Efficient Implementation of Rendezvous

A.SCHIPER, R. SIMON, Pu. DESARZENS, aND J.-A. SENGSTAG
Ecole Polytechnique Fédérale, Laboratoire de Systémes d’Exploitation, MA-Ecublens, CH-1015 Lausanne, Switzerland

In this paper we present a simple and efficient implementation of the rendezvous developed for a small multiprocessor
system (6-10 processors). At first, we present the communication primitives with their traditional implementation.
Secondly, we discuss in details our implementation and the communication architecture needed. We conclude with an
evaluation showing that our implementation needs a maximum of four context switches to realize a rendezvous, which

can be considered as an ideal result.

Received July 1987, revised March 1988

1.INTRODUCTION

This paper presents a simple and efficient implementation
of the rendezvous communication protocol developed
for a multiprocessor system made of 6-10 sites. A site
consists of a processor with its own local memory. The
sites are connected by a bus. It is reasonable to think that
these systems will become available as workstation in few
years. This is due to the increasing capacity of chips and
their decreasing price. On such system the OS would run
on one processor, and applications could ask the OS for
free processors. This is similar to the idea developed in
the Amoeba distributed system,” which consists of
workstations connected to a pool of processors. Each
application may ask for processors of the pool.

To take advantage of all the CPU power of
multiprocessor systems it is important to use an efficient
communication protocol. The paper will show both the
software and the architecture used to implement efficient
rendezvous-based communications. The implementation
will be described using the language Modula-2.8

2. COMMUNICATION PRIMITIVES

There are two classes of communication primitives,
synchronous and asynchronous. Execution of a
synchronous primitive blocks the processes until the
realisation of the communication. In asynchronous
communications, the sender keeps executing without
waiting for the receiver. In the latter case the com-
munication kernel has to buffer the messages. We have
chosen to implement synchronous primitives for sim-
plicity and efficiency. Doing this, we join the actual trend
outlined by CSP,* OCCAM,® ADA? and the V-Kernel.!
And we make our own the slogan ‘Messages are for
communication and processes are for concurrency’.!

The synchronous communication primitives of our
protocol are:

— Send (in destination, in message);

— SendAndWaitReply (in destination, in message, out
answer);

— Receive (out sender, out message);

— Reply (in sender, in answer).

The ‘Send-Receive’ communication realises the usual
rendezvous (‘sender’ is an output parameter of the
Receive primitive taking the value of the sending process).
The ‘SendAndWaitReply—Receive-Reply’ communi-

cation (similar to the V-Kernel primitives) realises a
procedure-call type of synchronisation:

— process P executes SendAndWaitReply(Q, m) and is
stopped ;

— process Q executes Receive (sender,m) and gets the
message of P in the variable m and ‘sender’ gets the
process Id of P.

— process Q executes Reply (sender,answer), which
releases P and gives him the answer of Q. Both P and
Q continue their execution independently from now
on.

Note that the primitive Send is not necessary, as it is
possible to send an empty reply message just after
Receive, to achieve the Send functionality using the
SendAndWaitReply primitivee. We will keep both
primitives for the sake of clarity. It is also worthwhile to
observe that the two sends (Send, SendAndWaitReply)
correspond to the two models of process relationship:

— producer—consumer relationship of a pipeline par-
allelism, using a communication of type ‘Send-
Receive’;

— client-server relationship, using a communication of
type ‘SendAndWaitReply—Receive—Reply .

3. TRADITIONAL IMPLEMENTATION
3.1 Ideas of the traditional implementation

A remote rendezvous implementation must take into
account the characteristics of the transmission medium.
In our case we can make the following assumptions
concerning the transmission of messages on the bus
connecting the different sites: (1) messages are neither
lost nor corrupted ; (2) messages are delivered in emission
order. Using these assumptions a traditional implemen-
tation of the ‘Send-Receive’ primitives would be as
follows. The initial message m is sent to the destination
site and stored in a queue of messages for the destination
process. If this process is ready to receive a message, the
message is immediately delivered and a ‘ proceed * message
is sent to the sender process, allowing him to proceed. If
the destination process is not ready to receive the
message m, the proceed message will be sent later. In case
there is no free buffer on the destination site when the
message arrives, the message is simply discarded. This
introduces the need for a timeout in the sender process.
If the timeout expires without receiving ‘proceed’, the
message m must be retransmitted. As a consequence,

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 267

¥20Z I4dy 01 uo 1senb Aq £1G1E£€//92/S/2¢ /811 e/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

A.SCHIPER, R. SIMON, PH. DESARZENS AND J.-A.SENGSTAG

messages can be received twice (or more). This introduces
the need to number the messages to distinguish between
new and retransmitted messages.

The implementation of the ‘SendAndWaitReply—
Receive—Reply’ primitives follows the same scheme with
one exception; the ‘proceed’ message is replaced by the
reply message.

This protocol costs two packets in normal circum-
stances (initial message + proceed message or initial
message + reply). In case of a timout caused either by a
discarded message (no free buffer) or by a heavily loaded
destination CPU (receiving process obtaining few CPU
time), an unbounded number of packets can be sent. To
avoid this situation, a three-packet protocol can be used
(adapted from Ref. 4). The destination site immediately
sends a ‘received—ack’ packet after receiving a message,
informing the sender that the message has been queued
on the destination site. Note that this protocol does not
suppress the need for timeout on the sender side; it
allows the reduction of the timeout period (which covers
now only the time needed to transmit the message) and
reduces the number of times that timeout will occur. So
the three-packet protocol is simply (1) initial message
from sender site to destination site, (2) receive—ack from
destination to sender, and (3) proceed or reply from
destination to sender.

3.2 Drawbacks of the traditional implementation

The two-packet protocol suffers from poor perform-
ances in the case of a heavily loaded destination CPU.
A high timeout value on the sender site reduces the
number of message retransmissions but increases the
communication time in the case of a discarded message.
A low timeout value increases the number of message
retransmissions. The three-packet protocol does not
suffer as much from performance degradation.

Another drawback of the traditional implementation
is the need for a server process, responsible for receiving
the incoming messages and for transferring them to the
destination process’s queue. This requires two unnecess-
ary context switches, the first to receive the message, the
second to return to the interrupted process. A context
switch should occur only if the destination process is
ready to treat the message!

The implementation we propose costs two packets to
implement the ‘Send—Receive’ communication and three
packets to implement the ‘SendAndWaitReply—Receive—
Reply’ communication, without suffering from per-
formance degradation in the case of heavy loaded CPUs
because the protocol needs no timeout. Concerning the
context switches, our implementation has the convenient
property of delaying context switch until the incoming
message can be treated by the destination process. The
idea is to buffer all messages except one on the sending
site rather than on the receiving site, as is done
traditionally.

4. THE IDEAS OF OUR
IMPLEMENTATION
4.1 How to avoid timeouts

Taking into account the assumption of a reliable
transmission, timeouts are only needed because the
sending process cannot be sure that a buffer is available

on the destination site. Timeouts and all their drawbacks
can be suppressed if a message is sent only when a buffer
is available on the destination site. To reach this objective
we allocate statically ‘reception buffers’ to each source
site A on each destination site B. When a message is sent
from site A to site B, site A knows the status of the
buffer on B to which the message is sent. If the buffer is
empty, the message can be sent; if the buffer is full the
emission of the message is delayed. The source site will be
informed that the buffer has been emptied by a special
message called ‘release’. At that moment the delayed
message is sent.

One reception buffer allocated to each site A on each
site B is not enough. This could lead to implementation
deadlocks, as shown by the example in Fig. 1. Suppose
the buffer of A on site B contains message ml sent
by process Pal to Pbl. The buffer will not be emptied
until Pbl executes ‘Receive(...)’. But before executing
‘Receive(...)’, process Pbl has to communicate with
process Pa2. Unfortunately this rendezvous cannot take
place until Pa2 had done his rendezvous with Pb2. But
Pa2’s message m2 cannot be sent until the reception
buffer of A on site B, which contains m1, is emptied.

process Pal; process Pbl;

Send (Pbl, ml); Send (Pa2, ...):;

Receive (...);

process Pa2; process Pb2;

Send (Pb2, m2); Receive (...);
Receive (...);
Site A Site B

Figure 1. Illustration of implementation deadlock when site A
owns only one reception buffer on site B.

The deadlock is due to the fact that the logically
possible rendezvous between processes Pa2 and Pb2
cannot take place due to implementation constraints. To
avoid these deadlocks it is necessary and sufficient that
each site A own on each site B an amount of p reception
buffers, where p is the number of processes on site B. Let
us name these buffers

reception_ofA_onB [1], ..., reception_ofA_onB [p]

If process Pb on site B executes ‘Receive(...)’ the
following two situations can occur: (1) the buffer
reception_ofA_onB [Pb] is full, so a rendezvous can
take place between Pb and a process on site A; (2) the
buffer reception_ofA_onB [Pb] is empty, meaning that
no rendezvous with a process on site A can take place for
the moment.

If process Pa on site A executes ‘Send (Pb, mess)’, the
following two situations are possible: (1) the buffer
reception_ofA_onB [Pb] (which resides on site B) is
empty and the message is sent; (2) the buffer reception_of
A_onB [Pb] is full and the message cannot be sent for the
moment. This causes what we call a ‘delayed Send’. We
will see in Section 5 how the delayed Send is treated.
Observe that not sending the message does not slow
down the system because its receiver is busy anyway.

Taking all together, p*s reception buffers are needed

268 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

O
o]
2
o

L£€//92/€/2€/2101B/|ulWod/woo dno-dlWapeDe;//:Sdjy Wod) papeoju

[6)]
iy
~
o
<
«Q

c
(]
[%2]
—_

¥20z Iudy 0| uo

EFFICIENT IMPLEMENTATION OF RENDEZVOUS

on each site, where s is the number of sites of the
multiprocessor and p the maximum number of processes
on each site. (In order to simplify explanations, we do
not distinguish between inter- and intra-processor
communications.) These p*s buffers could seem very
important. The following should be noted:

— in our implementation 256K of memory are dedicated
to the communication buffers (reception and other
needed buffers, see Appendix A). Considering 1K
bytes for each reception buffer and 8 sites, this
implementation allows 15 processes per site;

— for our first application, which consists of a parallel
Modula-2 compiler, only a few processes per site are
needed (less than 5);

— the important point, beyond these numbers, is that
you can mix both the traditional implementation and
our implementation using statically allocated buffers.
A limited number of intensively communicating
processes could use the efficient implementation, the
others (unlimited number) the traditional implemen-
tation.

4.2 How to avoid unnecessary context switches

The way to avoid unnecessary switches is very simple. A
dedicated interrupt vector is allocated to every process,
suppressing the need for the server process of the
traditional implementation. Each time a process has to
wait (after a Send waiting for the release message, after
a Receive waiting for an incoming message or after a
SendAndWaitReply waiting for the Reply), it waits on
its interrupt, appropriately setting an interrupt mask
composed of 3 bits called ‘receive’, ‘release” and ‘reply’.
For example, to wait exclusively on an incoming message
simply consists of setting the interrupt mask to (receive : =
1, release:= 0, reply:= 0). The incoming message will
contain a similar mask, identifying the message type.
When a message arrives, its mask is compared to the
interrupt mask (logical and). If the result is different
from zero, an interrupt is generated. More information
about this point can be found in Appendix A (com-
munication architecture) and in Appendix B (implemen-
tation of the communication primitives).

4.3 The protocol

The ‘Send-Receive’ communication results in the fol-
lowing protocol: (1) initial message sent from sender site
to destination site; (2) release message sent from
destination site to sender site to inform that the
destination buffer has been released and that the
rendezvous is done (the release message plays here
the role of the ‘proceed’ message).

The ‘SendAndWaitReply—Receive-Reply’ results in
the following protocol: (1) initial message sent from
sender site to destination site; (2) release message sent
from destination site to sender site to inform that the
destination buffer has been released; (3) reply message
sent from destination site to sender site. Note that the
release and the reply messages must both exist, because
the reply messages are not necessarily sent in the order
corresponding to the reception of the messages (a server
could receive message ml then message m2, but reply
first to m2).

We now have all the elements to describe precisely the
communication primitives. Their implementation is in

Appendix B. The implementation of Receive and Reply
is straightforward. On the other hand Send and
SendAndWaitReply need explanations. This will be done
in the next section.

5. DELAYED SEND

As we said in Section 4, messages cannot be sent as long
as the reception buffer is full. This causes what we call a
‘delayed Send’. The aim of implementing delayed Send
is reduction of the number of context switches. Consider
the following situation. A process Pa on site A cannot
send a message m to a process Pb on site B because the
reception buffer ‘reception_ofA_onB [Pb]’ is full
(meaning also that the destination process is not ready to
receive the message of process Pa). Who will later send
the message m? If it is Pa, this requires two context
switches (the first to activate Pa to send the message, the
second when Pa waits for the release message). A better
implementation can sometimes avoid these two context
switches. The idea comes from the following observation :
if the reception buffer is full, this means that another
process Px on site A has sent a message to the same
destination process Pb.

Suppose first that Px has executed the primitive
‘Send’. When Px receives the release packet corre-
sponding to the end of the rendezvous, Px sends Pa’s
message, before continuing his execution, thus avoiding
unnecessary context switches!

Suppose now that Px has executed the primitive
‘SendAndWaitReply’. The situation is here a little more
complicated ; we cannot avoid the two context switches.
However, the two context switches needed to send Pa’s
message are used to activate process Px and not Pa,
because the destination process Pb cannot know the
existence of the delayed Send for process Pa. Considering
the protocol of paragraph 4.3, process Px receives two
messages, the release and the reply message. In the
absence of any delayed Send the release message is
unimportant and should cause no interrupt. So initially
Px sets its interrupt mask to (receive:= 0, release:= 0,
reply:= 1) and will only be interrupted by the arrival of
the reply message. But the occurrence of a delayed Send
for process Pa renders the release message important.
Therefore Pa sets the release bit of Px’s interrupt mask,
causing Px to be interrupted by the release message,
which then allows Pa’s message to be sent by Px.

Two data structures (shown in Fig. 2) are needed on
each site to implement the delayed Send:

— MessToSend [site#, prss#], where each element of the
array is a list of messages to send to process ‘prss#’ on
site ‘site#’;

MessTo Send [B, Q]

Ml M2
Send Order [B, Q]
1]
PO Pl P2

State of the lists for a scenario : PO occupies the reception buffer while
P1 and P2 have not been authorised to send their respective messages M1
and M2 (all processes send to the same receiver). PO will send message
M1 and P1 message M2.

Figure 2. Data structures for delayed Send.

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 269

¥20Z I4dy 01 uo 1senb Aq £1G1E£€//92/S/2¢ /811 e/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

A.SCHIPER, R. SIMON, PH. DESARZENS AND J.-A.SENGSTAG

Communication Delayed Send Receiver Total context switch
B . Not waiting 2
Send-Receive Waiting 4
SendAndWaitReply—Receive-Reply Yes Not waiting 4
Yes Waiting (6) Virtually impossible
No Not waiting 2
No Waiting 4

Figure 3. Number of context switches.

— SendOrder [site#, prss#], where each element of the
array is a list of processes corresponding to the order
of execution of the Send or SendAndWaitReply
primitives to process ‘prss#’ of site ‘site#’.

6. EVALUATION

Our objective was to build an efficient implementation
of rendezvous. The protocol proposed aims at efficiency
by using statically allocated buffers in order to reduce the
number of context switches and to suppress the need for
timeouts. The suppression of timeouts ensures good
response times for rendezvous even when the multi-
processor is heavily loaded. The efficiency of rendezvous
is estimated by counting the number of context switches
needed for a complete communication between two
processes. The results of our implementation should be
compared to the 4 context switches, which can be
considered as an ideal result:

— 2 context switches on the sender site (1 to block the
process waiting for the receive or reply message, 1 to
activate the process when the receive or reply message
arrives);

— 2 context switches on the receiver site (1 to block the
process waiting for a message, 1 to activate the process
when the message arrives).

Considering first our implementation of a ‘Send-
Receive’ communication. This communication costs at
most 4 context switches (Fig. 3):

— 2 context switches on the sender site (the 2 context
switches mentioned above);

— 0 or 2 context switches on the receiving site: 0 if the
message arrives before Receive is executed (corre-
sponds to ‘ Receiver not waiting’ in Fig. 3), 2 otherwise
(‘Receiver waiting’).

Consider now a communication of type ‘SendAnd-
WaitReply—Receive—Reply ’. We get the following results
(Fig. 3):

REFERENCES

1. D. R. Cheriton, The V-kernel: a software base for
distributed systems. IEEE Software, pp. 1942 (April
1984).

2. Ada Programming Language. United States Department of
Defense, Washington (1983).

3. Inmos, Occam Programming Manual. Prentice-Hall,
Englewood Cliffs, N.J. (1984).

4. N. D. Gammage, R. F. Kamel and L. M. Casey, Remote
rendezvous. Software-Practice and Experience 17 (10)
741-755 (1987).

— 2 or 4 context switches on the sender site (4 in case of
delayed Send, including the 2 context switches
explained in Section 5 needed to send the delayed
message);

— 0 or 2 context switches on the receiving site, 0 if the
message arrives before Receive is executed (‘Receiver
not waiting’), 2 otherwise (‘ Receiver waiting’).

However, it is important to notice that delayed Send
virtually implies arrival of messages before execution of
the corresponding Receive. Consider the following
situation.

Site A:

— process Pal executes ‘Send (Pb,m1)’

— process Pa2 executes ‘Send (Pb, m2)’, which results in
a delayed Send (reception buffer contains Pal’s
message)

Site B:

— process Pb executes following sequence Receive(...,
ml); treatment of m1; Receive(..., m2);

The delayed message m2 is shipped to the destination
process Pbl as soon as Pbl has received the message m1
and has sent the corresponding release message. The time
needed to transmit the release message and the next
message m2 is normally much less than m1’s treatment
time by process Pb (starting after the emission of the
release message). Therefore a delayed Send virtually
implies the arrival of the message before execution of the
corresponding Receive. So the result is a total of 4
context switches.

The global result is a maximum of four context
switches for both communication types, which can be
considered as ideal. Although we have not yet
implemented the protocol (which will start very soon),
the communication is expected to be efficient.

Acknowledgement

We wish to thank Jorge Eggli for his helpful comments
during the development of the rendezvous protocol.

5. C. A. R. Hoare, Communicating sequential processes.
Comm. ACM 21 (8), 666-667 (1978).

6. J.-D. Nicoud, Video RAMs: structure and applications.
IEEE Micro 8 (1), 8-27 (1988).

7. A.S. Tanenbaum and R.van Renesse, Distributed
operating systems. ACM Computing Surveys 17 (3),
Heidelberg, 419470 (1985).

8. N. Wirth, Programming in Modula-2. Springer-Verlag,
(1985).

270 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

¥20Z I4dy 01 uo 1senb Aq £1G1LE£€//92/S/2¢ /811 e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

EFFICIENT IMPLEMENTATION OF RENDEZVOUS

APPENDIX A. COMMUNICATION
ARCHITECTURE

A.1 Generality

Each site of the multiprocessor consists of a MC 68020
processor and 2M bytes of local memory. The com-
munication buffers are allocated in an extra 256K bytes
of video-ram, a dual-port memory.® One port allows the
processor to access the communication buffers; the other
port connects the video-ram to the multiprocessor bus.
The hardware sends messages from the video-ram of one
site directly to the video-ram of another site.

All the buffers needed for the rendezvous implemen-
tation are allocated in this video-ram. They are:

— the sxp reception buffers (s = number of sites, p =
maximum number of processes per site), to receive the
initial message;

— the p reply buffers (one per process), to receive the
reply messages;

~ the release buffers, to receive the ‘release’ messages.
As one site owns p reception buffers on each site, ps
release buffers are needed.

As already mentioned, in the current implementation
s = 8 and thus p = 15.

A.2 Current interrupt realisation

For economic reasons there is for the moment only one
interrupt vector, and the interrupt handling mentioned in
paragraph 4.3 is implemented through ROM routines.
These routines allow the communication kernel written
in Modula-2 to see the interrupt handling as described in
paragraph 4.3. This works in the following way. When a
message is received on a site, the address of the message’s
buffer is inserted by the hardware in a FIFO. As long as
this FIFO is not empty, an interrupt is generated. This
interrupt is treated by the ROM routines, which doesn’t
cause a Modula-2 context switch. Depending on the
message’s interrupt mask and the vector’s interrupt
mask, these routines generate the pseudo-interrupt
awaited by the Modula-2 processes.

APPENDIX B. IMPLEMENTATION OF
THE COMMUNICATION PRIMITIVES

The communication primitives are expressed, taking into
account the architecture mentioned in Appendix A. With
this communication architecture we can make the
assumption that no message arrival is ‘seen’ while a
process is executing within the kernel (interrupt
masked—>ROM routines cannot be called).

To express the communication primitives, let us
introduce the following names for the communication
buffers:

— RECEPTION [site#, process#], into which the
messages for process# from a sender on site# are
received. Each buffer has a 1-bit full/empty status.

— ANSWER [process#], into which the reply messages
for process# are received. Each buffer has a 1-bit
full/empty status.

— RELEASE [site#, process#], into which the released
messages are received. A message in RELEASE [S;j,
Pk] on site Si means that the buffer RECEPTION [Si,
Pk] on site Sj has been emptied.

To illustrate the usage of these buffers, consider a
communication of type ‘SendAndWaitReply-Receive—
Reply’ between a sender process Q on site Sq and a
destination process R on site Sr. Let us suppose that Q
is the process number Pq of site Sq and that R is the
process number Pr of site Sr:

(1) Q executes SendAndWaitReply:
the initial message is sent to the buffer
RECEPTION[Sq, Pr] on site Sr;

(2) R frees the reception buffer:
the release message is sent to the buffer
RELEASE]ST, Pr] on site Sq;

(3) R sends the reply:
the reply message is sent to the buffer
ANSWER[Pq] on site Sq.

Finally, here are some complementary explanations:

— each message has a header which contains besides
other information an interrupt mask;

— the procedure Ship is used to ship the message (message
= header +info);

— ‘myself” is used to name the process executing a given
procedure;

— initially all buffers are empty except the RELEASE
buffers which are considered full (meaning that the
corresponding RECEIVE buffers are empty);

— the only useful information of the SendOrder queue
(Section 5) is the name of its last element. This
information will be stored in a variable called
LastSendingPrss.

PROCEDURE Receive (VAR sender: PrssName;
VAR messContent: ...);
BEGIN

IF for all site S, RECEPTION [S,

myself. prss] is empty

THEN
(* no message are already here *)
myself.mask: = (receive: =1, release: =

0, reply:=0);
Wait on MY interrupt for a Send or
SendAndWaitReply;
END (* if *);
senderSite: =Get the first site number
such that RECEPTION [senderSite,
myself] is full;
sender: = logical name of the sender
extracted from the message header in
RECEPTION [senderSite, myself];

messContent: = content of the message in
RECEPTION [senderSite, myself];
myself.mask: = (receive: =0, release: =0,
reply: =0);

(* now send the release message *)
Initialisation of the header, in
particular:
releaseHeader. address: = address of
RELEASE [myself. site, myself. prss]
on sender’s site;
releaseHeader. mask: = (receive: =0,
release: =1, reply: =0);
Ship (releaseHeader, empty content);
END Receive;

Figure 4. Receive.

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 271

¥20Z I4dy 01 uo 1senb Aq £1G1E£€//92/S/2¢ /811 e/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

A.SCHIPER, R. SIMON, PH. DESARZENS AND J.-A. SENGSTAG

PROCEDURE Reply (client: PrssName; PROCEDURE SendAndWaitReply (consumer:
answerContent: ...); PrssName; messContent: ...; answerContent:
BEGIN cee)

Initialisation of the header, in BEGIN

particular: Initialisation of the header, in

replyHeader. address: = address of ANSWER
[client. prss] on client’s site;
replyHeader. mask: = (receive: =0;
release: =0; reply:=1);
Ship (replyHeader, answerContent);
END Reply;

Figure 5. Reply.

PROCEDURE Send (consumer: PrssName,;

messContent: ...);

BEGIN
Initialisation of the header, in
particular:

sendHeader . address: = address of

RECEPTION [myself. site, consumer. prss]
on consumer’s site;

sendHeader . mask: = (receive: =1;

release: =0; reply:=0);

IF buffer RELEASE [consumer. site,
consumer. prss] is full
THEN (* a message can be sent *)

Set buffer RELEASE [consumer. site,

consumer. prss] to empty;

Ship (sendHeader, messContent);

ELSE

(* RECEPTION [myself. site,

consumer. prss] on consumer’s site is

occupied *)

Put the header and content of the
message at the end of MessToSend
[consumer. site, consumer. prss];

Set the bit ‘release’ of the mask

associated to the interrupt of

LastSendingPrss;

(* the release message issued when
executing the Receive will wake up
LastSendingsPrss who will send the
message *)

END (* if *);

LastSendingPrss: = myself;

myself.mask: = (receive: =0, release: =1,
reply: =0);

Wait on MY interrupt;

(* consumer has received the message, the
reception buffer is empty. So before
exiting we check for delayed send *)

IF MessToSend [consumer. site,

consumer. prss] not empty

THEN

Set buffer RELEASE [consumer. site,
consumer. prss] to empty;

Ship (head element of MessToSend
[consumer. site, consumer. prss]),

END (* if *);

myself. mask: = (receive: =0, release: =0,

reply: =0);

END Send;

Figure 6. Send.

272 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

particular:

sendHeader. address: = address of
RECEPTION [myself. site,
consumer. prss] on consumer’s site;

sendHeader. mask: = (receive: =1;

release: =0; reply: =0);
IF¥ buffer RELEASE [consumer. site,
consumer. prss] is full
THEN (* a message can be sent *)

Set buffer RELEASE [consumer. site,

consumer. prss] to empty,;

Ship (sendHeader, messContent);

ELSE

(* RECEPTION [myself. site,

consumer. prss] on consumer’s site is

occupied *)

Put the header and content of the
message at the end of MessToSend
[consumer. site, consumer. prss];

set the bit ‘release’ to the mask

associated to the interrupt of

LastSendingPrss;

(* the release message issued when
executing the Receive will wake up
LastSendingPrss who will send the
message *)

END (* if *);

LastSendingPrss: = myself;

myself. mask: = (receive: =0, release: =0,
reply: =1);

Wait on MY interrupt;

(* interrupt has occurred, 2
possibilities: release or reply *)
IF buffer ANSWER [myself. prss] is empty
THEN
(* no reply, interrupt due to a release
message *)
(* queue MessToSend [consumer. site,
consumer. prss] cannot be empty *)
Set buffer RELEASE [consumer. site,
consumer. prss] to empty;
Ship (head of MessToSend
[consumer. site, consumer. prss]);
myself.mask: = (receive: =0, release: =
0, reply:=1),
Wait on MY interrupt; (* this time for
reply *)
END (* if *);
(* the reply has been made *)
myself.mask: = (receive: =0, release: =0,
reply: =0);
Copy the answer from ANSWER [myself. prss]
to the variable answerContent;
END SendAndWaitReply;

Figure 7. SendAndWaitReply.

¥20Z I4dy 01 uo 1senb Aq £1G1E£€//92/S/2¢ /811 e/|ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

