Crossword Compilation Using Integer Programming

J. M. WILSON

Department of Management Studies, University of Technology, Loughborough, Leicestershire LEI1l1 3TU

Attention has been given over the last few years to the problem of efficiently compiling a crossword puzzle using a
computerised algorithm. This paper considers the problem and formulates it as an integer program. The process of
solving the integer program using standard commercial software provides some insight but other simpler approaches to

crossword compilation appear to be preferable.

Received April 1988, revised June 1988

1. INTRODUCTION

A recent paper in this journal by Berghel® describes a
method of crossword compilation using Horn Clauses
analysed by a Prolog language program. The paper also
provides a good survey of related work done on the same
problem and provides definitions of all the characteristics
of crossword puzzles.

This paper will focus on the problem of construction
of solution sets to a crossword. This problem has a
logical structure and can be formulated in terms of
mathematical logic. Integer programming also provides
a way of formulating logical problems. Discussion of the
connections between integer programming and math-
ematical logic appear in Blair® and Williams.® In some
cases integer programming can be a computationally
successful way of solving problems which can be posed in
a clausal form.

The purpose of this paper will be to investigate an
integer programming approach to crossword compi-
lation. Notation developed by Berghel® will be used and
the paper will concentrate on solving a 4 x 4 full puzzle
with complete interlocking. A typical solution to such a
problem is shown below.

P 1 E R
I D L E
N (0] S E
S L E D

Figure 1. 4x4 full puzzle with complete interlocking (from
Berghel?).

2. THE INTEGER PROGRAMMING
MODEL

A number of integer programming models are possible
for the crossword compilation problem. With integer
programming it is rarely the case that a problem can be
formulated in only one way and it is not usually apparent
which formulation will be faster to solve. Two basic
strategies for reducing the problem search space were
proposed by Mazlack.*

(a) whole word insertion

(b) letter by letter insertion.

These two broad strategies determine the decision
variables which integer programming will use. For
strategy (a) there will be a series of variables to decide if
a word is to be allocated to a word slot and for strategy
(b) there will be a series of variables to decide if a letter
is to be allocated to a particular cell. Strategy (a) will be
considered first. The model is as follows.

Define the following sets:

I the set of cells (ie[)

J the set of letters of the alphabet (jeJ)
K the set of words in the lexicon (k€ K)
N the set of word slots (neN)

The variables are defined as
z,. =1 if word k is placed in slot n
0 otherwise.

The constraints are

(M Xz, <1

nenN

for each ke K.

These constraints ensure no word appears twice.

)] Tz =1

keK

for each ne N.

These constraints ensure each word slot is occupied.
(3) For each letter j of the alphabet and each cell i a
constraint of form

T Zy=

keSjnp

E zn'lc
k€S p
is developed where S, denotes the set of words
allocatable in the vertical slot » which have the letter j in
the cell where vertical slot n intersects with horizontal
slot ', and S,,., denotes the set of words allocatable in
the horizontal slot n” which have letter j in the cell where
horizontal slot n” intersects with vertical slot n.

There is no obvious objective function for this problem
but the function

E an

neN
keK

was used in order to try to give some direction to the
optimisation process. This function was minimised.
The model was generated using the matrix generation
system MGG/VM?® which acts as an interface to the
optimisation system Sciconic/VM® which solves the
integer program. The matrix generator was found to be

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 273

¥20Z IMdy 61 uo 1senb Aq 925 L £€/€/2/S/2e /81 e/|ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

J.M. WILSON

particularly helpful for the generation of constraints of
the type (3) above. These constraints are awkward to
specify but MGG/VM provides a means of writing a
subroutine in FORTRAN for selecting which of the z
variables are to be included in each constraint. Essentially
constraints of the form (3) act as pre-processors by
defining allowable subsets of z variables for each word
slot.
The above formulation requires

2km variables
and 2m + k +26m? constraints
for a lexicon of k m-letter words.

A related model could be devised for problems which
were not full puzzles.

3. PROBLEM SOLUTIONS

The model was run on a problem of a 4x4 fully
interlocking puzzle with a lexicon of 100 4-letter words.
Running on a Prime 750 system one solution was found
after 1,800 cpu seconds. Subsequently only one more
solution was found and the complete run to decide that
there were only these two solutions required a further
1,200 cpu seconds. The problem size was 800 variables
and 524 constraints which is fairly large for an integer
program.

The Sciconic/VM® system allows the user to specify
priorities for which integer variable will be chosen for
branching as part of the solution strategy. The approach

Figure 2. Horizontal and vertical wordslots.

adopted was to give priority in order of importance to
decision variables z,, for the eight word slots

1 horizontal (across)
1 vertical (down)

2 horizontal

2 vertical

3 horizontal
3vertical

4 horizontal

4 vertical

Thus the solution would tend to be built to try to take
maximum advantage of overlap. The integer program-
ming approach starts by assuming that the z,, variables
are a set of continuous variables bounded below by 0.0
and above by 1.0 and then the branching process sets
selected variables to one or other bound. The branching
process was found to be very successful in that it found
a solution after setting only five variables to their
bounds.

4. DIFFICULTIES WITH THE INTEGER
PROGRAMMING APPROACH

Although the integer programming approach converged
reasonably rapidly to a solution, given the size of the
model, it was still not entirely satisfactory. Storage of the
lexicon presents considerable problems. Each word slot
uses information on each word of the lexicon and so, in
the example discussed, the lexicon is essentially stored
eight times. The paper by Berghel® appeared to use about
1,000 4-letter words in its lexicon. This size of lexicon
would present an almost impossible task for an integer
programming model. Research is active on mixing logic
into an integer programming solution approach and a
recent conference paper by Beaumont' showed some
success in a hybrid approach for logical problems. That
work had advantages in formulation and in the methods
of branching used in integer programming. However, the
intention of this paper is to examine the performance of
commercially available software on an integer pro-
gramming model. It is unlikely that a hybrid logic/integer
programming approach will appear in commercially
available software for some considerable time, if at all,
and so the prospects of using such an approach on a
realistic sized crossword compilation problem remain
remote.

5. AN ALTERNATIVE INTEGER
PROGRAMMING APPROACH

A second formulation approach of Mazlack,* strategy
(b), was mentioned in Section 2. An integer programming
model for this approach was attempted as follows.
Define the following sets

I the set of rows (iel)

M the set of columns (me M)

J the set of letters of the alphabet (jeJ)
and let n = |I| = |M].
The variables are defined as

= 1 if letter j is placed in the cell defined by row i
and column m

Ximj
0 otherwise.

The constraints are

(1) 2., Xx;,; = 1 for each i€l and each me M.

These constraints ensure each cell is occupied.

(2) For each cell and each letter of the alphabet a
constraint is developed of form

2n—1D X B Xyt 2 Xy
m'+m iFi
j'ed, Jed,
for each ieJ, me M and je J, where J, denotes the set of
letters of the alphabet which by virtue of the lexicon
could appear in the cell defined by row i and column m’,
given that letter j appears in the cell defined by row i and
column m and J, denotes the set of letters of the alphabet
which by virtue of the lexicon could appear in the cell
defined by row i and column m given that letter j appears
in the cell defined by row i and column m.
As in Section 2, an objective function to be minimized

2 ximj
iel
meM
jeJ

is used.

274 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

¥20Z IMdy 61 uo 1senb Aq 925 L £€/€/2/S/2e /81 e/|ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

CROSSWORD COMPILATION USING INTEGER PROGRAMMING

This model looks quite promising as it requires
26n? variables
and 27n® constraints

and so its size is independent of the size of the lexicon.

Constraints to ensure no word appears twice were not
included in this model to make it easier to solve as, in
fact, the model is not a proper formulation of the
problem. Not all solutions to this model would give
words in the lexicon as it is too loosely logically
constrained. All solutions to the crossword compilation
problem would be solutions to the model, but not vice
versa. No straightforward formulation to correspond to
strategy (b) is possible.

However, this model did not converge to any integer
solution within 3,000 cpu seconds, the time required for
the first model on identical data to complete its search.

Although the alternative approach proved unsatis-
factory, it has been discussed firstly to attempt to follow
strategy (b) and secondly to show that formulations do
exist which are not determined in size, in integer
programming terms, by size of lexicon but such formu-
lations are impractical from the solution point of view.

6. SIZE LIMITATIONS OF THE INTEGER
PROGRAMMING APPROACH

The approach of Section 2 was shown to require eight-
fold storage of the lexicon for the 4 x 4 full puzzle. A
puzzle of the type shown in Fig. 3 (a diagram from
Smith”), a more traditional British-style puzzle, has

Figure 3. Typical British-style puzzle (from Smith’).

twelve word slots and twelve cells which contain
intersections of horizontal and vertical word slots. This
puzzle contains 2-, 3-, 4-, 5-, and 7-letter words. If there
is a lexicon of size k for each type of word then the

REFERENCES

1. N. Beaumont, A logical branch and bound algorithm.
Paper presented at Australian Society for Operations
Research Conference on Mathematical Programming, Mel-
bourne, Australia (1986).

2. H. Berghel, Crossword compilation with horn clauses. The
Computer Journal, 30 (2), 183-188 (1987).

3. C. E. Blair, R. G. Jeroslow and J. K. Lowe, Some results
and experiments in programming techniques for prop-
ositional logic. Computers and Operations Research, 13 (5),
633-645 (1986).

4. L. Mazlack, Computer construction of crossword puzzles
using precedence relationships. Artificial Intelligence, 7 (1),
1-19 (1976).

integer programming formulation of Section 2 would
require 12k variables
5k + 338 constraints.

Thus the situation appears comparatively more favour-
able for British-style puzzles than for completely inter-
locked puzzles, in that a puzzle which is approximately
three times bigger in area has not required three times as
many constraints or variables as the 4 x4 full puzzle.
Thus integer programming looks a more promising
technique for typical British-style puzzles than for highly
interlocked American-style puzzles. However, even for
lexicons of modest size, 12k variables will be a large
number. A compensating factor exists for larger lexicons
in that a model may have more solutions and so time to
solution is not likely to rise in strict proportion to rises in
lexicon size. Notwithstanding, the prospects of using
integer programming for any type of puzzle of realistic
size and with a substantial lexicon remain bleak.

7. SIMPLE LOOPING SOLUTION
APPROACH

A simple comparison with the integer program was run
on the Prime 750. A Fortran program was written to
perform the search process by looping, continuing the
order of priority of search used on the integer pro-
gramming model. This program was in the style of
Smith.” Fairly successful results were obtained on a 4 x 4
fully interlocked puzzle with a lexicon of 1,245 4-letter
words (apparently richer than that used by Berghel? and
21,079 solutions were found in 371 minutes 11 seconds of
cpu time on a Prime 750, giving a solution rate of
approximately one solution per second. Berghel? using
an IBM/PC was able to find one of 1,824 solutions per
minute for the same type of problem.

and

8. CONCLUSION

An integer programming approach for crossword com-
pilation was developed but was then discarded in favour
of a simpler approach. The eventual approach is relatively
simple to program in a high level language and produced
solutions rapidly on a test puzzle. The approach is
extendable to crossword puzzles of different sizes and
characteristics. Although integer programming occasion-
ally provides a useful alternative approach to handling
logical problems it was not successful on the problem of
crossword compilation. This state of affairs is likely to
continue until integer programming software is developed
which is better able to take advantage of logical elements
within combinatorial models.

5. MGG/VM User Manual. Scicon Computer Services,
Milton Keynes, England (1984).

6. Sciconic/VM User Manual. Scicon Computer Services,
Milton Keynes, England (1983).

7. P.D. Smith and S.Y.Steen, A prototype crossword
compiler. The Computer Journal, 24 (2), 107-111 (1981).

8. H. P. Williams, Linear and integer programming applied
to the propositional calculus. International Journal of
Systems Research and Information Science, 2, 81-100
(1987).

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 275

¥20Z IMdy 61 uo 1senb Aq 925 L £€/€/2/S/2e /81 e/|ulwoo/woo dnosolwsepeoe//:sdiy wolj papeojumoq

