AUTO-DFD: An Intelligent Data Flow Processor

K.P. TAN*T.S. CHUA anD P. T. LEE

Department of Information Systems and Computer Science, National University of Singapore, Lower Kent Ridge Road, Singapore 0511

This paper describes the design and implementation of an intelligent data flow processor, AUTO-DFD. AUTO-DFD
has the intelligence to find the optimal Data Flow path between two entities of a data flow diagram. It has a high
degree of automation in dynamically moving or deleting objects and their related components. It allows multi-level data
flow diagrams to be concurrently created in multi-windows and merged with their parent diagrams. It performs checking
on the integrity of all entities of the data flow diagram. It also checks on the balance of input and output flows between

a Process and its child diagram.

Received July 1988

1. INTRODUCTION

Systems Analysis is the earliest phase in the life cycle of a
system. Therefore, its significance on the later stages of
systems development (design, coding, testing, imple-
mentation and maintenance) cannot be under-empha-
sised. Many systems do not serve their intended purposes
because of poor analysis although most analysts have
spent much time and money in analysing systems and
their problems. With the increasing emphasis on produc-
tivity, the analysts’ work can be facilitated by the use of
computer-aided analysis systems such as DFD?, SADT?,
PDL3 and PSL/PDA.*

The use of Data Flow Diagrams as a tool for Structured
Analysis has been discussed.! Demarco! defines a data
flow diagram as a network representation of a system.
Today, there are many commercially available computer-
aided analysis tools that support data flow method-
ologies. They include POSE® AutoAsyst, Excelerator,
Structured Architect, SA Tools, Software Engineering
Workbench and USE. Some of these tools do not check
consistency across diagrams and do not detect duplicates.
They do not support automatic diagram generation.
Moreover, they do not allow an object to be replaced by
its child diagram. As the information processing environ-
ment expands and problems become more complicated,
a more powerful and intelligent computer-aided tool is
required.

2. REQUIREMENTS OF AN INTELLIGENT
SOFTWARE TOOL

To develop high quality software, analysts need an
automated tool that keeps track of each element in the
information system for fast retrieval. The tool should
enforce consistent definition of each element in the
diagrams and detect duplicates. This will maintain the
integrity and consistency of the data dictionary. It should
have the intelligence to generate optimal routes for data
flows so that the diagrams are visually documented for
the analysts to understand easily. It must allow dynamic
modification of diagrams by moving or deleting objects
and their related components with minimum effort from
the analysts. The tool should encourage partitioning by
allowing the child diagrams to be concurrently edited
with their parent diagrams in a user-friendly manner. It
must enforce consistency across diagrams to maintain

* To whom correspondence should be addressed.

the integrity of the information system. The tool should
also support systematic replacement of any element.

AUTO-DFD, an integrated analysis and design tool,
has been developed to meet all the above requirements.
It is implemented on the Apollo Domain 580 graphic
workstation at the National University of Singapore.
AUTO-DFD is coded in the C programming language
and is supported by the Graphics Metafile Resource
package which uses the PHIGS standard.® In summary,
AUTO-DFD has the following features:

(a) integrates DFD and data dictionary

(b) detects duplicates

(c) enforces diagramming rules

(d) performs object search

(e) automatically generates data flows

(f) dynamically moves or deletes objects and related
components

(g) supports multi-windowing to edit diagrams of
different levels concurrently

(h) checks consistency across diagrams

(i) systematically replaces objects with their child
diagrams

(j) compresses diagrams

(k) provides on-line help

This paper presents the architecture of AUTO-DFD.
It describes the functions performed by each component.
It also elaborates on the heuristic routing algorithm
devised for finding optimal Data Flow route between
two entities of a data flow diagram.

3. DESIGN OF AUTO-DFD

AUTO-DFD is designed to be object-oriented.” This is
because the use of object-oriented paradigm in the field
of software development will increase the user’s accept-
ance in describing the structuring, functionality and
evolution of software in a uniform manner.

Since AUTO-DFD is designed for ease-of-use and
high processing power, it aims to provide a completely
visual environment for analysts to model the information
system by manipulating icons on screen. This ensures
that even a naive user will be able to make effective use
of the full potential of the system.

The architecture of AUTO-DFD is illustrated in
Fig. 1. The Data Dictionary contains definitions of every
entity in the data flow diagrams. It declares the data
fields and types of each entity. It also defines the graphic

194 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

AUTO-DFD: AN INTELLIGENT DATA FLOW PROCESSOR

Mouse VDU Plotter

ooa 00 E=———— O

Input Output

Iconic interface

Create

Retrieve

DED Modify

Routeing
module
Checking
module

Figure 1. The architecture of AUTO-DFD.

(P)
Cust Process
orders

(a) Source/sink (b) Process
Figure 2. The DFD objects.

I D1| Order file %-P

(d) Data flow

(c) Store

display parameters (colour, size, shape, position) of an
entity.

The Graphics Editor creates, modifies, moves and
deletes objects on the screen. It retrieves the object
definitions from the Data Dictionary. It basically
manipulates four types of objects — Process, Store,
Source/Sink and Data flow, they are shown in Fig. 2.
The use of these entities are described.! The functions
performed by the graphics editor are supported by a
powerful graphics package GMR (Graphics Metafile
Resource) which is installed on the Apollo Domain
580.

The iconic interface serves as an interface between the
user and AUTO-DFD. The DFD processor performs
editing and checking on data flow diagrams. The
structure of the iconic interface and the functions of the
DFD processor will be described in the following sections.

4. THE ICONIC INTERFACE

To reduce the complexity of the information tool, an
iconic interface is developed. Iconic communication uses
images to convey ideas of information in a non-verbal
manner.® The iconic interface makes pictorial com-
munication between the user and AUTO-DFD possible
by allowing the user to select from menus and pick
objects with a picking device (in this case, a mouse). This

serves to provide a ‘user-friendly ’ environment to analyse
the problem domain and generate the required outputs
on the graphic display. The keyboard is used for keying
in other textual data. Interfaces to output devices such as
printers and graphic plotters will be included in future
enhancements.

The screen layout displayed during a data flow diagram
construction is shown in Fig. 3.

The screen is partitioned into 8 windows. The function
of each window is described below:

Top menu The Top Menu window shows the main
menu of the DFD.

Side menu The functions that can be used to manipu-
late objects are listed on the right of the
screen.

Display The data flow diagram is displayed in the
centre of the screen.

Multi These are smaller multi-windows opened to

display and edit the child diagram of a
Process or to zoom part of the data flow
diagram.

The scroll window is at the bottom right of
the screen. User can use the arrow keys to
scroll the display window’s content.

The directory window on the left lists the
existing data flow diagrams for user to
select for modification or viewing purposes.
The arrows at the bottom left are used to
scroll the directory.

This window allows users to enter textual
data or command.

This prompts user for action and gives any
error or completion message.

Scroll

Directory

Input

Message

5. THE DFD PROCESSOR

The DFD processor allows user to create a new data
flow diagram, and retrieve or modify an existing diagram.
It divides the screen into rows and columns of invisible
grid for data flows, as shown in Fig. 4. It adopts
the directional constraint® to draw horizontal and vertical
lines. In addition, the screen is partitioned into subareas
called slots (shown by the solid lines) for Process, Store
and Source/Sink objects. The DFD processor uses the
modular constraint® to centralise an object in a slot.

A user edits a new diagram by selecting the object type
(Process, Store and Source/Sink) from the side menu
and then indicating the corresponding slot for the object
to be drawn. Data flows between two objects can be
edited by user or automatically generated by the data
flow routing module.

The routing module will generate a sequence of routes
by studying the location of the source and destination
objects. It then calis the checking module to determine
whether a route is blocked by other objects. The routing
module will terminate when an optimal path is found.
This is done by assigning heurisitc values to each feasible
path generated. The criteria for selecting a generated
data flow is based on minimum turning points, minimum
crossing with other data flows and shortest distance.

The functions supported by the DFD processor and
the processings involved in these functions are described
as follows.

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 195

7-2

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

K.P. TAN,T.S. CHUA AND P. T. LEE

Top menu

Create Retrieve

Update

Delete DD

Directory
window

Display
window

Multi-
window

H 1 |o

Side

menu

a

o o0
o & o
e o0

D

More

14

DFD

Input >

)

Scroll

Prev Message:

Next
Dir i

Dir

4
v

window

Figure 3. The iconic interface.

EENRRERESRESREEREPREYREYLEYREERLE
FJH4H-H4H4L4LHLH-H&HL&
dnhduk fundnndnnfanfanldnfanuin
SNSENYEN FRNEHNEN FEFNEPEEY N R NN
flrpInd oaoaCapa s po

il bl

-
lllllﬁlrl LAl L.l Ll il

Clananrnanariaranapacs
DInand g ndelata g bianan
ﬂIUID:ﬂZﬂJE:EDED:DEEId
Do nlodnanjanana ba g nd
sk o e O A 8 e I o o
T o3 L] il kg L3 g mia R eia il
sl fats Sau B aOuln Bt Ralnl dnlslub s
DI Aol 0Indnanana g nand
ajefau ol Gutufainl nl s ud dunbanban
I DIDI DI Dad DAt ad o L3 g oo
‘.!I__ll1l-ll_l'll-1l _I.IIJII_!_ RRAN
IO IDIDIDINE DI DI ndnand
apdantayfuni il nEnland dulnbn
NIDIDIDIDICaDIDandInad g
st dae G nt s nl i ninl dubnha
hdnndanfnudanfusivutsnhsuldub gy

Figure 4. Internal representation of the Display window.

Lid
FIt
1

-t

~

ti
L1

(a) Inserting an object

The checking module will first check that there is no
overlapping of the new object with the existing objects
and that the name of the new object is unique. For
Process and Store objects, AUTO-DFD automatically
generates identification numbers in sequential order.
Processes will have identification of P1, P2, P3 etc and
Stores will have identification of D1, D2, D3 etc. The
graphics editor will then position the object in the centre
of the selected slot.

In the case of editing a data flow manually, at least two

points must be indicated. The checking module will also
check for a valid source and destination. In the automatic
mode, it is sufficient to just pick the source and destination
object for the routing module to generate an optimal
path. The checking module will check if there is any
looping regardless of the mode used. Before saving a
data flow diagram, the checking module will check that
each Process and Store has valid input and output data
flows.

(b) Deleting an object

The object to be deleted is first picked by the user and
then removed from the screen. Furthermore, if the picked
object type is a Process, Store or Source/Sink, all of its
related data flows which have been maintained by the
DFD processor are automatically deleted. The DFD
processor will also update the identification numbers of
affected Processes and Stores. This change will also be
propagated to the child diagram of any Process affected
by decrementing its prefix. Fig. 5 shows that Process P1
before and after deletion.

(¢) Moving an object

If a data flow object is moved, the user will either re-
specify the path or the routing module will automatically
generate a new path depending on the mode that was
specified. In the case of a Process, Store or Source/Sink
object, the checking module will again check that it does
not overlap with other objects on the screen. The
graphics editor will then move the object to its new
location. In addition, all the data flows of the moved

196 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

AUTO-DFD: AN INTELLIGENT DATA FLOW PROCESSOR

P4 Request
@ Invoice | process stock _| Ware-
orders house
if
Enter
Order P3 order
Cust Oddr | Fillorder| form _I'Enierar | fom /0T o "0
form terminal
— -
(o]
£
4
£
JV Completed
T st
Fill new form | D1 | Cust form
cust form
. T
®) Invoice Process stock Ware-
orders house
—
iE
y Enter
1 Order 2\ order
Cust Order Fill order form »{ Enterat form D2 | Order file
form terminal
— —

. Cust form

Figure 5. (a) An order-processing system; (b) after deleting process P1.

object will be automatically re-routed by the routing
module. Figure 6 shows the Source CUST of Fig. 5b
(with the previous D1 deleted) being moved to its new
location.

(d) Creating a child diagram for a Process object

Since partitioning is a characteristic of data flow
diagrams, AUTO-DFD allows the detail operations of a
Process to be edited at a lower level child diagram. This
features a top-down approach to analysis. As a guideline,
Miller'® has suggested an average of seven objects at any
level for the human mind to process the information. The
concept of boundary clashes in Jackson!! is also
applicable in determining the bottom level.

To simplify the creation of the child diagram, the
parent Process is present on the screen for the user to
pick its input and output data flows. Therefore, the child
diagram is edited in a subwindow on the top right of the
screen. Adopting the levelling convention in DeMarco?,
AUTO-DFD automatically generates a prefix of its
parent Process identification number for each of its child

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

Processes created in the subwindow. For example, the
child Processes of parent Process P3 will have identifica-
tion of P3.1, P3.2, P3.3 etc. assigned to them. Another
characteristic of AUTO-DFD is that it allows multi-level
child diagrams to be created and edited concurrently
with their parent diagrams by opening multi windows.

The DFD processor checks that inputs and outputs
are balanced between the Process of a parent diagram
and its child diagram; that is, data flows into and out of
the parent process are equivalent to those flowing into
and out of the child diagram. In addition, it maintains a
reference pointer between a process data flow of the
parent diagram and the corresponding data flow of the
child diagram. This ensures that the parent Process can
be systematically replaced by its child diagram later.
Figure 7 shows the creation of a child diagram for the
Process P3 of Fig. 6.

(e) Replacing a Process object with its child diagram
AUTO-DFD allows the user to expand a data flow

diagram by replacing any parent Process with its

197

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

K. P. TAN, T.S. CHUA AND P. T. LEE

(—P3T Request
Cust Invoice Process stock Ware-
us orders house
|
g B
g
Enter
(PT Order P order
Order Fill order form Enter at form D1 | Order file
form terminal
— -/
Figure 6. Moving Source CUST.
Request
stock
————
Edited Unfulfilled
order order | .
s D2 I Unfulfilled file
(— P3_) Request
Cust | Invoice Process stock Ware-
orders house
L‘_J
Enter
Order 2 order
Order | Fill order form | Enterat form Dl | Orderfile
form terminal
—

Figure 7. Creating a child diagram for Process P3.

corresponding child diagram. If a child Process is not
primitive, the user can further request that the child
Process be replaced by the next lower level diagram.
To replace a parent Process, the DFD Processor will
first determine the space in terms of number of slots
required by the child diagram. It then moves all objects
that lie on the top and right of the parent Process to give
sufficient space for the child diagram. The Process, Store
and Source/Sink objects of the child diagram are now
inserted into the space allocated. The DFD processor
finally proceeds to find new routes for the data flows of

all the moved parent objects and newly inserted child
objects. Figure 8 shows the Process P3 of Fig. 7 being
replaced by its child diagram.

6. THE ROUTING ALGORITHM

The routing problem is an NP-complete problem, for
which non-deterministic (an arbitrary number of paths
can be followed at once) polynomial-time algorithms are
known, but for which all known deterministic algorithms

198 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

AUTO-DFD: AN INTELLIGENT DATA FLOW PROCESSOR

house

Request
Invoice stock
invoice
i
=
(P31 Unfulfilled
Cust Check order D2 | Unfulfilled file
stock
_J
g
§
Enter
Order 2 order
Order i form form
Filorder ner at Dl | Orderfile
— Q

Figure 8. Replacing Process P3 by its child diagram.

are exponential.'> The time required to find the optimal
route increases exponentially with the routing area.
There are many well-known routing algorithms; they
include the Lee Algorithm'® and the Hightower
Algorithm.'* These algorithms are designed to find the
shortest path with no crossings between any two points
in a gridded routing region containing any number of
obstacles. They are used in complex area routing
problems for VLSI design. When the routing area is
small, both algorithms can find the optimal path in an
acceptable time. In a real time system, a more powerful
algorithm is needed to achieve an acceptable completion
rate for larger routing areas.

With good partitioning, there are relatively less objects
and connections in a data flow diagram. Therefore, it is
desirable to have an algorithm that first considers
‘obvious’ and simple solutions by studying the location
of the source and destination objects and the blockages.
The algorithm should not only consider paths with
minimum crossings, but also short paths with few
zigzagging. In a data flow diagram, paths with less
turnings maybe visually more desirable than long paths
with more turnings and less crossings.

A routing algorithm which relies on heuristics has
been devised for AUTO-DFD to find a visually accept-
able data flow path between two objects. To find a path
between any two objects, the algorithm considers routes
with not more than three turning points. In each case, it
will give priority to routes with minimum crossings and
then shortest distance. There are mainly 3 cases con-
sidered by the Routing Algorithm. Figure 9a, b shows

the trivial cases of two objects in the same row and same

column respectively. Figure 9 ¢ shows the possible routes

between two objects in different row and column. The

other combinations are symmetries of the third case.
The Routing Algorithm is given below:

ROUTING ALGORITHM
best_route = NIL;
turning_point = 0
max_turning_points = 3;
max_turning_reached = FALSE;
optimal_found = FALSE;
while (NOT(optimal_found) AND
NOT(max_turning_reached)) {
obstacle = find_obstacle (source_object,
destination_object, turning_point);
if NOT (obstacle)
then call GENERATE_DATAFLOW_PATH
(best_route, optimal_found);
turning_point = turning_point + 1 ;
if (turning_point > max_turning_points)
then max_turning_reached = TRUE;

H
Procedure GENERATE_DATAFLOW_PATH

(best_route, optimal_found)

new_route = NIL;

destination_reached = FALSE;

path_rejected = FALSE;

exhausted = FALSE;

while NOT/(destination_reached) AND

NOT(path_rejected)

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 199

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

K.P. TAN, T.S. CHUA AND P.T. LEE

(a) (©)
@) A B @) A
B
(i) A B
(ii) A —
ai)y |[a B B
®) (iii) A
A
(@)
B
B -
@iv) A
A
(i) B
) A
B C
s
A
(i)
(vi) A
B B

Figure 9. Possible routes generated. (a) Objects in same row; (b)
objects in same column; (c) objects in different row and
column.

AND NOT(exhausted) {
/* generate a subpath */
call GENERATE_SUBPATH (sub_path,
exhausted, destination_reached);
if NOT(exhausted) {
/* check for invalid overlapping */
path_rejected = CHECKING_ROUTINE
(sub_path);
if NOT(path_rejected) {
/* concatenate partially generated route
with subpath*/
new_route = concat (new_route, sub_path);
if COMPARE_HEURISTICALLY
(new_route, best_route) < =0
path_rejected = TRUE;
}
}

}
if COMPARE_HEURISTICALLY (new_route,
best_route) > 0
best_route = new_route;

if (best_route . dataflow_crossing = = 0)
optimal_found = TRUE;
else

call GENERATE _DATAFLOW_PATH
(best_route, optimal_found);

The routing algorithm first calls GENERATE DATA-
FLOW PATH to generate routes of minimum turnings.

It begins by studying the location of the two objects and
the obstacles so that routes that will meet obstacles are
not tried. It maintains the best route found so far. The
best route is defined to be one with minimum crossing
with other objects and with shortest distance. If the best
route with zero crossing cannot be found, routes with
increasing turning points are gradually considered. The
maximum number of turning points considered is
three.

GENERATE_DATAFLOW_PATH is a recursive pro-
cedure which generates a series of all possible routes
between the two objects with the number of turning
points specified. It partitions the routing problem into
subproblems of generating subpaths. If a subpath
overlaps with other data flows, alternate subpaths are
considered. If the partially generated new route is found
to be less promising (that is, with equal or more crossings)
than the current best route, it is rejected and not explored
further. The function COMPARE_HEURISTICALLY
serves to select between the previous best route and the
new route by comparing their data flow crosses. If the
chosen best route has zero crossing, then an optimal
route is found; otherwise, GENERATE_DATA-
FLOW_PATH is recursively called to backtrack and
generate alternate paths.

At the end of the execution, the routing algorithm
returns the best route found so far (whether it is optimal
or not) and uses it as the data flow line for connecting the
two objects.

7. FUTURE DIRECTION

Future effort will be directed on the specification of the
primitive Process to describe its operations. These
specifications are also called mini-specs.! Since AUTO-
DFD aims to be fully graphical, an in-depth study and
research on visual languages is essential. The mini-specs
should preferably be specified through a two-dimensional
flowchart-like representation. Furthermore, to make
these flowchart-like specifications come to ‘life’, anima-
tion of input test data and output data can be visually
shown on the screen during execution.

In addition, analysts will be able to specify the output
requirement in a graphical form language.'® '® The form
definition language will use the arrangement of graphical
objects to describe both the logical and visual structure
of the output format. Forms can also be used to view the
elements of the data dictionary.

8. CONCLUSION

This paper has presented the development of an
automated data flow processor as an analysis tool to
create data flow diagrams. It explains the operations
involved in dynamically creating, moving and deleting
objects and their related data flows. It also describes how
the DFD processor allows the detail of a Process to be
specified in a child diagram. This involves the integrity
checking for the balance of net data flow inputs and
outputs between the parent Process and its child diagram.
It then elaborates on how the parent Process can be
systematically replaced by its child diagram. Finally, the
powerful data flow routing algorithm which relies on
heuristics to find optimal data flow path between two
entities is discussed.

200 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

AUTO-DFD: AN INTELLIGENT DATA FLOW PROCESSOR

REFERENCES

1.

2.

3.

T. DeMarco, Structured Analysis and System Specification,
Prentice Hall (1979).

An introduction to SADT. SofTech, Inc., Waltham, MA,
document 9022-78, Feb. (1976).

S. H. Caine, and K. E. Gordon, PDL — A tool for software
design. National Computer Conference Proceedings, 44,
271-276 (1975).

I1.

. W. M. Newman and R. F. Sproull, Principles of Interactive

Computer Graphics. McGraw-Hill (1979).

. G. A. Miller, The magical number seven plus or minus two:

Some limits on our capacity for processing information.
Psychological Review, 63 (2), 81-96 (1956).

M. A. Jackson, Principles of Program Design Academic
Press, New York (1975).

E. Rich, Artificial Intelligence. McGraw-Hill (1983).
C.Y. Lee, An algorithm for path connection and its
applications. JRE Transactions on Electronic Computers,

. D. Hightower, A solution to line-routing problems on the

continuous plane. Proc. Design Automation Workshop

. S. Kazuo, T. Kikuno, N. Yoshida and M. Takayama, An

approach to the design of a form language. IEEE Computer
Society Workshop on Visual Languages, 171-176 (1984).

4. D. Teichroew and E. A. Hershey III, PSL/PDA: A 12.
computer-aided technique for structured documentation 13.
and analysis of information processing systems. IEEE
Transactions on Software Engineering, SE-3 (1), January September, 346-365 (1961).
(1977). 14
5. A.M. Goh and C.P. Wong, POSE — An analyst work-
station environment. Proc. IT Works 1987, pp. 157-164. (1969).
6. D. Shney, D. Bailey and T. P. Morrisey, PHIGS: A stan- 15
dard, dynamic, interactive graphics interface. JEEE Com-
puter Graphics and Applications August, 50-57 (1986).
7. A. Kramer, IconMaker: interactive user interface design. 16

IEEE Computer Society Workshop on Visual Languages,
192-198 (1984).

. N. C. Shu, A forms-oriented and visual-directed appli-

cation development system for non-programmers. /EEE
Computer Society Workshop on Visual Languages, SE-3 (1),

8. K. N. Lodding, Iconic

Interfacing.

IEEE Computer

Graphics and Applications, 3 (2), 11-20 (1983).

162-170 (1972).

Announcements

16-20 JuLy 1990

ICALP 90, University of Warwick, England
16th International Colloquium on Automata,
Languages, and Programming

Call for Papers

The 16th annual ICALP meeting of the
European Association for Theoretical Com-
puter Science (EATCS) will take place at the
University of Warwick. Papers presenting
original contributions in any area of theoret-
ical computer science are being sought.

Scope

Topic areas include (but are not limited to):
computability, automata, formal languages,
analysis of algorithms, computational com-
plexity, data types and data structures, theory
of databases and knowledge bases, semantics
of programming languages, program speci-
fication, transformation and verification,
foundations of logic programming, theory of
logical design and layout, parallel and dis-
tributed computation, theory of concurrency,
symbolic and algebraic computation, term
rewriting systems, computational geometry,
cryptography, theory of robotics.

Papers

Authors are invited to submit seven copies
(preferably double-sided) of an extended ab-
stract or draft of a full paper before 15
November 1989 to the Chairman of the
Programme Committee: Professor Mike
Paterson, Department of Computer Science,
University of Warwick, Coventry CV4 7AL,
UK. Tel: +44 203 523194.

Location

The University of Warwick has an attractive
campus with parkland, woods and lakes just
outside the city of Coventry. All accom-
modation will be on campus within 5 minutes’
walk of the conference rooms. Nearby places
of interest include Coventry Cathedral, War-
wick and Kenilworth Castles, Stratford upon
Avon and the Cotswolds.

Travel

Birmingham Airport is very close and has
direct flights from many European cities. The
frequent trains from London to Coventry take
only 75 minutes. The University is quickly
accessible from the M1, M6 and M2S motor-
ways.

Further information

Persons submitting papers from countries in
which access to copying machines is difficult
or impossible may submit a single copy. Please
include an electronic mail address if appro-
priate.

Notifications of acceptance/rejection will
be sent by 9 February 1990. Final papers for
the Proceedings are due by 6 April 1990.

Further details about the conference (and
the final programme) will be sent to anyone
submitting a paper, to all EATCS members
and to several electronic news nets in early
1990. To add your name to the mailing list,
write to: ICALP 90, Department of Computer
Science, University of Warwick, Coventry
CV4 7AL, UK, or send e-mail with a note of
your return postal and electronic mail addres-
ses to ICALP@cs.warwick.ac.uk (or ap-
propriate net address as below).

Janet: ICALP@uk .ac.warwick .cs
Darpa:

ICALP%cs.warwick .ac.uk@nss.cs.ucl.ac.uk

Uucp: ICALP%warwick . uucp@ukc. uucp
Earn/Bitnet:
ICALP%uk .ac.warwick .cs@ UKACRL

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 201

¥20Z I4dy 60 U0 1senb Aq zvELEC/P61L/S/2E /2101 e/ ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

