Data Encryption based upon Time Reversal Transformations
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We present here a data encryption model based upon time reversal transformations in analogy to a mechanical system
whose dynamics is described by second order (in time) equations. Such a mechanical system is conservative (i.e. no
loss in energy). By the same token, if a set of data is manipulated according to an equation which is second order in
time, the information contained in the data will not be lost after an arbitrary number of iterations. In this way, one can
encrypt confidential data which is to be transmitted via a computer network to an incomprehensible form; the destined
receiver can easily convert the encrypted data back to the original comprehensible form by reversing the order of

iterations.
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1. INTRODUCTION

With the advent of computer and networking technolo-
gies a tremendous amount of information is moved
between millions of computer terminals in the world
every hour. Regardless of the types of networks that
interconnect the terminals, the transmitting data can
easily be copied by wiretap or other appropriate means;
if a picture is sent via a satellite, it is accessible to anyone
who has a TV set and an appropriate antenna. In many
cases, the information stored in a computer is highly
confidential and the organisations definitely want to
prevent the information from being copied when it is
transmitted through a computer network. In such cases,
one may need to perform some form of encoding on the
data prior to its transmission, so that it is incom-
prehensible to anyone except the sender and the destined
receiver who knows how to decode the transmitting
message. The coding operations are known as encryption
(or encipherment) and the decoding operation decryption
(or decipherment). The original data prior to being
encrypted is referred to as plaintext and the encrypted
data ciphertext.

A number of algorithms for encryption for computer
data communication have been proposed in the past two
decades.’® However, the algorithms known to date are
either very complicated — which can easily confuse even
the sender and the receiver — or there may exist a danger
that the associated ciphertext may be decoded by
outsiders. Here we propose a very simple and straight-
forward encryption which can easily be implemented
using either software or hardware or both ; the ciphertexts
are too complicated to be decrypted by someone who
does not know the associated function-key. Moreover,
the abundance of choices of function-key discussed in the
next section makes ‘code-breaking’ impossible. Other
advantages of the proposed encryption are discussed in
Section 4.

In the next section, we describe in detail the model and
the principles for encryption. Simple examples that
highlight the model are presented in Section 3. We then
discuss other properties and advantages of the model in
Section 4. Section 5 summarises the important results.

* To whom correspondence should be addressed.

2. THE MODEL AND BASIC EQUATIONS

In the physical world, if a system is described by an
equation which is first-order in time, the system is in
general dissipative (i.e. has energy loss). If the equation
is second-order in time, the system may be non-
dissipative. Such a system has time-reversal symmetry.®
As an example in mechanics, if a certain initial
configuration of a system of particles evolves under the
action of various forces into some final configuration, a
possible state of motion of the system is that the time-
reversed final configuration (all positions the same, but
all velocities reversed) will evolve over the reversed path
to the time-reversed initial configuration. Therefore, if
one wants to iterate a set of data for a number of times
without any loss in information, so that when the
iteration is reversed the original set of data can be
recovered, the equation describing the iteration must be
second-order in time. Based on this idea we develop the
following model.

Suppose we have some data (information) arranged in
an m x n matrix (x;), (1< i<mand 1 <j < n), each of
which takes on k discrete values. The major purpose of
encryption is to transform (x,,) into a new matrix (x};) by
a known function f (henceforth referred to as the key).”
In this way the transformed data (x}}) is unintelligible.
The basic equation of our transformation is

x (T+1) = flix(TH—x,(T—1) mod k. (1)

In this equation, T labels the Tth (T'= 0,1, 2, ...) copy of
the sequence x,;, namely, x,(0), x,(1), ..., x,(T), ...The
key fT{x,;}] which determines the transformed data (x}) is
a function of x,; and its neighbouring matrix elements.
For a square matrix, if only nearest neighbours and x,;
itself are considered there are usually nine such matrix
elements. It is obvious that if only these nine elements are
utilised in the construction of the function, the total
number of distinct functions is k to the power M, where
M is k to the power 9; this is an astronomical number
even when k = 2. (The existence of the enormous number
of functions follows directly from the definition of
functions.® However, for the completeness of this paper
and to let the readers gain a perception of the abundance
of the number of distinct functions we have included an
appendix to discuss this in more detail.)

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 241

¥20Z udy 01 uo 1senb Aq L1 LEE/LY2/S/ze /eI e/|ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq



K.W.YUAND T.L. YU

I 2ncrypt thus I ant
Y (- £ ¥
5Lk =h Qr

L3Z+ 9'C , c4 D
moouw M P h LR

k&L =h n
M H t{(: & "@+

I encrypt thus I amt

Figure 1.

A simple example of fis the totality function, which
involves a sum over the eight nearest neighbours of x;
and x,; itself:

ﬂ{xtj}] =Xyt Xt X i X X
X1t Xy X X e (2)

In practice, a finite sample is described by the matrix (x;,)
with finite values of m and n; we have to use the periodic
boundary conditions

xi+m,j+n = xij' (3)

Equation (1) can be iterated for an arbitrary number of
time steps provided two initial conditions are given:

x40) = by, x,(1) =cy. 4

In the model, b,; can be an arbitrary background (which
of course can also be the message that we want to send)
and c, are the data to be encrypted. One of the most
important properties of equation (1) is that it has time-
reversal invariance; it can be rewritten in the following
form:

X(T—=1) = fllx (T —x,(T+1). )

If two copies of the sequence {x,} are known at two
successive time steps 7 and 7'+ 1, then the initial data c,,
can be recovered upon repeated iterations of equation
5).

We have described
one can easily reduce

the two-dimensional case;
it to a one-dimensional

problem or generalise it to a three-dimensional

one.

3. EXAMPLES

As an illustration of the model, three simple examples are
presented as follows (Figs 1-3). All the printouts are
from an IBM-PC system with colour graphics.

3.1 One-dimensional message with 256 states (k = 256)

Here we consider messages which consist of ASCII
characters. Each x, has totally 256 states as there are 256
generalised ASCII characters; the value of x, is equal to
the ASCII code (0-255) representing the corresponding
character.

Fig. 1 presents an example of such a case. The
background values of x, are set to be zero. The plaintext
is ‘I encrypt thus I am!’. The function key that has been
used is

SJUX3] = 3%, +5x,+Tx,,. (6)

(Note that in general f'is not necessarily linear with {x,}
though we have chosen a linear one; see Appendix.) In
Fig. 1, line 1 is the plaintext; lines 2—6 are the ciphertexts
in sequence. From the seventh line on, the ciphertexts are
obtained by reversing the timing steps (i.e. line 6 becomes
the background and line 5 becomes the data); line 10
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Figure 2.
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Figure 3.

shows the recovered plaintext (the recovered background
is not shown in the figure).

3.2 Two-states picture (k = 2)

Consider an example in which there are only two states,
x; =0, 1 (e.g. two colours of a picture). The data are
contained in an 8 x 8 matrix (c,) in which the matrix
elements along three major diagonals are equal to unity
(first pattern of Fig. 2), all other matrix elements being
zero. The background matrix (b,)) is identically zero and
is not shown in the figure. The key is chosen as the
asymmetric totality function which is a sum over all
nearest neighbouring matrix elements of x,; except x,
f[{xij}] = X1t X o Xy

X Xt X X e (7)

i,j-1"

The results of four iterations are shown in Fig. 2.

3.3. Four-states picture (k = 4)

In this case four colours are considered, i.e. x,;, =0, 1, 2,
3, with each number representing a colour. Again the
asymmetric totality function equation (7) is used. The
results are shown in Fig. 3.

4. DISCUSSION

As can be seen from the above examples, the encryption
described is a very efficient operation; the original

pattern (plaintext) is almost totally ‘diffused’ in a couple
of iterations. Note that the background is arbitrary and
can be considered as information to be transmitted ; one
can transmit two plaintexts at a time. Or if one wants,
one can cut a message into two equal halves, one half of
it being used as the ‘background’ and the other half as
‘data’; upon decryption, one can recover both the
‘background’ and the ‘data’. It is thus obvious that the
ciphertext can always be made just as long as the original
text. For a black-and-white picture, each cell (pixel) can
have two different states, namely, black (0) and white (1).
If the key fI{x,}] is a function of x,; and its eight nearest
neighbours, the total number of distinct functions is
2 A(2°) (approximately equal to 10'%%), which is much
larger than the age of the universe in any physical time
unit; it is impossible to obtain the key by trial-and-error.
If the picture has colours (i.e. each cell has more than two
states), or more neighbours have been considered in the
arguments of f[{x,}], the number of choices of f will be
much larger. Of course, among those distinct functions,
a few of them such as f=0 or f= 1 cannot be used in
practice; also, if f has symmetry about i and j, the
ciphertext may preserve certain symmetric pattern from
the plaintext, or the iteration may have periodic
properties and thus one may avoid using this kind of key.
However, the choices of fare still large enough that none
can guess it correctly. For the case of one-dimensional
messages, each cell may contain one of the 256 generalised
ASCII characters (i.e. 256 states). If x, and its eight
neighbours are utilised in the construction of the key, the
number of distinct functions is 256 A (256 A9). This
number of choices of f'is truly an astronomical number.

Prior to our model, encryption methods such as
Caesar cipher, Vigenere cipher or the Hill cipher are
basically alphabetic substitution or matrix transposition
(for details, please refer to Refs 1-5). In these models one
may obtain the relation between certain characters or the
order of characters of a plaintext and the ciphertext by
symbol frequency analysis or by knowing part of the
text. Once such relations are found, the code may be
broken as the relations apply for other sets of plaintext
and ciphertext. In our model, there is no fixed relation
between such characters (unless one has chosen a very
special key like f[{x,}] = x,,, with a special background).
After the first iteration, the state (or character) at a cell
may not (or may) depend on itself; it may depend on its
nearest neighbour on the right or its second nearest
neighbour on the top or both; or it may depend on a
certain element at the far left end corner or an element at
the centre of the plaintext; or it may depend heavily on
a right-side neighbour and depend slightly on a left-side
neighbour. The exact dependence is governed by our
choice of the function key (of course the actual ciphertext
also depends on the background, which is arbitrary). If
the function key involves more than one matrix element,
after a certain number of iterations, the information at
various positions will be mixed up as a consequence of
diffusion; the information at the centre may diffuse into
the boundary and the information at the boundary may
diffuse to the centre. The state at each cell has a little bit
of information of each of the other cells of the original
plaintext. This is in analogue with the case where we shed
many coloured water droplets on to a bathtub full of
water; the coloured droplets will diffuse out. After a
while they will be mixed up and by just looking at the
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colour of the final mixture no one can tell what the
original distribution of the coloured droplets was. In this
analogy, the process of diffusion is governed by physical
laws.

One may ask, if the colour of the original picture at a
region has diffused into another region and got mixed up
there, how can we go ‘backward’? Is there any guarantee
that the original picture can be recovered? The answer is
yes. The diffusion of the colour of the picture is governed
by a second-order equation which has time-reversal
symmetry. If we had used an equation which was not
second-order (for example first-order or third-order),
there would have been no guarantee that the process
could be reversed. In the analogue of coloured water
droplets, if the velocities of all the molecules could be
reversed, the original distribution of the coloured droplets
would be recovered. This can be done by video-taping
the process and playing the tape backward. This result is
well known in the field of physics and is discussed in
almost every textbook of classical mechanics. But it does
not mean that it can be derived easily; this well-known
result is the product of the endeavour of many people in
the nineteenth century.

One way to attack a traditional encryption code is by
guessing the content of the first message. For example,
the first plaintext may consist of ‘PLEASE LOGIN:
USER ID: PASSWORD :’. In this model, even if the first
plaintext is exactly known, the key function cannot be
obtained because of the arbitrary background; if each
plaintext consists of 20 characters (the one-dimensional
case), there are (256) A 20 possible backgrounds which is
also an astronomical number. (Note again that the
receiver does not need to have any knowledge about the
background in order to decrypt the ciphertext.)

Another property of this method is that the decrypting
operation uses a key-function which is identical to that
used in the encryption. In other words, the encrypting
device used by the sender is identical to the decrypting
device used by the destined receiver. Thus one only has
to design one machine which can be used for both
encryption and decryption; this makes the data flow
bidirectional.

In closing, we would like to point out that there should
be an invariant associated with equation (1) as it has
time-reversal symmetry. Despite its existence, it is a
rather formidable task to derive a general form for the
invariant. We have only obtained the solution of the
invariant 1 for the very special case

x(T+1) = Ax(T)—x(T—1), ®)

where A is an arbitrary constant. The solution for the
invariant of equation (8) is

I=[x(T+ )P +[x(T)]*— Ax(T+ 1) x(T). ©)]

5. CONCLUSIONS

We have presented a data encryption model based upon
time reversal transformations in analogy to a mechanical
system whose dynamics is described by second-order (in
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