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Typical Distributed Multimedia Information Systems are made up of clusters of workstations connected by local area
networks. Such systems allow users to exchange information in the form of ‘documents’ containing text, graphics and
voice; some systems support both store-and-forward and real-time material. Here we consider various transport
protocol requirements and conclude that some essential features are not available with existing protocols.

The main objective of the work described here is to investigate the use of transport protocols which support the
notion of multicast logical connectivity, both within a single network and in an internet environment. In this paper we
show that protocols with multicasting capabilities can yield a substantial performance improvement over protocols which
support only unicast logical connectivity. We propose ways in which multicasting can be exploited to suit our

application.

A prototype implementation of a multicast communication facility based on these requirements is presented, and an
application model is used to measure the transport protocol performance under various possible system configurations
and loads. Results of performance measurements are presented, based on experiments carried out on an Ethernet-based

internet.
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1. INTRODUCTION

Increased understanding of the design of distributed
systems has resulted in very complex applications being
developed, based on networked computing environ-
ments. One such application which is attracting in-
creasing interest is the design of Distributed Multimedia
Information Systems (DMIS).?-17 Typically, a DMIS is
made up of clusters of workstations connected by high-
speed Local Area Networks (LANS). Such systems allow
users to exchange information in the form of documents
containing text, graphics and voice information. Re-
cently, there have been proposals for such systems
supporting information interchange in both a store-and-
forward (e.g. mail, document processing) and a real-time
(e.g. conferencing) manner.”® A DMIS can provide
highly effective interpersonal communications by sup-
porting multiple information types. Effective information
transfer may be provided in a DMIS by encompassing
the store-and-forward mode currently provided by the
Computer-Based Message Systems (CBMS)!® and the
real-time mode used for computer-based conferenc-
ing'zs,z

2. DMIS ARCHITECTURES

A DMIS is capable of providing users with store-and-
forward and real-time multimedia information
interchange using a homogeneous interface. The in-
formation manipulated is in the form of a multimedia
document, with the DMIS providing a smooth transition
from one mode of communication to the other. Thus the
DMIS supports effective information representation by
allowing the creation and manipulation of multimedia
documents. They also incorporate the functions of a mail
system,”” a document processing system'® and a
computer-based conferencing system. In this paper we
concentrate on the information-interchange aspects of
such systems.

2.1 DMIS system configuration

In general, DMIS are designed to operate in a distributed
computing environment consisting of loosely coupled
autonomous workstations, equipped with high-resolu-
tion raster displays and advanced I/O devices (e.g.
voice I/0). They are connected by high-speed LANS,
with gateways (see Fig. 1).

In a DMIS, many different document creation
mechanisms may be used, possibly by different users. A
document can be created as a mail message or as a
conference workspace (shared object), or even for both
purposes. For example, after a joint editing session using
conference-mode communication, a copy of the final
document is ‘mailed’ to several individual users.

A DMIS can support real-time conferencing by
providing either centralised or decentralised control®®. A
centralised conferencing architecture (see Fig. 2) consists
of a conference controller, which manages all the shared
objects in a conference*. During conferencing, par-
ticipants are allowed to communicate only with the
conference controller. In turn, the controller can only
talk to one of them at a time. This is often done by the
controller sending a token to one of the participants.
The participant who receives the token is said to have the
conference floor and hence allowed to communicate with
the controller. Any changes to the shared objects as a
result of the communication are distributed to all the
participants by the controller.

Alternatively, a decentralised conferencing architec-
ture (see Fig. 3) may be used; this allows each participant
to communicate directly with the rest of the participants.
Such arrangements are in practice more difficult to
achieve, as messages may arrive in a different order at
different participants, creating a time-stamping problem.
A decentralised conferencing arrangement also requires

* For performance reasons, some or all of these shared objects may
be replicated at the rest of the workstations.
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Figure 1. A possible DMIS hardware configuration.
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Figure 3. Conferencing information flow within a decentralised
DMIS.

replication of all the shared objects at all the participants
in order to function effectively.

The store-and-forward transmission model used by a
DMIS is similar to that used by text-based mail systems.?°
This model consists essentially of two components (see
Fig. 4). The first component is called the User Agent
(UA); its function is to interact with the human user and
provide the necessary mechanisms to describe the content
of the final message. The second component is called the
Mail Transfer Agent (MTA), which delivers the message
prepared by the UA. The MTA achieves this by
interpreting the mail address and delivering it to the
appropriate UA or another MTA.

2.2 Application protocols

Various proprietary and international protocol standards
are currently available for building a DMIS. These
protocols can be divided into two groups: content
protocols and transfer protocols. The content protocols
include a set of standard communication formats defined
for each of the data types contained in the document.
For example, a graphics protocol can be used to describe
all the graphical components in the document during
conference data transmission. To permit communication
among heterogeneous systems, some translation between
the standard communication format and the local
graphics system format may be required. There are a
number of actual and proposed standards for graphics
information exchange®! and voice data fomat®® suitable
for conferencing use.

The content protocols group also includes a document-
interchange protocol, which describes both the content
and layout structures in a standard format. This ensures
that both the content and layout of the document are
preserved as the document is transferred from one
machine to another. The document-interchange protocol
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Figure 4. Information flow in a DMIS with store-and-forward
transmission.

is important, as it ensures that a document can be
processed by any system. The international standard
multimedia document interchange protocol is called the
Officc Document Architecture* (ODA)."®* ODA is
expected to be further developed to include more data
types (e.g. voice, digitised image) in the near future.

The DMIS transfer protocols can be divided into two
subgroups: protocols for store-and-forward transmission
and for real-time conferencing. The transfer protocol for
store-and-forward transmission contains primitives for
delivering messages to the users and communicating with
its peers on other machines. Since the exact content of
the data is of no concern to the transfer protocol, it is
advantageous that current-standard text-based mail-
transfer protocol is used. One such possibility is the
CCITT X.400 series of message handling transfer
protocols, which is the widely accepted international
standard for computer message systems.

The real-time conferencing transfer protocol, on the
other hand, is less well defined. This is partly because the
design issues involved are more complex. Important
primitives for real-time conference transfer protocol are
those which provide the conference management
functions, and functions for manipulating the shared
objects. Furthermore, all these primitives are also delay-
time critical. We expect that much more research is
required in this area before an acceptable standard can
emerge.

3. COMMUNICATION SUPPORT

The transfer protocols described in the last section rely
on lower-level communication facilities for organising
interaction among their peer entities. This gives rise to
the question of the ‘quality of service’ required of these
communication facilities to support a DMIS. To in-
vestigate this further, we must first identify categories of
DMIS data traffic.

3.1 Data traffic in DMIS

Control commands. Various control commands are used
for conference management; these include floor control,
conference initialisation and termination, and parameter
negotiation. There are also control commands being
exchanged for the submission and delivery of documents
in document processing and mail operations. This

* The actual ODA definitions also cover each specific content
architecture (e.g. character) and the interchange format.

category has low-data traffic and is not particularly time-
critical. However, highly reliable and reasonably fast
transmission is required.

Real-time interactions. This category includes voice
data and interactive graphical information, such as
mouse and cursor movement. In particular, graphical
update information which is associated with speech
delivery comes into this category. The amount of traffic
is expected to be relatively low, but fast propagation to
all stations is critical. However, it can tolerate trans-
mission errors and losses, provided they are corrected
rapidly by subsequent transmissions.

Non-real-time interactions. Experience with conference
systems? has shown that it is not necessary to have
instantaneous replication of certain user actions, such as
page scrolling and short graphical updates not associated
with voice information. Hence, this category of low-data
traffic might use a similar transmission mechanism to the
control commands.

Conference bulk data transfers. Bulk data transfers
typically occur when new users join in a conference
session. This data traffic should be highly reliable, and
should be completed within a reasonable time limit.

Store-and-forward bulk data transfer. This type of bulk
data transfer occurs during the submission, delivery and
relaying of multimedia documents in main and document
processing systems. Beside the contents of the documents,
the data to be transmitted include information on the
structure of the mail documents, control information for
processable documents, presentation-control infor-
mation and possible timing relationships between
different media. Reliable transmission is the main
requirement for this category of data.

3.2 Communication model

A typical communication model for a DMIS which
supports centralised real-time conferencing is illustrated
in Fig. 5. This shows the relationships between the
DMIS, the host operating system and the underlying
data communication support. Fig. S assumes that the
conference controller also acts as an MTA for data using

Operating system
communication
——protocol support

Operating system
communication
protocol support  ——4-»

Main
User loop
h * DMIS controller
Conference
- t agent
. Communication Mail,
manager document
4 it
<) gl =7

Communication
manager

User
— O

DMIS workstations

[} Communication (o}

Application layer layer layer layer Application layer

Information flow

Figure 5. Centralised DMIS communication model.
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the store-and-forward transmission mode. This
configuration makes the controller a data distributor to
all the workstations after receiving inputs from the same
set of workstations. The communication model for
decentralised real-time conferencing will be similar to
Fig. 5, with the exception that communication will be
direct between workstations and not routed via a
controller.

From now on, we will concentrate mainly on the
structure of the communication system. The highest
layer of protocol we wish to consider here is the trans-
port protocol, which provides a universal data transport
service between peer processes.® One of the most notable
transport protocols is the DoD Internet Transmission
Control Protocol (TCP).?¢ In general, transport protocols
can be classified into two categories, depending on the
way in which data is transported. The first of these
provides a connection-oriented service, while the second
category is the connectionless service. Currently, both
these services only support unicast logical connectivity;
this provides the ability of a host to send a packet to only
one other host in the network.

With the prominence of broadcast networks (par-
ticularly for LANs), and the ability to provide some
broadcast support even in point-to-point networks, some
connectionless transport services also offer broadcast
logical connectivity. This permits a host to send a packet
to all the other hosts in the network, and can be extended
to include hosts in an internetwork environment.*
However, here we maintain that transport protocols
supporting both unicast and broadcast communications
are not adequate in supporting the functions of a DMIS.

3.3 Unicast communication

Unicast transport service can introduce an unacceptable
transmission delay when used for information trans-
mission among the workstations in a DMIS. In the case
of a centralised DMIS, as shown in Fig. 5, whenever any
input (such as new mouse coordinates) is given to the
controller, it sends the result (e.g. a new cursor position)
to each workstation. If a unicast transmission scheme is
used by the controller, multiple copies of the same data
will have to be sent, one to each workstation. Because of
the finite throughput available at the sending device, the
delay could reach an unacceptable level with a large
number of workstations.

Furthermore, transmitting multiple copies of the same
data will increase the traffic in the network, hence
introducing greater end-to-end delays. Thus, it is expected
that the performance of a DMIS will degrade as the
number of workstations increases. The long end-to-end
delay will also restrict the ability of the DMIS to support
media, such as voice and video, which are very time-
critical.

3.4 Broadcast communication

Most current transport protocols also support the notion
of logical broadcast connectivity over a wide range of
physical networks. Various internet broadcasting
mechanisms have also been developed over the years and
are supported by various transport protocols.3®
Clearly, fewer copies of the same message will be
generated in a DMIS which uses broadcast techniques

for information interchange. This overcomes the high
delay problem of the unicast case. However, a simple
broadcast transmission will not be able to meet some of
the DMIS requirements.

Broadcast mechanisms are rather inelegant ways of
implementing distributed applications. A broadcast
packet will be received and processed by all hosts on the
network, thus imposing unnecessary work on all hosts.
For these reasons, broadcast transmission should only be
used relatively infrequently. Unfortunately, a DMIS will
require rather frequent broadcast transmissions.

Unwanted broadcast packets processed by hosts also
have the potential to cause security and other (e.g.
oscillation) problems, especially when internet broadcast
is involved.

4. TRANSPORT PROTOCOL
REQUIREMENTS

There is yet another network addressing mode called
multicast logical connectivity ; this means that a host can
send a packet to a group of hosts in the network. Hence,
in our application the controller can distribute the data
to the other workstations simply by using one single copy
addressed to the group. This not only eliminates the
problem of transmitting multiple copies of the same
data, but also allows a subset of workstations to be
grouped together under a single multicast identity.
Multicast communication has been addressed at the data
link level by networks such as the Ethernet,!! and at the
transport level by the Internet Datagram Protocol (IDP)
in Xerox Network Systems (XNS).?2 In general, however,
such capability remains largely unexploited. In the rest of
this section we explain the relevance of multicast
transport service to DMIS operation. Other important
requirements of the DMIS transport protocol are also
discussed.

Still other transport protocol design issues, such as
error-reporting mechanisms and security,® should also
be taken into consideration; however, they are not
discussed here.

4.1 Message service interface

Multicast message transmissions among workstations in
a DMIS are one-to-group unidirectional transactions. In
the case of a centralised DMIS, the output of the
controller is distributed to all the other workstations
after receiving an input from one of the workstations.
In the decentralised case, one-to-group multicast is
performed between any one of the DMIS workstations
and the remainder.

We envisage the provision of a process group-send
primitive which provides multicast transmission. Also, a
process group-receive primitive is required, which
receives data from a particular multicast group. Both
primitives should also provide efficient buffering of
DMIS data from small single-packet transfers, such as
voice data and small updates, to bulky multi-packet data
transfers.

When using the conferencing mode, a conference
group is normally initiated with a create-group group
management operation* by the conference originator.

* Actual process group management is expected to be done at the

session level. However, the multicast transport protocol should provide
adequate end-to-end addressing to support these functions.
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Other workstations can then issue a join-group operation
to join in the conference. Any workstation can also leave
the conference group by issuing a leave-group operation.
A conference group can also be destroyed explicitly by
issuing a destroy-group operation by the appropriate
workstation, subject to higher-level control.

In the store-and-forward mode, when a document is to
be transmitted to various workstations a list of address
strings is normally supplied. The DMIS should use this
to create a mail-group, which has the intended recipients
as the group members. Each group member is then
invited to receive the document (or informed of its
existence) by the document distribution agent issuing a
Jjoin-group operation. This type of group is temporary,
and is destroyed once the data transfer has been
completed.

Each host should be allowed to join in more than one
communicating group. Such a situation arises when a
user decides to join in more than one DMIS (perhaps by
opening up separate windows on the workstation screen),
or when more than one user is sharing the same host.
However, we restrict the communication so that only
hosts belonging to the same DMIS group are able to
communicate with one another.

4.2 Data reliability, delay and throughput

As discussed in Section 3.1, reliable data transmission
and low elapsed time are the two main requirements for
several categories of DMIS data. However, not all
categories need to be transferred reliably and fast. For
example, mail data can tolerate fairly large delays, but
requires highly reliable transmission. Conversely, voice
data is time-critical but any lost, or ‘old’, data is
meaningless and should not be retransmitted. Thus our
group communication primitives should be able to specify
the Quality of Service (QOS) required.

In general, DMIS data objects can vary from a few
bytes (e.g. mouse coordinate data) to a few megabytes
(e.g. entire multimedia documents). The transport pro-
tocol should be able to sustain a high data throughput
for both small and large quantities of data. When
transporting very large data objects, the provision of
mechanisms to avoid data copying from process level to
protocol level and vice versa is important.

The communication model of a DMIS (see Fig. 5)
shows that the main function loop is interacting with the
user, interpreting commands and supporting the user
interface. Thus communication between the DMIS
workstations is carried out asynchronously. It is the
responsibility of the multicast transport- (or session-)
level protocol to notify the associated user processes
whenever input data is pending. Notification can be
performed, for example, by sending software signals to
the processes concerned.

Efficient support for conventional unicast communi-
cations is also an important requirement of a DMIS
transport protocol. Unicast transmissions are used
between individual workstations and the controller in a
centralised DMIS. Unicast transmission is also used in a
decentralised DMIS to allow work-stations to transmit
specific data such as reporting error conditions. The
transport protocol’s support of unicast or ‘one-member-
only’ group transmissions should incur only a minimum
overhead due to the existence of the multicast facilities.

4.3 Network-level data delivery

In essence, the requirements of the network data-delivery
mechanisms are simply to support the transport protocol
specification. For example, the network protocol should
be able to support host-level multicast facilities. It should
also provide internet address-binding facilities to support
dynamic group membership, allowing a host to become
a member of different DMIS groups simultaneously. The
network-level data-delivery service should also support
multicast service implementation on a single network as
well as over multiple networks interconnected by
gateways.

5. RELATIONSHIP TO OTHER WORK

Besides apphcatlons in DMIS, multicast communication O
can also be useful in several other areas. This mcludesg
distributed replicated databases/file-servers,'* parallel 5
computation'® and even distributed games®. In this2 =
section we consider some of these protocols and explain E:h
why none of them is suitable for a DMIS. g

Cheriton” has proposed the Versatile Message Trans- =
action Protocol (VMTP), VMTP is primarily designed toﬁ
be the transport protocol of distributed operating system & m
V.® VMTP supports the communications between many £ &
instantiations of the same V-system kernel code, one per 5
participating machine, using message-based transaction- &
oriented communications. VM TP also supports multicast S
communication, allowing a process to communicate with 8
a group of processes using a unique entity identifier, 2 , S
regardless of the exact location of these processes. VMTP §
has also been proposed to support other forms of El
message communication (e.g. unreliable multicast £ )
datagram) under non-distributed operating systems.?*

However, we consider the structure of VM TP does not &
provide suitable support for DMIS. The main function Q
of VMTP is to support transaction-oriented request-
reply communication. However, our application &
requirements do not fit into the ‘invoke and block’,
‘return and continue’ sequence of the Remote Procedure
Cali (RPC) paradigm.

As a variant of the basic message-transaction
operations, VMTP does support multicast datagram
transmission with optional reliability control. However,
no asynchronous communication facilities are provided.
Current implementations of VMTP?* also do not include
the necessary mechanisms for group creation and deletion
at the process level.

VMTP relies on the network-level multicast support
for delivery of multicast packets.® As the transport
protocol for the V distributed operating system, VMTP
does not at present create temporary host groups, but
relies on one or more permanent host groups. Creations
of temporary host groups, however, are essential for
protocols supporting the operation of a DMIS.

VMTP is designed to support a wide range of
communication mechanisms including datagram,
connection-oriented and transaction-oriented trans-
missions. This introduces far more complexity than is
required for our application.

Crowcroft'? proposed a multicast transport protocol
which supports transaction-oriented, N-reliable multicast
with arbitrary message size. The design is primarily
intended to support replicated procedure calls usually
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found in a replicated, reliable file-server system. Much
emphasis has been put on supporting a wide range of
reliability semantics during transactions; this ranges
from I-reliable to all-reliable, with a user option to
specify an explicit list of receivers from which replies
must be received. However, Crowcroft’s proposal does
not address the support of a real-time datagram service
required by a DMIS.

Deering® proposed and implemented a host-group
model which supports network-level multicast facilities.
This model is implemented as an extension to existing
network and data-link level protocols.'* However, it
does not address the issues of transport-level multicast,
but only provides a platform to support such an
implementation.

In addition, there are a number of more specific
experimental implementations of multicast extensions
under Berkeley UNIX*.'*21 These extensions are
implemented in user-level processes (i.e. in user space),
rather than being part of the operating system kernel.
However, further work is needed to improve the
performance and handling of bulk data in these
implementations.

6. MULTICAST COMMUNICATION

As a ‘proof of concept’ prototype, a layer of software
which supports the transport protocol requirements
specified in Section 4.1 has been designed. In this section,
we briefly describe the implementation of this software as
user-level code under the SunOS+ version of the UNIX
operating system. In Section 7 we present the results of
performance evaluations of this software together with
evaluations of the existing unicast transport protocols.
This prototype implementation can also be regarded as a
‘simulation’ of a full implementation, which is considered
to be adequate for estimating the performance.

The multicast software is implemented on top of the
DoD Internet User Datagram Protocol (UDP) available
with the UNIX operating system. UDP provides a
service for application programs to send messages using
connectionless unreliable datagrams with minimum
protocol overheads. Data I/O between the multicast
software and UDP service is achieved through the
creation of ‘UNIX domain’ sockets, using the socket
abstraction supported by the operating system. Multicast
data are delivered between the multicast software
modules on different hosts using the UDP broadcast
mechanism.

6.1 Process group management

The multicast software supports one or more processes
on one host, which can belong to one or more multicast
groups. If necessary, a process can also be the member
of more than one group. Each multicast group is
identified by a 64-bit unique group identifier generated
by concatenating the process’s host identifier, process
identifier and the current system time.

To support management functions within the process
group, such as allowing more than one process on a
single host, a local membership table is kept. Each

* UNIX is a registered trademark of AT&T.
T SunOS is a trademark of Sun Microsystems, Inc.

membership entry includes the process identifier and its
corresponding multicast group identifier. Data are
distributed to each group member via UNIX domain
sockets created for each of the local members. Group
management operations supported by the multicast
software include multicast-group creation, joining a
group, leaving a group and removal of a group
association. For example, a process can create a group by
using the create operation, which takes the form:

NewGroupId=create();

NewGroupId is the unique multicast group identifier
returned by the create operation. It is to be passed as
anargument to join and 1eave operations by processes
invoking the operations. Finally, a multicast group can
be destroyed by the creator of the group using the
destroy function.

6.2 Data transmission

The multicast software supports both unicast and
multicast data transmissions. Data transmission is carried
out with a multicast send operation which takes the
form:

ReturnCode=send(id, datapointer);

Where id is a multicast identifier. If, however, id is a
unicast identifier, the data pointed by datapointer*
will be transmitted via the usual UDP mechanisms.

To support the asynchronous communication required
by a DMIS, software interrupt signals are generated and
sent to each group member whenever input data are
available. These signals can then be trapped by the
receiving process to exit temporarily its main control
loop and process the input data. Interrupt signals are
generated for both unicast and multicast data, and the
data are received with the receive primitive which takes
the form:

ReturnCode=receive(id, datapointer);

Fig. 6 shows the format of a multicast packet used by
the multicast software. As far as the user processes are
concerned, the multicast packet appears to have a very
large data field. The implementation uses scatter—gather
arrays to allow the software to gather output data from,
and scatter input data to, a specified list of non-
contiguous areas of memory. This avoids data copying
overheads. Within the multicast software, the data are
divided into UDP packets with 1024-bytet data fields for
transmission over the network.

6.3 Data reliability

Reliable data transmission issues in our prototype
implementation are tackled based upon the assumption
that a very low error rate is provided by the underlying
communication hardware. We further assume that packet
loss is mainly due to the receiver being overrun by the
transmitter, and that there are no packet duplication or
sequencing problems. These assumptions are made with
regard to the intended DMIS operating environmens;

* A pointer to a scatter-gather array.

t For buffering reasons, 1024 bytes is the optimum data size for
Berkeley UNIX 4.2 BSD. The highest throughput is thus expected.®
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Multicast identifier flag

Lower 32 bits of multicast ID

Higher 32 bits of multicast ID Packet header (24 bytes)

(not used for unicast transmission)

Source host address

Source host port MoreData

Padding

User data

Figure 6. A multicast transport protocol packet.

we believe they are reasonable for a prototype im-
plementation, although more stringent requirements
might be appropriate for a full-scale system.

A simple ‘stop and wait’ flow control mechanism
has been implemented in the multicast software. When
transmitting multiple-packet data, an acknowledgement
from the receiver must be received by the transmitter
before the next packet is sent. Each receiver will generate
the acknowledgement packet if the MoreData field (see
Fig. 6) of the received packet header is set. The MoreData
field is set by the transmitter whenever multipacket data
are transmitted. Acknowledgements are sent by the
receivers using the unicast mechanism, using the in-
formation in the ‘Source Host’ fields in the packet
header. An acknowledgement packet contains a zero-
length data field.

Usually, multiple acknowledgements are generated by
the receivers of a multicast message. In order to ensure
that the intended receivers are ready to accept the next
data packet, the transmitter multicast module makes
sure that all the acknowledgements have arrived before
the next data packet is sent.*

7. THE EXPERIMENT

Formal analyses of multicast communications have been
presented elsewhere.'®?2:1* In this section we present
experimental results obtained with a DMIS application
model. Our experiment involved the measurements of
interprocess communication (IPC) delay as a result of
frequent interchange of multimedia information within a
DMIS. The IPC delay is defined as the total time elapsed
from the moment a message is transmitted from a send
process buffer to when that same message arrives at the
receiving process buffer.

The aim of this experiment is to compare the IPC
delay obtained using a unicast communication strategy
and those obtained using the ‘proof-of-concept’ proto-
type multicast implementation described in the pre-
vious section.

7.1 Experimental model and methods

All experiments were carried out on UNIX-based Sun
workstations connected by 10 Mbit/s Ethernet LANs,!

* With a large group, this can increase the packet processing
overheads significantly. Alternative schemes!* are being examined.

which supported the TCP/IP protocol suite. A com-
munication model consisting of a message exchange
client/server pair was designed to simulate some of the
possible communication functions required by a DMIS.
TheUNIX ‘gettimeofday (2)° systemcallwasusedto
measure the elapsed time. It was assumed that the
precision of this time source was adequate to allow
measurements to the nearest millisecond to be made.
Unfortunately, the clocks at the transmitting and
receiving hosts had very poor absolute accuracy, and
were not synchronised. To overcome this, the same
message was ‘echoed’ by the receiving host to the
sending host, using the same protocols, during the
experimental measurements. With such an arrangement,
the elapsed time was taken to be half the total time
measured from when a sending process sent a message
until the same message was received back again.

In order to achieve a controllable environment, the
simulations involved only two selected machines at any
one time and, for inter-network experiments, only a
‘two-Ethernet’ (i.e. one-gateway) system was used. For
measurements involving two networks, a user process
acting as a ‘broadcast agent’ was run at the host acting
as a gateway. The task of this agent was to receive any
data from the multicast software (transmitted using a
low-level broadcast mechanism) from one network and
broadcast the same data on to the other network. The
code of the agent was deliberately kept as simple as
possible to avoid any unnecessary overheads.

Experiments were carried out with different
combinations of data sizes and transport protocols
under different network configurations. Three ‘single-
packet’ data sizes of 10, 200 and 1000 bytes were chosen
to represent typical small data transfer such as might be
used for voice, mouse coordinates and protocol control
data. Bulk data of 100 kilobytes and 300 kilobytes were
used as representative of large multimedia documents
exchanged within a DMIS.

During our experiments, it was observed that our
model is highly sensitive to the presence of other processes
and to other network traffic. To ensure good repeat-
ability, all measurements were taken with the load on the
machines involved kept to the minimum and the Ethernet
traffic practically free. As a result, all simulations were
run overnight. Since, in practice, other network traffic
will be present and the workstations will be performing
other activities, this implies that the figures obtained
represent the best possible case.

To improve further the repeatability of our final
results, our measurements were repeated a large number
of times. Furthermore, the entire experiment was
repeated on different days and on different — but similar
—machines to check the consistency of these results.

7.2 Results and discussion

The results of our experiments are presented here. First,
Fig. 7 shows the measurements of the average time taken
to transmit data items with various sizes using the
multicast software. The results show a linear relationship
between the amount of data transmitted and the total
elapsed time, except when the data size is 1000 bytes.
This is because this data size represents a total of 1024
bytes (the multicast header is 24 bytes) actually being
transmitted by the underlying UDP software. The
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Figure 8. Conference data distribution using unicast UDP.

networking software of the operating system has been
optimised for this size, hence maximum throughput was
achieved. Similar observations have also been made
elsewhere.®

In the remainder of this section, we present
measurements of the elapsed time plotted against the
number of workstations. To simulate the effect of two or
more DMIS workstations involved in the information
exchange, our simulation simply repeated the same
experiment used for a single workstation the appropriate
number of times. The results measured thus represent a
situation where the loads on the network and hosts are
identical for all DMIS workstations. These results are
compared with the values obtained for the multicast case
(plotted in long-dotted lines).

Our experimental results also include message trans-
mission using the DoD TCP, as supported by the UNIX
operating system. TCP is a connection-oriented transport
protocol which requires connections to be set up prior to

any data transmission. In our experiment we observed
that the cost of establishing a connection makes TCP an
unsuitable choice for message transmissions involving
frequent and repeated connection set-up and shut-down.
Figs 8 and 9 show the results obtained using the DoD
UDP, which is also supported by the UNIX operating
system. The ‘raw’ UDP does not provide mechanisms
for flow-control and necessary message re-transmissions.
The lack of these facilities had made it difficult to carry
out the unicast simulation, as the loss of a packet would
cause the simulation to ‘hang’. This was particularly
serious when simulations involved the transmission of
multi-packet (large) data objects via a gateway. To
overcome this, a simple ‘time-out’ algorithm, which
would determine the loss of a packet and re-transmit the
data accordingly, was used during the experiment.
From the results of the above experiments we see that
in most cases multicast transmission represents a re-
duction in the total elapsed time when the number of
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Figure 9. Store-and-forward data distribution using unicast UDP.

DMIS workstations is greater than two or three. Our
results also show that high data throughput is achievable
with the multicast software. Although we have not
considered in detail the timing requirements for each
type of multimedia data here, we can conclude that
multicast communication is a necessary facility to support
the operation of a DMIS.

8. CONCLUSION AND FUTURE WORK

This paper reports on-going work on the design of
appropriate communication facilities to support the
operation of a DMIS. It also presents some of our
findings so far.

A DMIS is a complex distributed application, which is
emerging as a result of advances made in a number of
related areas of computer technology. We have presented
an overview of possible DMIS architectures, with main
focus on the information communication aspects. We
have also examined components which allow the users of
a DMIS to handle multimedia information, and exchange
this information in both a real-time and a store-and-
forward manner.

The way that information is interchanged between
DMIS workstations depends greatly on the service
primitives provided by the transport-level protocol. We
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Announcement

Information Management Study Group

The Institute of Administrative Management
has recently taken responsibility for convening
a small group of senior college tutors to
discuss what was loosely referred to as
‘The creative use of management information’
or latterly ‘Managing Information as a
Resource’.

There was a large measure of agreement
within the group that the greater, and hoped
for, use of information in many organisations
was inhibited by several important factors,
including the following:

(1) Lack of understanding, at middle or
senior levels of management, of the handling
and accumulation of information through the
normal administrative processes.

(2) The lack of information personnel with
the necessary business and technical back-
ground to progress development within the
organisation.

(3) The need to reorganise and reorientate
the administrative structure within organisa-
tions to allow the growth and use of in-
formation as a resource.

As a first step in a programme of investi-
gation and research, the group has decided to
hold a one-day workshop in London in the
autumn of 1989. It is hoped that some 50
employers and those involved in education
and training will come together to make a
preliminary survey of the situation as they see
it. If, as a result of this gathering, certain
problems can be identified, further activities
will be arranged.

Further details of the workshop will be
announced shortly.
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