but also to use an undelayed
representation when passing it to the function.

2.3.2 Analysis and optimisation

For ‘collected termination’ we compute the set of
termination properties (e.g. ‘ terminates’ or ‘diverges’) of
all the expressions which might be passed in as an
argument to a particular function. This is an example of
a general technique known as a collecting interpretation
as described in Section 3.3.

2.3.3 Implementation status

Collected termination is fully integrated into the ALFL
system. We have found that in many instances of inner
loops it determines that arguments may be passed by
value. We are currently investigating ways of improving
its performance as well as the possibility of generating
the same optimised code without an analysis by
producing different versions of the same function.

2.4 Destructive aggregate updating
2.4.1 Motivation

Arrays in ALFL can be ‘incrementally updated’. The
primitive operation upd is defined to take an array a, an
index i, and a value x, and return a new array a’ which
is identical to a except that its ith element is the value x.
Thus, conceptually at least, a’ is a copy of a except in its
ith element.

Now consider a function to initialise an n-element
array to some value x:

initaix = (i==0) =a; init(updaix) (i—1) x

Using a copying update, initialising an n-element array
causes it to be copied » times, requiring O(n?) space and
time! The initial copy ensures that the original array
argument is not mutated by init, while every other copy
preserves a partially initialised version of a. Yet each of
these intermediate copies is discarded at the recursive call
to init; only the fully initialised array is returned as the
value of the function. Thus after the first update, each
update could be done destructively, actually changing the
value of its array argument, without affecting the
semantics of the program. Furthermore, if the original
array that is passed to init is not used anywhere else, then
even the initial update could safely be done in place.

2.4.2 Analysis and optimisation

In general, detecting when it is safe to do an update
destructively requires knowing whether or not the array
being updated will be accessed again after the update,
which in turn requires knowledge of when objects are
used and evaluated. This information is not readily
available in the presence of lazy evaluation, but it can be
inferred using a compile-time technique called path
analysis.? Given this order-of-evaluation and order-of-
use information, whether or not an update of an array a
in a function f can be done destructively depends on three
things:

(1) Does f use a after updating it?

(2) Does f call another function that either updates a
before f uses it, or uses a after f updates it?

(3) Is a aliased in such a way that f’s use of another
object after its update of a is actually a use of a?

The answer to (1) requires a local analysis, since it
depends only on information found directly in f; (2)
requires an interprocedural analysis, since it requires
knowledge of how other functions behave; and (3)
requires a collecting interpretation, since it depends on
the context in which f is used.

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 155

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

AN OPTIMISING COMPILER FOR A MODERN FUNCTIONAL LANGUAGE

2.4.3 Implementation status

Although the three analyses just described have been
implemented, we currently have only a research imple-
mentation of path analysis, and so destructive aggregate
updating is not yet fully incorporated into the ALFL
compiler. Nevertheless, the implementation has been
sufficient to produce numerous benchmarks, including
those in Section 4. The primary difficulty with the
analysis has been its complexity, which grows in the
worst case as the factorial of the number of arguments to
a function. Although.it appears that the average-case
complexity is in fact much better, and that a first-order
analysis is tractable, the higher-order analysis appears to
be intractable for all but very simple programs, and
heuristics are currently used to handle higher-order
functions

2.5 Uncurrying
2.5.1 Motivation

All functions in ALFL are curried; that is, if a function f
of n arguments is applied to k < n arguments, x, ... x,, it
will return a new function f’ of n—k arguments such that
f' Xi41-.-X, = fX;...x,. Thus the Scheme code for f looks
like this:

(lambda (x,)
(lambda (x,)

~ (lambda (x,) body-of-f)...))

However, in the common case where the function is
fully applied, this introduces substantial overhead in
the creation and application of n—1 extra lambda-
expressions compared to the more efficient form:

(lambda (x,x,...x,) body-of-f)

The reason this is more efficient is that the arguments can
be considered as a tuple, allowing them to be more
compactly represented, and there is only one closure
instead of n. This efficiency is not only gained in
conventional compilation schemes, but also in many
models of graph reduction.

Although more efficient, this strategy does not provide
the flexibility of partial application that the other strategy
has. On the other hand, this capability can be recovered
easily as follows: When the uncurried version of f is
applied to k arguments, e, ...e,, the following code is
generated :

(lambda (x,,,)
(lambda (x,,,)

*(lambda (x,)
(feq...epXppq-+-X,))..0))

Thus the expense of currying is incurred only when it is
used. This optimisation is called uncurrying.

2.5.2 Analysis and optimisation

No analysis is required to do this form of uncurrying, but
its price is the loss of fully lazy evaluation.® Lazy
evaluation guarantees that an actual parameter to a
function is evaluated at most once; fully lazy evaluation
guarantees this even for the case of shared partial

applications. For example, consider the following func-
tions:

fgxy =gx+gy
hxy =x+y

Now consider the evaluation of f (h e1) e2 e3. With
fully lazy evaluation e1 is evaluated only once, but with
the uncurrying transformation given earlier it is evaluated
twice, once for each call to g inside of f. Fully lazy
evaluation can be preserved if a sharing analysis is first
done”® to determine when a partial application may be
shared. However, we believe that shared applications
occur infrequently in practice, and thus we have
implemented uncurrying as described above.

2.5.3 Implementation status

Uncurrying is fully implemented in the ALFL compiler.

2.6 Partial evaluation
2.6.1 Motivation

The simplest form of partial evaluation is what is
traditionally called constant folding, where expressions
like 1+2 and head (x:y) are reduced to 3 and x,
respectively, at compile time. But constant folding is
really only a rather limited form of partial evaluation —
more sophisticated simplifications are possible, including
‘unfolding’ function calls, as will be explained below.
But first, some motivation.

Proponents of functional programming languages
generally encourage the use of many sorts of abstractions
for the sake of improving the clarity of programs. Data
abstraction is one common technique, indeed not unique
to functional languages, and there are very well under-
stood ways for implementing data abstraction mech-
anisms. In languages such as HASKELL, for example, all
data types are known at compile-time, so all run-time
checks can be eliminated and the representation problem
is fairly trivial.

Other kinds of abstractions, however, do not neces-
sarily lend themselves to efficient code. For example the
simple concept of functional abstraction (procedural
abstraction in imperative languages) presents funda-
mental difficulties in that the cost of the function call
appears to be unavoidable. This is unfortunate, since
such efficiency concerns may lead one to avoid abstrac-
tions that would otherwise improve the clarity and
succinctness of one’s program.

This problem is perhaps more serious with functional
languages in that one would like to use higher-order
functional abstractions, yet higher-order functions are
notoriously difficult to implement efficiently. For ex-
ample, starting with a definition of the curried function
plus:

plus xy = x+y
we may then define functions such as:

add1 = plus 1
sub1 = plus —1

When one of these functions is used in an expression, say
add1 x, then we must incur the overhead of not only the
call to add1, but also the call to plus and the creation of
the closure representing plus 1. Although, as mentioned

156 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

A.BLOSS,P. HUDAK AND J. YOUNG

earlier, we have come a long way in our ability to compile
closures, that effort is surely not going to be as effective
as reducing the above expression to x+ 1!

Some imperative languages solve this problem through
the use of macros (as in Lisp or C), but these are typically
rather ad hoc and semantically inconsistent with the rest
of the language. In particular, because macros amount to
syntactic abstractions rather than semantic abstractions,
they almost always use a certain degree of dynamic
binding rather than static binding. (It is also worth
noting that one of the most common uses of macros is to
avoid the evaluation of arguments, which of course is
obtained for free in modern functional languages through
lazy evaluation.)

Another technique is the use of annotations or pragmas
that indicate to the compiler which procedures and
functions should be ‘integrated’, ‘unfolded’, or ‘coded
in-line’ (all different terminologies for the same thing).
This has the benefit of being semantically consistent, but
the disadvantage of requiring user involvement in the
decision-making process.

Perhaps the best technique of all is an automatic
strategy for unfolding function calls, that is, a general
technique for inducing partial evaluation. Some com-
pilers for imperative languages (including the Orbit
compiler) attempt to do this, but doing so for such
languages is decidedly more difficult than for functional
languages. There are two simple reasons for this:
conventional imperative languages have side-effects, and
they are strict. A single example suffices to demonstrate
both points: Consider the expression head (e1:e2).Ina
modern functional language this could be immediately
partially evaluated to yield e1. Not so in an imperative
language, however, since in the original expression e2
would get evaluated, whereas in the reduced expression it
would not. Thus if e2 did not terminate, or if it induced
observable side-effects, very different results might
appear.

2.6.2 Analysis and optimisation

Despite the apparent ease with which partial evaluation
can be applied to functional languages, in general it
cannot be applied indiscriminately. In particular, in an
untyped language such as ALFL, termination of the
partial evaluation process is not guaranteed! The most
common example of this is the following:

ff where fx =xx

Note first of all that this expression is not recursive ; yet
one step of partial evaluation yields exactly the same
expression, and thus the process does not terminate. In
general deciding which terms are safe to reduce is
recursively unsolvable, reducing trivially to the halting
problem.

Fortunately, in languages such as HASKELL that
employ a Hindley-Milner type system, programs such as
the above are rejected by the type system. In fact, using
such a type system non-recursive programs are strongly
normalisable, meaning that a normal form exists and can
always be found. It is only through explicit recursion that
arbitrarily long computations may be invoked. Thus as
long as partial evaluation is done after type inference,
and explicit recursive functions (easily detectable) are not
unfolded, then arbitrary degrees of partial evaluation are

possible with no danger of non-termination. This is what
is done in the ALFL compiler (as an option to the
programmer, of course).

There is, however, yet another problem. Even though
the above partial evaluation strategy is safe, it may
induce a certain degree of ‘code explosion’. It may be
very efficient with respect to execution time to unfold
many calls to a particular function, but it may be very
inefficient with respect to code size. Some degree of
restraint is often required, although our experience has
been that the degree is not as high as one might think.
Further experience is necessary to determine what the
‘right’ level of partial evaluation should be.

2.6.3 Implementation status

Thus we see that partial evaluation of typed functional
programs can be used quite extensively, from none at all
to performing as much as possible up to recursion. In the
ALFL compiler the user can optionally choose between
these extremes (even though ALFL is not a typed
language). The new HASKELL compiler will allow a third
option which does partial evaluation based on heuristics
that try to avoid code explosion.

The current partial evaluator in the ALFL compiler
works by translating the ALFL program into an equivalent
combinator expression, partially evaluating the com-
binator expression, and then converting back into ALFL
while doing common subexpression elimination. The
reason combinators were chosen as the medium through
which to do partial evaluation is that the combinator
reduction rules can be specified simply and uniformly to
accomplish all forms of partial evaluation. For example,
the rule: +12=3
specifies the constant-folding of integer summation.
Similarly, the rule:

hd (pair x y) => x

specifies the constant-folding of taking the head of a list.
In a lambda-calculus based partial evaluator these same
kinds of rules would be used, but in addition rules such
as f-reduction with its associated notion of substitution
need to be specified. With combinators B-reduction is
replaced with simple rules such as:

Sfgx=(fx)(gx)

which look no different from the ‘constant-folding’ rules
above, and can be implemented with the same general
mechanism.

Despite this uniformity, the translation to and from
combinators is time-consuming, and thus a lambda-
calculus based partial evaluator is being designed for the
new HASKELL compiler. It will also incorporate other
useful reduction rules, such as ones having type-specific
knowledge, and will employ heuristics to reduce the
degree of code-explosion, as discussed earlier.

3. SEMANTIC ANALYSIS

For presentational purposes, the optimisations above
were discussed in an intuitive manner. They can also be
described formally in a way similar to that of denotational
semantics. However, for them to be useful in a real
compiler their semantic domains and analyses must be

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 157

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

AN OPTIMISING COMPILER FOR A MODERN FUNCTIONAL LANGUAGE

implemented, and the implementations must be com-
putable. In this section we describe the role of denota-
tional semantics in describing interesting properties of
programs, and how abstract interpretation mathematic-
ally approximates the otherwise uncomputable semantic
properties needed to perform our optimisations.

3.1 Semantics and abstraction

Denotational semantics is a formal way of describing the
meaning of a program in terms of mathematical domains
that properly capture our intuition about program
behaviours. In functional languages the ‘standard’
meaning, or standard interpretation of an expression is
what we intuitively think of as its value, whether that be
a number, list, function, or whatever. However, in some
applications a less precise meaning may be sufficient. For
example, suppose we wish to know the sign of the
product of two integers; we could perform the multi-
plication and then extract the sign of the result, or we
could deduce its sign directly from the signs of the
operands. The latter approach is arguably the easiest
path to finding the desired result, in that manipulating
the signs directly requires only part of the information
required to do the actual multiplication. For example,
extracting (—) from the result of (+ 7) * (— 5) takes more
work than having a simple rule that says ‘(+)*(—) =
(=)

An approximation to a value, such as the sign of an
integer, is called an abstraction, and a computation over
such abstract values is called an abstract interpretation.

Abstract interpretation has recently become popular
as a general and effective compiler optimisation tech-
nique, primarily in functional language circles, but also
in other areas. The reasons for its popularity include the
fact that it is a formal methodology that can be related
directly back to the denotational semantics of the source
language. This allows one to prove the correctness of an
optimisation at an abstract level, indspendently of
operational concerns.*

From a practical perspective, abstract interpretation
provides a convenient methodology for expressing
compile-time analyses in a relatively language-indepen-
dent manner. An abstraction is completely specified by
Just three things: the abstract domain, the primitive
Junctions of the language as implemented in this domain,
and an approximation direction. In strictness analysis, the
abstract domain is 2={l, T}, where L= T. 1
represents non-termination; T represents termination.
To be safe, a compiler should only optimise a program
when a function is guaranteed to be strict. Thus in our
analysis we should err in the direction of non-strictness,
meaning that we want fL to return T, and thus the
approximation direction for strictness is ‘upward’,
where T is above L. On the other hand, termination
analysis requires that we approximate towards bottom,
or non-termination, for safety.

* The formal theory of abstract interpretation has itself witnessed
remarkable growth. Beginning with the Cousots’ seminal work,* ¢ then
Moycroft’s reformulation in an applicative (i.e. functional) idiom,2®1°
and more recently Nielsons’?!'?2 work have laid down a useful
framework in which rather general theorems can be re-cast in particular
application domains. The recent textbook edited by Abramsky and
Hankin® is an excellent source of state-of-the-art developments in this
area.

If we treat L and T as true and false, respectively, then
the primitive functions of the language can be redefined
for strictness analysis to compute over this new domain.
For example: .

+xy=xVy
ifpca=pV (c A a)

The first definition reflects the fact that strict operators
will diverge if either of their arguments diverges. The
second indicates that the conditional will diverge if the
predicate diverges or if both arms diverge. The con-
junction is required because we do not know the exact
value of p, so we can only rely on information that is
contained in both ¢ and a.

Given these redefined primitives, a recursive program
induces an abstract interpretation which properly ex-
presses the strictness properties of interest. Computing
these properties requires computing fixpoints of func-
tionals over the abstract domain; methods for doing this
are described in Section 3.5.

3.2 Non-standard semantics

Strictness and termination analysis are examples of
abstractions of the standard interpretation. However,
not all optimisations can be performed using only the
information contained in the standard semantics; some
optimisations require information about the operational
aspects of a program’s computation. One could at this
point abandon the methodology of abstract inter-
pretation, and resort instead to some kind of operational
semantics, but we have found it useful to retain the utility
of abstract interpretation by starting with a non-standard
denotational semantics that captures the operational
semantics of interest. For example, if the program’s
behaviour with respect to storage allocation is needed,
one could give a store semantics for a functional language
in much the same way that one gives a store semantics
for an imperative language. Given this non-standard
semantics one can then perform abstractions in the same
way as for the standard semantics, yielding the infor-
mation that is desired. This strategy is used in ref. 12 for
computing at compile-time the approximate reference
counts of call-by-reference objects.

The prime example of abstract interpretation of a non-
standard semantics in the ALFL compiler is path analysis,
which provides the order-of-evaluation information
required for destructive aggregate updating (see Section
2.4). The order-of-evaluation properties of a program
are first described by an exact non-standard semantics
from which an abstract semantics is derived to produce
an analysis that is computable at compile-time.

3.3 Collecting interpretations

A collecting interpretationt* is a semantic analysis which
associates with each variable a set of possible values
which it could take on during program execution. It is
similar to data flow analysis in conventional compilers,
and has obvious utility.

As an example, consider the typical definition of map
such that map fxs builds a new list from xs by applying
fto each of xs’s elements. Higher-order strictness analysis

t Some researchers refer to this as a ‘sticky’ interpretation.

158 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

A.BLOSS,P. HUDAK AND J. YOUNG

tells us strictness properties of map, but only as a function
of ¥'s strictness properties. Thus despite strictness analysis,
the compiler-writer is not free to turn f’s application in
the body of map into call-by-value, because at compile-
time f is unknown. However, a collecting interpretation
might be able to help in two different ways:

(1) It could determine that all possible functions bound
to f in the body of map were strict, thus allowing the
optimisation mentioned.

(2) It could determine that all possible functions bound
to f at a particular application of map were strict, thus
allowing an optimised version of map to be used
there, and presumably a more conservative map
to be used elsewhere.

Despite this advantage, we have not yet implemented
‘collected strictness analysis’ in the ALFL compiler.
However, we have implemented collecting interpretations
of termination analysis and path analysis, as described
earlier.

3.4 Semantic toolbox

Once the semantic analyses are designed, they must be
implemented. Most of the analyses mentioned previously
(strictness analysis, termination analysis, and collected
termination), as well as several routines within the ALFL
compiler proper, are implemented using a layered system
of libraries for semantic analysis. These libraries include
an embedded language for the specification of abstract
syntax trees and functions upon them and a highly
parameterised generic semantic evaluator for ALFL
abstract syntax trees. The evaluator includes several
general methods for calculating and approximating
fixpoints of semantic functions (see below). In addition,
several utility libraries are a part of the toolbox.

3.5 Finding fixpoints

The ordered nature of the abstract domain combined
with the presence of recursion in our language requires
the ability to compute or approximate the least fixpoint
of a recursive semantic equation on the abstract domain.
For example, strictness analysis amounts to computing
fixpoints of recursive monotone boolean formula. This
is analogous to finding solutions to general dataflow
equations such as found in traditional optimising
compilers. Our fixpoint-finding toolbox implements
several different techniques, including direct evaluation,
in which recursive equations are expanded until an
answer is found; Kleene chains, in which iteratively L
and the subsequent approximations are substituted for
the recursively defined value until a fixpoint is found ; and
pending analysis, in which evaluation proceeds until a
recursive loop is identified, and then some approximating
action is taken. Unfortunately, on an infinite domain,
none of these techniques is guaranteed to terminate, and
so we also implement depth bounding, in which an
appropriate value is returned when a finite resource is
exhausted.

Most of the semantic analyses in the ALFL compiler
use pending analysis and a depth bound of 30. We are
actively investigating other fixpoint approximation tech-
niques.

4 PUTTING IT ALL TOGETHER

In the previous section we described the role of semantic
analyses in formalising the optimisations detailed in
Section 2, and how they are combined and implemented
in the ALFL compiler. In addition, the ALFL system has
a flexible user interface that provides control over the
degree of optimisation performed by the compiler, plus
an interpreter for interactive program development. In
this section we will describe this user interface and
present benchmarks that show the impact of the various
compiler optimisations.

There are essentially three incarnations of the ALFL
compiler, which we will refer to as ALFL, XALFL, and
NALFL, listed in order of development and increasing
sophistication. Most of the distributed ALFL systems are
XALFL version 3.0, although our current in-house
development is with NALFL.

4.1 User interface

The ALFL system is built upon the T interactive
programming environment in which, typical of most
Lisp environments, T expressions are read, evaluated,
and printed in a loop called the REPL. Major ALFL
activities generally fall into two categories: ‘program-
ming’ — interactively defining functions and evaluating
expressions —and ‘file manipulation’ — compiling and
loading files. An interactive ALFL session begins when
the user types (NALFL) to the T REPL. ALFL then
enters its own REPL. Depending on the first token read,
the ALFL system takes one of three actions:

(1) LET defns. The keyword LET introduces a set of top-
level definitions (functions and constants) which are
compiled and installed in the global ALFL environ-
ment.

(2) Keyword. Certain keywords print or change the state
of the NALFL compiler. For example, timeon enables
the printing of the execution time of each expression;
timeoff disables it. help prints a list of the possible
keywords and actions; state prints out a complete
list of the state of the compiler, including the status
of each optimisation phase (see below).

(3) Expression. Any form not beginning with a known
keyword is interpreted as an ALFL expression and is
immediately evaluated and the result is printed.

All file manipulation commands are entered to the
T REPL. (NALFL-COMPILE filename) reads the ALFL
program in ‘filename.ALF’ and writes out the translated
T program to ‘filename.T’. If an error is encountered
while parsing the program, the ALFL system does its best
to locate the error for the user. On an Apollo workstation,
a window will appear automatically with the cursor at
the place where the error occurred.i On other machines,
if ALFL is run under Emacs, two keystrokes suffice to tell
Emacs to read in a buffer with the offending file and
locate the cursor at the problem. (NALFL-LOAD
filename) loads a compiled ALFL program into the ALFL
system, and (NALFL filename) both compiles and loads a
file.

The NALFL compiler is organised into a series of stages
which are performed in sequence. After the source code

1 We are indebted to Phil Wadler for suggesting this feature to us,
who first used it in the Orwell interpreter.2®

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 159

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

AN OPTIMISING COMPILER FOR A MODERN FUNCTIONAL LANGUAGE

is converted into lexemes, a parse tree is built. Several
optimisations are then performed upon the parse tree,
including partial evaluation, dependency analysis, type
inference, strictness analysis, uncurrying, termination
analysis, and collected termination. Because the ALFL
system is first and foremost a research vehicle, each
optimisation stage may be individually turned on and
off. A stage is turned on using (ENABLE stage) and
turned off using (DISABLE stage).

4.2 Benchmarks

For comparison with other systems we first present the
standard benchmarks NFIB and BQUEENS. These were
run on a Sun 350 workstation (MC68020 CPU; 16 MHz
clock) with 4 megabytes of main memory.

Program NALFL + Pascal T
QUEENS 8 14.87 2.75 3.00
NFIB 20 0.17 0.067 0.06

Execution time in seconds.

The NALFL+ compiler includes strictness and termin-
ation analysis and collected termination. The T column
indicates the execution for a ‘comparable’ T program —
one in which all function calls are strict and lists are
eager.

We now compare the execution time of several
programs under various versions of the compiler. Except
as noted, all benchmarks were run in a fully loaded
NALFL system on an Apollo DN3000 workstation
(MC68020 CPU; 12 MHz clock) with 8 metabytes of
main memory and a local disc. Since these were
intentionally small benchmarks, paging and garbage
collection are not a factor (with exceptions as noted).

Program XALFL NALFL NALFL+ T
TAK 43262 0.893 0.886 0.748
MM 0.101 0.101 0.083 0.010
DERIV 0.091 0.090 0.085 0.002
TFIB 100 40 3.524 1.203 0.018° 0.016°
Execution time in seconds.
* Estimated, 5000 iterations.
® Estimated via (tfib 10000 40).
Program NALFL NALFL* T
QSORT* 28.70 0.73 0.73
INIT? 1.35 0.04 0.02

Execution time in seconds.
2 QSORT and INIT were run on an Apollo DN3000 with 4
megabytes of main memory and a non-local disc.

In the first table, XALFL refers to the vanilla compiler
with no optimisation of lazy evaluation; the NALFL
compiler includes strictness and termination analysis;
and the NALFL + compiler includes collected termination
as well.

In the second table, NALFL refers to the NALFL compiler
described above with the addition of an array construct
implemented with trailers, a technique that allows only
the element being updated to be copied. The NALFL*
compiler includes the destructive aggregate update
analysis based on path analysis.

The benchmarks were taken in part from a set of T
benchmarks compiled for the Orbit compiler’® from
several sources, including the Gabriel suite of bench-
marks for Lisp systems.® Where the T benchmarks used
fixed precision integers, we allowed the ALFL compiler
also to use them (using an unreleased feature of the ALFL
system, but which would happen automatically in a
Haskell implementation because of the static type
system). The particular benchmarks are:

@ TAK: The Takeuchi function from the Gabriel suite.
A highly recursive function.

MM Matrix multiplication using lists and higher-
order functions.

DERIV: Symbolic derivative from the Gabriel suite.
List-intensive.

TFIB i n: Tail-recursive fibonacci of n executed i
times. This is essentially a doubly-nested do loop.
QSORT: Quicksort using arrays.

INIT: The initialisation function described in Section
2.4. Note that INIT is lazy in its third argument,
which accounts for T’s better execution time.

5 CONCLUSIONS

We have outlined the design of the major optimisations
in the ALFL compiler, discussed the underlying semantic
analysis methodology, and provided benchmarks that
indicate that functional languages are indeed becoming
competitive with conventional languages. As an over-
view, we have necessarily had to skip many of the finer
details ; most of these can be found in the references.? 13-26
In addition, we have said nothing about our efforts in
building parallel implementations of Lisp and functional
languages; suitable references for that work include
refs 10 and 11.

Much work remains. Better analyses, new opti-
misations, improved code generation, and more efficient
compilation strategies are all part of on-going efforts to
improve the performance of functional languages. The
new HASKELL compiler being developed by Yale’s Lisp
and Functional Programming Research Group is based
on the current ALFL compiler and is expected to be a
considerable improvement over the current design.
Hopefully this will lead to the more widespread accep-
tance and use of functional programming languages.

Acknowledgements

Support for this project has come from many sources
and in many forms over the past six years. Foremost we
would like to thank the National Science Foundation
(under grants DCR-8403304, DCR-8302018, and DCR-
8451415) and the Department of Energy (under grant
FGO02-86ER25012). In addition IBM, through a Faculty
Development Award, and Burroughs/SDC (now Unisys)
and MCC, through NSF PYI matching funds, have
contributed to the cause.

In addition to these funding sources we wish to

160 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

A.BLOSS,P.HUDAK AND J. YOUNG

acknowledge the support of the entire T Project, past
ALFL hackers (in particular Fred Douglas and Ian
Taylor), and current ones (in particular Maria Guzman).

REFERENCES

1.

2.

1.

12.

13.

S. Abramsky and C. Hankin, Abstract Interpretation of
Declarative Languages. Ellis Horwood (1987).

A. Bloss, Path analysis: using order-of-evaluation in-
formation to optimize lazy functional languages. Ph.D.
thesis, Yale University, Department of Computer Science
(1989).

. P.Cousot and R.Cousot, Abstract interpretation: a

unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In 4th ACM
Symposium on Principles of Programming Languages, pp.
238-252. ACM (1977).

. P. Cousot and R. Cousot, Systematic design of program

analysis frameworks. In 6th ACM Symposium on Principles
of Programming Languages, pp. 269-282. ACM (1979).

. Jon Fairbairn and Stuart C.Wray, Code generation

techniques for functional languages. In Proceedings 1986
ACM Conference on Lisp and Functional Programming, pp.
94-104. ACM SIGPLAN/SIGACT/SIGART, Cam-
bridge, Massachusetts (August, 1986).

. R. P. Gabriel, Performance and Evaluation of Lisp Systems.

MIT Press, Cambridge, Mass. (1985).

. B. Goldberg, Detecting sharing of partial applications in

functional programs. In Proceedings of the 1987 Func-
tional Programming Languages and Computer Architecture
Conference, pp. 408-425. Springer Verlag, LNCS 274
(September, 1987).

. B. Goldberg, Multiprocessor execution of functional pro-

grams. Ph.D. thesis, Yale University, Department of
Computer Science, 1988. Available as technical report.
YALEU/DCS/RR-618.

. P. Hudak, ALFL Reference Manual and Programmer’s

Guide. Research Report YALEU/DCS/RR-322, 2nd edn.
Yale University (October, 1984).

. P. Hudak, Denotational semantics of a para-functional

programming language. International Journal of Parallel
Programming, 15 (2), 103-125 (1986).

P. Hudak, Para-functional programming. Computer 19 (8),
60-71 (1986).

P. Hudak, A semantic model of reference counting and its
abstraction (detailed summary). In Proceedings 1986 ACM
Conference on LISP and Functional Programming, pp.
351-363. ACM (August, 1986).

P. Hudak, A. Bloss and J. Young, Code optimizations for
lazy evaluation. Lisp and Symbolic Computation: An
International Journal 1 (2), 147-164 (1988).

And as always, we thank the ‘grapplers’ at Yale for their

ne

14

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

ver-ending support.

. P. Hudak and J. Young, A collecting interpretation of
expressions (without power domains). In Proceedings of
ACM Symposium on Principles of Programming Languages,
pp. 107-118 (January, 1988).

P. Hudak and J. Young, Higher-order strictness analysis
for untyped lambda calculus. In 12th ACM Symposium on
Principles of Programming Languages, pp. 97-109 (January,
1986).

R.J. M. Hughes, . Super-combinators: a new imple-
mentation method for applicative languages. In Pro-
ceedings 1982 ACM Conference on LISP and Functional
Programming, pp. 1-10. ACM (August, 1982).

. D. Kranz, ORBIT: an optimizing compiler for scheme.
Ph.D. thesis, Yale University, Department of Computer
Science (1988). Available as technical report YALEU/
DCS/RR-632.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin and
N. Adams, Orbit: an optimizing compiler for Scheme. In
SIGPLAN °86 Symposium on Compiler Construction,
pp- 219-233. ACM (June, 1986). Published as SIGPLAN
Notices vol. 21, no. 7 (July, 1986).

A. Mycroft, Abstract interpretation and optimizing trans-
formations for applicative programs. Ph.D. thesis, Uni-
versity of Edinburgh (1981).

A. Mycroft, The theory and practice of transforming call-
by-need into call-by-value. In Proceedings of International
Symposium on Programming, pp. 269-281. LNCS Springer-
Verlag, vol. 83 (1980).

F. Nielson, abstract interpretation using domain theory.
Ph.D. thesis, University of Edinburgh (October, 1984).
F. Nielson, A denotational framework for data flow
analysis. Acta Informatica 18, 265-287 (1982).

Simon Peyton Jones, The Implementation of Functional
Programming Languages. Prentice-Hall International,
Englewood Cliffs, NJ (1987).

J. A. Rees and N. I. Adams, T: a dialect of lisp or, lambda:
the ultimate software tool. In Proceedings 1982 ACM
Conference on LISP and Functional Programming, pp.
114-122. ACM (August, 1982).

P. Wadler and Q. Miller, An Introduction to Orwell.
Technical Report, Programming Research Group, Oxford
University (1985).

J. Young, The semantic analysis of functional programs:
theory and practice. Ph.D. thesis, Yale University, De-
partment of Computer Science (1989).

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 161

¥20Z I4dy 01 uo 1senb Aq 09G5€1G/2S L/Z/Ze/e1Pme/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq

