Short Note

A Fast Iterative Algorithm for Generating Set
Partitions

An iterative algorithm for generating all par-
titions of the set {1,...,n} is presented. An
empirical test shows that the new algorithm is
faster than the previously fastest algorithm
recently proposed by Er on some computers,
though the former is slower than the latter on a
computer where fast recursive call is provided
based on an RISC architecture.

Received October 1988

1. Introduction

Let Z:={l,...,n}. A partition of the set Z
consists of k classes 7, ..., z, such that z, Nz,
=¢ifi#j,mVU..Un,=Z andx, + ¢ for |
< i < k. In this paper we consider the problem
of generating all partitions of the set Z.

Sequential algorithms for set partitioning
are studied in the literature.? 34 8.7 The fastest
among them (as shown by Er)? is the recursive
algorithm given by Er,2 while the fastest
previously known iterative algorithm is one
given by Semba.®

The purpose of the paper is to derive an
efficient algorithm for generating all partitions
of the set Z, which is faster than both the Er?
and Semba® algorithms, as shown by empirical
results.

2. Algorithms

A codeword ¢, c, ... c, represents a partition
of the set Zif and only if ¢, = l and 1 < ¢, <
max(cy,...,¢,)+ 1 for 2 <r < n, where ¢, =
Jif iis in m. A list of codewords and
corresponding partitions for n=4 is as
follows: 1111 =(1234), 1112 = (123)(4),
1121 = (124)(3), 1122 = (12)(34), 1123 =
(12)(3)(4), 1211 = (134)(2), 1212 = (13)(24),
1213 = (13)(2)(4), 1221 = (14)(23), 1222 =
(1)(234), 1223 = (1)(23)(4), 1231 = (14)(2)(3),
1232 = (1)(24)(3), 1233 = (1)(2)(34), 1234 =
(HABGYW).

We present an algorithm which is naturally
derived from the above consideration of the
codewords. In the program we use an array to
store g,:=max(cy, ...,c,).
program setpartl(n);

begin

r:=0,c:=0;nl:=n—1;g,:=0;
repeat
while r < nl do begin r: =r+1; ¢, =
l;g:=g,_,end;
for j:=1to g, +1 do begin c,:=;
print out ¢,...c,; end;
whilec > g dor:=r—1;
ci=c+1;
ifc,>g theng :=c,
until r = 1

end;

In the second WHILE a backtrack is made
to find the largest r having an ‘increasable’ c,,
ie. ¢, < g,_,+1. Although the improvement
in the execution times is significant compared
with the program in Semba, this improvement
is mainly due to avoiding goto statements. We
want to improve the above algorithm further.
The new algorithm for generating set
partitions goes as follows:

program setpart2(n);

begin
r:=1; c:=1; ji=0; by:=1;
nl:=n—1;
repeat
while r<nl do begin r:=r+1;

ci=1;ji=j+1;b:=rend;
for j:=1 to n—j do begin c,:=j;
print out c,...c,; end;
ri=b;
c:=c+1;
ifc,>t—jthen;:=;—1
until r =1

end;

In the presented iterative algorithm b, is the
position where current position r should
backtrack after generating all codewords
beginning with ¢,...c,_,. An element of b is
defined whenever g, =g, _,, which is recog-
nized by either ¢, =1 or ¢, >r—j in the
algorithm. It is easy to see that the relation
r=g, ,+j holds whenever j is defined (cf.
Fig. 1). Thus the number of backtrack calls is
equal to B, ,, where B, is the well-known
Bell number giving the number of partitions of
the set {1,...,s}. Each backtrack is done in
constant time. This is the main improvement
over setpartl, though we have to consume two
statements: j:=,/+1 and b;:=r as many
times as the backtrack is done (this is the

reason that both programs run in a com-
parable time). The backtrack by the array g, is
non-constant and, furthermore, the array b
which we use always has less elements than the
array g. In fact, at the printing step in our
algorithm b has n—g, elements, while g has n
elements.

Compared to Er’s algorithm,? ours treats
the backtracking more efficiently in the sense
that in the recursive algorithm,? backtrack
again requires non-constant time (since it
corresponds to the returning of the recursive
calls).

It is of interest to note that the codewords
generated by the algorithms of Er,? Semba®
and the one described in this paper are always
in lexicographic order.

3. Performance evaluation

In order to evaluate the performance of our
newly proposed algorithms and to compare
them with those of Er? and Semba,® all the
algorithms have been implemented in Sun and
VAX Pascals and compiled under the UNix
operating system on the Sun-4/280 and VAX
8800 computers (the optimising option is
used). The actual CPU running times of the
algorithms are summarised in Tables | and 2
(algorithms are run once without printing out

IOT
4 y=Jj .
Yy =8
Yy =6 --ee-eee
y .
5+ .
] ° [k E—
b
) — R
1 1]
: i
1
. = ' L---_1'
\]]]
P : :
1 m} L 3 1
+ + + { + + + + 4
1 5 10
r ——

Figure 1. ¢, = 1112113421.

Table 1. A comparison of the actual running times (measured in seconds of CPU time)
of Er’s, Semba’s and our Setpart algorithms for generating all partitions of {1,...,n}

on a VAX 8800 computer

n Er’s % Semba’s % Setpartl % Setpart2 %
12 11.1 100 23.0 207 10.5 94.5 8.8 79.3
13 73.4 100 147.4 201 68.6 93.5 57.2 77.9
14 4943 100 998.9 202 464.2 93.9 392.5 79.4
15 3489.9 100 7134.7 204 3271.7 93.7 2774.9 79.5
16 25820.2 100 52900.2 204 23839.7 923 20449.2 79.2

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 281

¥20Z I4dy 60 U0 1senb Aq 2G5 1L E£€/182/S/2E/81o1e/|ulwoo/wod dnosolwsepeoe//:sdiy wolj papeojumoq

SHORT NOTE

Table 2. A comparison of the actual running times (measured in seconds of CPU time)
on a Sun-4/280 computer

n Ers % Semba’s % Setpartl % Setpart2 %

12 34 100 19.4 606 7.6 238 7.0 219
13 21.7 100 124.9 576 48.4 223 44.5 205
14 146.1 100 845.4 579 323.7 222 297.0 203
15 1030.4 100 6031.4 585 2285.1 222 21138 205
16 7577.1 100 45065.8 595 16825.8 222 15627.6 206

partitions). The results show clearly that both
setpart] and setpart2 are faster than Er’s on
the VAX computer (94 and 80 %, respectively;
a similar result is obtained on a Sun-3/180
computer). But they are much slower (more
than twice) than Er’s recursive one on the
Sun-4 computer. The reason is that the
recursive call and return consume more time
than arithmetic operation on the VAX com-
puter while on the Sun-4 computer, where
an RISC (reduced instruction set computer)
architecture is adopted, very fast call/return
operations (comparable to register arithmetic
operation) are provided for a small program
like setpart by the aid of a good optimising
compiler and fast registers (cf. Ref. 5). Act-
ually, the recursive program compiled under
the optimiser option is about four times faster
than one under a no-optimizer option, while
iterative programs are run twice as fast
through compilation under the optimiser
option (thus both programs run in a com-
parable time in a no-optimiser option). We
note that this outstanding performance of
Sun-4 could be rapidly reduced when the
nesting of recursive calls goes deeper than a
certain critical depth.®

4. Concluding remarks

We have succeeded in deriving an efficient
algorithm for generating set partitions. The
algorithm is significantly faster than the
previous fastest iterative algorithm; it is also
faster than the previously reported fastest
program, that of Er, on some computers. It is
as simple as the programs given by Er? and
Semba.® Though it runs much more slowly
than Er’s one on some computers (where
recursive calls are optimised under an RISC
architecture), the present algorithm has one
more advantage over the recursive algorithm :*
it enables an efficient adaptive and cost-
optimal parallel algorithm to be devised, as
described in another paper by the same
authors.!

Acknowledgement

We appreciate the comments made by Dr
Takio Kurita on the experimental data.

B. DJIOKIC,! M. MIYAKAWA 2*
S. SEKIGUCHI,? I. SEMBA® and
I. STOJMENOVIC?!

! Department of Mathematics and Com-
puter Science, University of Miami, P.O. Box
249085, Coral Gables, FL 33124, USA.

2 Electrotechnical Laboratory, 1-1-4 Ume-
zono Tsukuba 305, Japan.

3 Ibaraki University, 2-1-1 Bunkyou, Mito-
shi, Ibaraki 310, Japan.

4 Department of Computer Science, Uni-
versity of Ottawa, 34 G. Glinksi, Ottawa,
Canada KIN 6NS.

* To whom correspondence should be
addressed

References

1. B. Djoki¢, M. Miyakawa, I. Semba, S.
Sekiguchi and I. Stojmenovi¢, Parallel
algorithms for generating subsets and set
partitions to appear in The Computer
Journal.

2. M. C. Er, A fast algorithm for generating
set partitions. The Computer Journal, 31
(3). 283-284 (1988).

3. R. A. Kaye, A Gray code for set par-
titions. Information Processing Letters, S,
171-173 (1976).

4. A. Nijenhuis and H.S. Wilf, Combina-é"
torial Algorithms. Academic Press, New3
York (1978).

5. D. A. Patterson, C. H. Séquin, A VLSIg
RISC. IEEE Computers, 9, 8-21 (1982). =

6. 1. Semba, An efficient algorithm for gen-o
erating all partitions of the set {I,...,n}.
Journal of Information Processing, 7,3
41-42 (1984). o

7. M. B. Wells, Elements of Combinatorial2
Computing. Pergamon Press, Oxfordg
(1971). %

8. D. Wilson, The Sun 4/260 RISC-based
technical workstation. Unix Review, JulyS
1988, 91-98; Japanese translation: UnixS
Magazine, 10, 23-29 (1988).

papeojumoq

sy

e/l

ope

Correspondence

A proposal for the renaming of the scientific
branch of computer science
Dear Sir,

The creation, expansion and evolution of
the scientific branch of Computer Science
which is unique in world history is entirely due
to the computer. The term Computer Sci-
ence means, of course, the science of com-
puters.

For this reason, perhaps, European sci-
entists decided on the term Informatique,
which was later accepted by nearly all the
European countries. This term was derived
from the combination of the French words
Information and Automatique.

Personally I have been preoccupied with
these terms, ‘Computer science’ and ‘Infor-
matique’, because the first is based on the
instrument (Computer), and the second on the
kind of processing (Automatique).

In reality we have identified the machine or
the kind of processing with the science itself.
But our problem is, of course, the information
itself and its change and not the computer or
the kind of processing. It is as unsuitable to
use the term ‘Computer Science’ as it would
be to name, for example, Astronomy, ‘Tele-
scope Science’, or for Microbiology to be
called ‘Microscope Science’.

For all these reasons we suggested in the
late sixties the term * pliroforiki’ (nAnpogopixn)
to be adopted in Greece. This word is derived

from the Greek work pliroforia (minpogopia
= information) with the suffix iki (-ix#). This
suffix gives the word the precise meaning we
need. That is, this term defines exactly the
object of this modern science, which is the
study of information and its change.

The richness and the exactness of the Greek
language made it in the past a source of
suitable terms for most of the scientific
areas. Many of these terms are similar in form
to the above term pliroforiki. Such examples
are: ‘logic’ (Aoyikn), ‘arithmetic’ (apifun-
niky), ‘mechanics’ (umyavikn), ‘statistics’
(otatiatikny), ‘physics’ (gvaikn), etc.

The term pliroforiki has been fully accepted
in Greece in recent years. So I believe that an
attempt should be made to establish this term
internationally, because the term not only
expresses completely the above mentioned
branch of science, but is also consistent with
corresponding terms of other scientific areas
which have been established for many years.
Hence the precise term and consequently its
longevity is ensured.

I should be deeply obliged if you would
publish this letter in your journal in order to
invite wider discussions by specialists in this
branch of science.

Yours faithfully

N. APOSTOLATOS

Od. Androutsou 7-Ag. Paraskevi,
Athens 15341, Greece

282 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

Editor's Comment

What’s in a Name

In his letter, published above, Professorc
Apostolatos expresses a concern that neither o
of the phrases ‘Computer Science’ (Englishg
language) nor ‘Informatique’ (French lan-5
guage) reflects adequately the nature of the
subject that the phrases are intended toG
represent. His contention is that the two=
phrases are too closely associated with com-©

N
puter hardware, whereas the central focus of &
computer-related studies is (or should be)
information itself.

To my mind the principal weakness in the
argument put forward by Professor Apostol-
atos is the contention that computer scientists
should downgrade the importance of the tools
with which they are working in relation to the
medium. This seems akin to the suggestion
that sculptors should rename their subject
according to whether they are working with
clay or bronze or wood or stone rather than in
relation to the art of design. Information and
information systems have been with us since
the beginning of man’s evolution; the tools for
generating computer-based information sys-
tems have been with us only for some 45 years.
Surely the thing that distinguishes the subject
which we are considering is the emergence of
the tools together with the techniques for

anb Aq /GGLEE/L8Z/E/ZE /P10

