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Optimal source codes are usually required to have variable length code words. When these code words are transmitted
through a noisy channel, the decoder at the receiving end suffers loss of synchronisation caused by one or more
erroneous received bits. The expected error span between loss and recovery of synchronisation is evaluated as a function

of the channel cross over probability.
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1. INTRODUCTION

Variable length codes such as Huffman codes! are known
to be minimum redundancy codes. By using variable
length coding schemes, relatively fewer digits, on the
average, are required to convey the same amount of
information.? Digital data transfer rates are therefore
increased. An inherent limitation is always associated
with such coding schemes; this is the loss of synchron-
isation® of the decoding circuit due to single or multiple
bit inversions.* Several researchers have investigated the
synthesis of variable length codes having synchronising
code words.>®® However, the effects of a Binary
Symmetric Channel (BSC) on the synchronisation re-
covery process have not been examined. The work
described in this paper evaluates the expected error span
associated with decoding variable length codes trans-
mitted through a BSC. Furthermore, the effects of
crossover transition probability of a BSC on percentage
loss of source characters are also investigated.

Example 1

We illustrate the loss of synchronisation with the
following variable length code used in Ref. 7.

Table 1

Symbol Probability Codeword
A 0.4 00

B 0.2 01

C 0.2 10

D 0.1 110

E 0.1 111

Consider the sequence ABAEBCD corresponding to the
bit stream 0001001110110110. Let us assume that the
3rd bit is inverted. It can be verified that the decoded
sequence is given by ADBDDD. The decoder is out of
synchronisation after the first character and incorrectly
decodes the next 5 characters before regaining synchron-
isation. The average number of original source characters
which are incorrectly decoded is defined as the error
span. Maxted and Robinowitch” have developed a state
space approach for evaluating the error span for a
random single bit inversion. This approach is briefly
described in the next section.

2. ERROR RECOVERY OF VARIABLE
LENGTH CODES

2.1 Error state diagram

According to the approach described in Ref. 7, the
synchronisation recovery process is described in terms of
a finite number of decoder states. To begin with the
decoder is in the INITIAL state in which no loss of
synchronisation has yet occurred. When a codeword is
received in which a single bit chosen at random has been
inverted, the decoder may lose synchronisation, ending
in one of the error states. The error states are defined as
all the valid prefixes of all the codewords.

Obviously these prefixes cannot be codewords in a
uniquely decodable code. The decoder may now go
through several transitions between various error states
before reaching SYNC state. To evaluate the expected
error span, all transition probabilities, from initial state
to any other state and then from any error state to any
other state, are determined. These probabilities are
summarised in a transition probability matrix. A state
diagram is then obtained from this matrix. The gain
along each edge is the probability of the state transition.
Fig. 1 shows such a state diagram shown in Ref. 7 for the
example given earlier. The indeterminate z in Fig. 1
corresponds to one source symbol.

G(z), the gain of the state diagram is the generator
function of the probability distribution of the error span,
Ref. 7. Therefore, the expected error span defined as the
average number of source characters lost due to loss of
synchronisation, is given by:

E,=G'(z) at z=1.
This method of estimating the error span is inefficient in
the sense that the state diagram for a source with a large
alphabet would be complex and calculation of the
transfer function of such a state diagram will be tedious.

2.2 Conditions for synchronisation recovery

The expected error span concept is meaningful if and
only if the decoder can recover synchronisation eventu-
ally, i.e. the probability of being in the SYNC state in k
steps or less should converge to unity as k — oo. Not all
variable length codes will automatically resynchronise
after an initial loss of synchronisation. Here we briefly
discuss the necessary and sufficient conditions for
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recovery, in terms of the properties of the transition
probability matrix T, defined as follows:

tll tl2 . th

tNl IN2 tNN

where ¢, ; is the probability of going from state i to state
J- There are a total of N states, including the initial state
I=1 and the final synch state S=N. From an
examination of Fig. 1, we have

ti.1=0’ i=la2’--,N7 (1)
t;=0, j=12,..,N—1, ©)
=1, 3)

N
Tt,=1, i=12,..,N. @)

Jj=1

Equation (4) states that the sum of the transition
probabilities from any state must be unity. It is possible
that 7,,, may be equal to zero for some values of i, i.e. The
SYNC state cannot be reached directly from state i.
However, re-synchronisation is possible in a statistical
sense as long as the SYNC state can eventually be
reached from any state after a finite number of transitions.
Therefore, a necessary and sufficient condition for
resynchronisation can be stated in the following Lemma.

Lemma 1

Consider the matrix 7" obtained by successive mul-
tiplication with T with itself. If for a finite value of r, T"
contains non-zero entries in the last column, then the
receiver will recover synchronisation, in a statistical
sense.

For the example given in Fig. 1, the smallest value of
r is 1 which implies that the SYNC state can be reached
from any state in one step. We now prove the following
lemma which will be required to show that the numerical
algorithm given later will converge.

Figure 1. Error state diagram for example 1.

Lemma 2

Consider 7} ,, the last element of the first row of T*. If
the matrix T satisfies the conditions stated in Lemma 1,
then

Lt *(1,N) = 1.

k-0
Proof T"=T"7"T"
N
Therefore, Ey=Xt]6y
j=1
N-1
= t’lc~,r\,+ > tllc_—jr t;‘N,
j=1
Since fvoy=1

The second term is strictly non-zero since f] > 0 for all
J> where r is the smallest integer satisfying lemma 1. Thus,

Nxn>07 k>r.

Therefore ¢ , is monotonically increasing with respect
to k.

However, the sum of the elements of the first row (or
any other row) must always be equal to unity according
to equation (4). Therefore, increase of the last element of
the first row, must be at the expense of the other elements
in that row. Since successive values of #{ , must always
be increasing, eventually this must converge to unity, as
k — oo. Furthermore, all the other terms must converge
to zero.

The implication of lemma 2 is that the probability of
reaching sync state after an infinite number of transitions
is unity, provided the conditions stipulated by lemma 1
are satisfied.

2.3 Extended error state diagram

We now present a numerical technique which uses the
extended model of the state diagram. First, we look at a
random single bit inversion and later a similar approach
will be used for multiple bit inversions.

The error state diagram obtained by the transition
probability matrix could be extended into a semi infinite
state diagram. The error state diagram shown in Fig. 1
depicts the transition probabilities after one symbol.
Now, if we wish to calculate the transition probabilities
from one state to another state at the end of many
symbols, we expand the state diagram in the time domain
as shown in Fig. 2. Each row of states corresponds to a
certain time, say the ith symbol time and from each of
these states any of the other states may be reached with
certain probability at the end of (i+ 1)th symbol time. It
is possible that the decoder will switch between different
error states and take a large number of steps to become
synchronised.

From the semi infinite error state diagram it is obvious
that the decoder of the variable length coding scheme can
switch between the initial state / to any one of the n error
states with some transition probability obtained from the
transition probability matrix.

Let P(¢;, m) be the probability of being in error state ¢,
in m steps, i.e. m symbols after loss of synchronisation
and P(S, m) is the probability of reaching the sync state
in exactly m steps. The probabilities in the extended error
state diagram can easily be calculated from the transition
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Figure 2. Segment of a service — infinite state diagram.

matrix. If P(e,, m) is the probability of kth error state in
mth step, it can be calculated from (m—1)th step
probabilities as follows:

P(glc’ 1= P(I—)glc)9

n 5
P(e,,m) = X p(e;,m—1) P(e;~>¢,), m> 1, ©®)
Jj=1

where P(e;—>¢,) is the transition probability from jth
error state to the kth error state, » is the total number of
valid error states of the variable length code.

The probability P(S, k) of reaching the sync state in
exactly k steps can be calculated from the (k — 1)th state
probabilities and their corresponding transition prob-
abilities as follows:

P(S,1)=PUI~>S)=1t, ,,
n (6
P(S,k) = Z p(e, k—1) P(g;~ S), k> 1.
j=1
If the conditions for synchronisation recovery are
satisfied as discussed in the earlier section, then

P(S)= X P(S,i)= Lt t*(1,N) = 1.
i=1 k>0

From a numerical point of view, the probabilities P(S,

k) may be computed up to r steps such that the following

inequality is satisfied

1-X P(S,k)<E E<]1.

k=1

()

In this work E was chosen to be 107°. Any further
decrease in the order of E does not make any noticeable
change in the value of the expected error span Ej, which
can now be expressed as

E, = 3 iP(S,i)

i=1

(©)

E is the number of characters, on the average, which will
be ‘lost’ and replaced by other erroneous characters. In
general the number of these erroneous characters will not
be the same as the number of the lost characters.

The numerical method described above for calculating
the expected error span has been tested for various
variable length codes including variable length codes for
the 26-letter English alphabet. The results are in close
agreement with those obtained in Ref. 7 using the

transfer function approach. This numerical approach
will now be used to investigate the error recovery process
when the codewords are transmitted through a BSC.

3. EFFECT OF A BSC ON ERROR
RECOVERY

Multiple bit inversions commonly occur during data
transmission through a noisy channel. In Section 2 we
have examined the decoder’s error recovery behaviour
due to single bit inversion. The analysis of error recovery
becomes more complicated when multiple bit inversions
occur.

In the case of single bit inversion it has been observed
that the decoder remains out of synchronisation and
keeps producing invalid characters until resynchronisa-
tion is achieved. When data is transmitted through a
noisy channel, a bit error will not necessarily initiate loss
of synchronisation since the decoder may already be out
of synchronisation. However, if an erroneous bit is
encountered while the decoder is trying to regain
synchronisation, the error recovery process will be
affected. Error recovery may be accelerated or retarded
depending on the location of bit inversions, the state of
the decoder etc. In a BSC, every bit has a non-zero
probability of being inverted. Therefore, if variable
length code words are transmitted through a BSC, the
loss of synchronisation at the receiver due to inversion of
multiple bits will affect the error recovery process.

In this section, we extend the techniques of the
previous section to incorporate the effect of multiple
errors. The probabilities of such error patterns may be
computed from the properties of the BSC and these
values would be used to modify the transition prob-
abilities of the extended state diagram of the error
recovery process. The expected error span during any
cycle of non-synchronisation is obtained as a function of
p, the bit error probability of the BSC.

Finally, we derive an expression for calculating the
percentage of source characters (symbols) lost (and
replaced by erroneous characters) due to incorrect
decoding.

We shall be using the following notations in the
following discussions.

LOS = Loss of synchronisation.

ROS = Recovery of synchronisation.

E¢ = Expected error span between LOS and ROS.
p = Bit error probability of the BSC.
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3.1 Initial transition probabilities

Assume that at some point in the decoding process, an
incorrect bit has caused loss of synchronisation. The
decoder remains in LOS mode until the last bit of the
decoded bit coincides with the last bit of the correct
sequence. During the LOS cycle there may be additional
bits in error but there is no new LOS cycle since the
decoder is already in that mode. Let us assume we are in
the initial state, i.e. there has been no inversion of any bit
so far. Consider the first error bit in a certain code word
which causes LOS. Obviously the decoder will now go to
some error state. However, given that a corrupted
received word has caused LOS, there may be one or more
errors in that received word. Depending on the exact
probabilities of these multiple error patterns, the tran-
sition probabilities of the state diagram are now modified
in the following way.

Let X, be the mth variable length code word generated
by a transmitting system. Let L, be its length and P, be
its a-priori probability, Let ¢, be the probability of a
specific k error pattern, given that a code word has been
received incorrectly and it is given by:

pa—p)-*
=t k=1,2,..,L,.
¢mk 1 _(1 —p)Lm ’ 9 < Lm (9)
The number of k error patterns in L, is determined by
the binomial co-efficient given by:

s —(En)___ La!
=\ k)T (@, —k)k

An algorithm is presented here which generates the
initial state transition table for the multiple bit inversion
case.

Algorithm 1

(1) Choose X,,,m=1,2,..,r.

(2) Generate d,,, bit error pattern for k =1,2,..,L,,.
(3) Determine probabilities ¢,,,p,, for the bit pattern
generated in step (1).

(4) Decode the bit pattern generated in step (2) and
determine the next state.

(5) Repeat (1)~(4) for next X,,.

(6) End of algorithm.

The decoded bit pattern obtained from step (4) would
either end in the Sync state after the decoder makes one
incorrect decision or in one of the error states. An initial
entry table for multiple bit inversion case is now
generated.

The initial entry table is generated with the assumption
that a codeword has been received incorrectly due to
single or multiple bit errors. Subsequently there may be
additional errors until ROS.

3.2 State transition probabilities

The state transitions and the corresponding probabilities,
from any error state to any other error state, including
itself and the sync state can be determined by the
following algorithm.

Algorithm 2

(1) Start with the ith error state.
(2) Append the code word X,, with length L,,.
(3) Consider all possible J,,, error patterns of length k,
k=0,1,..,L,.

Decode the resulting sequence. Calculate the prob-
ability of each event and the next state.
(4) If all code words are exhausted go to 5, otherwise
repeat 2 and 3 for the next code word.
(5) If all error states are exhausted go to 6, otherwise,
repeat step 1-4.
(6) End of algorithm.

Example 2

This example illustrates the application of Algorithms 1
and 2. The variable length code used in this example is
given in Example 1.

The valid error states for this code are 0, 1 and 11.
Application of algorithms 1 and 2 yield the following
probability transition matrix T (Table 2) for p = 0.1.

3.3 Expected error span for multiple bit inversions

Once the transition probability matrix for the given
variable length codes has been generated, given that LOS
has been initiated, the expected error span between LOS
and ROS can be determined. The entries in the transition
probability matrix will of course vary with variation in p.
In other words as the BSC characteristics change the
error span between LOS and ROS will also vary.

To determine the expected error span between LOS
and ROS equations 5-8 may again be used to calculate
P(e,,m) P(S,m) and Eg. The only difference is that the
transition probabilities P(/—¢;) and" P(¢;—>¢,) are ob-
tained from Algorithms 1 and 2. The error span for
various codes was evaluated using this numerical
approach for different values of p. The results are shown
in Figs (3)—(5). Fig. 3 shows the error span for the code
given in example 1, while Fig. 4 shows the results when
the same source is encoded differently, e.g. A =01, B =
00, C=11, D=100 and E = 101. Fig. 5 shows the
expected error span of a variable length Huffman code
for the 26-letter English alphabet, modelled as a zero-
memory source with source probabilities given in Ref. 7.

A close inspection of Figs 3 and 4 reveals that the

Table 2
I (Initial) 0 1 11 S (Synch)
I (Initial) 0 0.070110 0.070111 0.210526 0.649252
0 0 0.560000 0.240000 0.090000 0.110000
T=1 0 0.450000 0.290000 0.009000 0.251000
11 0 0.560000 0.240000 0.090000 0.110000
S (Synch) 0 0 0 0 1
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Figure 3. Expected error span vs. P.
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Figure 4. Expected error span vs. P.

expected error span is not a monotonically increasing or
decreasing function of p. Each curve depends on the
specific code and no general conclusions can be made
about the exact relationship between Eg and p of the
BSC.

4. EFFECT OF BSC ON PERCENTAGE
LOSS OF CHARACTERS

Let us consider the transmission of variable length code
words and the first occurrence of a received word being
corrupted. The decoder loses synchronisation and begins
producing erroneous characters. This is continued until
the last bit of a decoded sequence coincides with the last
bit of the correct code sequence. The situation between
LOS and ROS is depicted in Fig. 6, which shows that on
the average there are E characters within an error span.

The average number of errors embedded within an
error span is calculated by considering a long span of
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Figure 5. Expected error span vs. P.
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Figure 6. Error span.

received bits of length N. We define additional parameters
in the following way:

N, = Total number of errors within a span of N bits.
N, = Total number of code words in this span.
N, = Total number of errors which initiate LOS.

N, = Total number of original source characters which
are incorrectly decoded.

A, = Average length of a given variable length code.
}7 =

number of incorrectly decoded source characters

100.
Total number of source characters x 100
From the law of large numbers we have

N, = N”, (10)

In Fig. 6 it can be seen that LOS is initiated due to the
first erroneous bit of the character X;. During the span
between LOS and ROS there may be additional bit
inversions, but they do not initiate a new cycle of LOS
and ROS. The total number of errors in each error span
can be calculated as follows.

The total number of errors within the span of length
E.—1 (i.e. excluding the first erroneous character) is
given by the following equation.

N;=(Es“1)Avp~ (11)
Therefore, the total number of errors in Ej is given by
N,=(Es—1)A,p+o. (12)

Where, o is the average number of errors in the corrupted
code word which has initiated LOS. This can be evaluated
in the following way.
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Let X, X,, .., X, be the variable length codewords.
Let o denote the conditional probability of k errors in
the mth character X, (conditional on X, being incorrectly
received). By using Bayes’ theorem the conditional
probability of k errors in X, given that error has
occurred is given by:

P(k errors in X))

oy = P(k errors in X,,/error) = Plerrorin X)

Therefore,
L\ ., .
m 1_ L,,—k
. ( s )p (1-p)
T T——p

where (I;c’") is the number of different ways of making

(13)

k errors in a length of L.
The average number of errors in X, given that an error
has occurred is therefore given by

"m
Bn = kaf. (14)
k=1
The average number of errors in the first corrupted
codeword can be evaluated by calculating the weighted
average of ,
o= % P(X,)p,. (15)

m=1

Now by simple counting arguments and using equations
(10)-(15), Ref. 4, we may establish the following

equations:
Ny=— P ___ (16)
o+(Es—1)A, P
NpE
N =——_*27°5 17
L o+(Es—1)A,p an
and  n=ey100=—PEsA  q00 (19

N, o+(Es—1)A,p

Figure (7) shows # vs. p for the code given in example
1. As the channel gets progressively worse with increase
of p, the percentage of lost characters increases as would
be expected.

5. CONCLUSION

Various researchers® ® have contributed to the synthesis
of variable length codes having inherent error recovery
properties. The problems associated with decoding such
variable length codes after they have been transmitted
over a BSC have received little attention. In this paper we
have discussed the error recovery behaviour of the
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