SHORT NOTE

Table 2. A comparison of the actual running times (measured in seconds of CPU time)
on a Sun-4/280 computer

n Ers % Semba’s % Setpartl % Setpart2 %

12 34 100 19.4 606 7.6 238 7.0 219
13 21.7 100 124.9 576 48.4 223 44.5 205
14 146.1 100 845.4 579 323.7 222 297.0 203
15 1030.4 100 6031.4 585 2285.1 222 21138 205
16 7577.1 100 45065.8 595 16825.8 222 15627.6 206

partitions). The results show clearly that both
setpart] and setpart2 are faster than Er’s on
the VAX computer (94 and 80 %, respectively;
a similar result is obtained on a Sun-3/180
computer). But they are much slower (more
than twice) than Er’s recursive one on the
Sun-4 computer. The reason is that the
recursive call and return consume more time
than arithmetic operation on the VAX com-
puter while on the Sun-4 computer, where
an RISC (reduced instruction set computer)
architecture is adopted, very fast call/return
operations (comparable to register arithmetic
operation) are provided for a small program
like setpart by the aid of a good optimising
compiler and fast registers (cf. Ref. 5). Act-
ually, the recursive program compiled under
the optimiser option is about four times faster
than one under a no-optimizer option, while
iterative programs are run twice as fast
through compilation under the optimiser
option (thus both programs run in a com-
parable time in a no-optimiser option). We
note that this outstanding performance of
Sun-4 could be rapidly reduced when the
nesting of recursive calls goes deeper than a
certain critical depth.®

4. Concluding remarks

We have succeeded in deriving an efficient
algorithm for generating set partitions. The
algorithm is significantly faster than the
previous fastest iterative algorithm; it is also
faster than the previously reported fastest
program, that of Er, on some computers. It is
as simple as the programs given by Er? and
Semba.® Though it runs much more slowly
than Er’s one on some computers (where
recursive calls are optimised under an RISC
architecture), the present algorithm has one
more advantage over the recursive algorithm :*
it enables an efficient adaptive and cost-
optimal parallel algorithm to be devised, as
described in another paper by the same
authors.!

Acknowledgement

We appreciate the comments made by Dr
Takio Kurita on the experimental data.

B. DJIOKIC,! M. MIYAKAWA 2*
S. SEKIGUCHI,? I. SEMBA® and
I. STOJMENOVIC?!

! Department of Mathematics and Com-
puter Science, University of Miami, P.O. Box
249085, Coral Gables, FL 33124, USA.

2 Electrotechnical Laboratory, 1-1-4 Ume-
zono Tsukuba 305, Japan.

3 Ibaraki University, 2-1-1 Bunkyou, Mito-
shi, Ibaraki 310, Japan.

4 Department of Computer Science, Uni-
versity of Ottawa, 34 G. Glinksi, Ottawa,
Canada KIN 6NS.

* To whom correspondence should be
addressed

References

1. B. Djoki¢, M. Miyakawa, I. Semba, S.
Sekiguchi and I. Stojmenovi¢, Parallel
algorithms for generating subsets and set
partitions to appear in The Computer
Journal.

2. M. C. Er, A fast algorithm for generating
set partitions. The Computer Journal, 31
(3). 283-284 (1988).

3. R. A. Kaye, A Gray code for set par-
titions. Information Processing Letters, S,
171-173 (1976).

4. A. Nijenhuis and H.S. Wilf, Combina-é"
torial Algorithms. Academic Press, New3
York (1978).

5. D. A. Patterson, C. H. Séquin, A VLSIg
RISC. IEEE Computers, 9, 8-21 (1982). =

6. 1. Semba, An efficient algorithm for gen-o
erating all partitions of the set {I,...,n}.
Journal of Information Processing, 7,3
41-42 (1984). o

7. M. B. Wells, Elements of Combinatorial2
Computing. Pergamon Press, Oxfordg
(1971). %

8. D. Wilson, The Sun 4/260 RISC-based
technical workstation. Unix Review, JulyS
1988, 91-98; Japanese translation: UnixS
Magazine, 10, 23-29 (1988).

papeojumoq

sy

e/l

ope

Correspondence

A proposal for the renaming of the scientific
branch of computer science
Dear Sir,

The creation, expansion and evolution of
the scientific branch of Computer Science
which is unique in world history is entirely due
to the computer. The term Computer Sci-
ence means, of course, the science of com-
puters.

For this reason, perhaps, European sci-
entists decided on the term Informatique,
which was later accepted by nearly all the
European countries. This term was derived
from the combination of the French words
Information and Automatique.

Personally I have been preoccupied with
these terms, ‘Computer science’ and ‘Infor-
matique’, because the first is based on the
instrument (Computer), and the second on the
kind of processing (Automatique).

In reality we have identified the machine or
the kind of processing with the science itself.
But our problem is, of course, the information
itself and its change and not the computer or
the kind of processing. It is as unsuitable to
use the term ‘Computer Science’ as it would
be to name, for example, Astronomy, ‘Tele-
scope Science’, or for Microbiology to be
called ‘Microscope Science’.

For all these reasons we suggested in the
late sixties the term * pliroforiki’ (nAnpogopixn)
to be adopted in Greece. This word is derived

from the Greek work pliroforia (minpogopia
= information) with the suffix iki (-ix#). This
suffix gives the word the precise meaning we
need. That is, this term defines exactly the
object of this modern science, which is the
study of information and its change.

The richness and the exactness of the Greek
language made it in the past a source of
suitable terms for most of the scientific
areas. Many of these terms are similar in form
to the above term pliroforiki. Such examples
are: ‘logic’ (Aoyikn), ‘arithmetic’ (apifun-
niky), ‘mechanics’ (umyavikn), ‘statistics’
(otatiatikny), ‘physics’ (gvaikn), etc.

The term pliroforiki has been fully accepted
in Greece in recent years. So I believe that an
attempt should be made to establish this term
internationally, because the term not only
expresses completely the above mentioned
branch of science, but is also consistent with
corresponding terms of other scientific areas
which have been established for many years.
Hence the precise term and consequently its
longevity is ensured.

I should be deeply obliged if you would
publish this letter in your journal in order to
invite wider discussions by specialists in this
branch of science.

Yours faithfully

N. APOSTOLATOS

Od. Androutsou 7-Ag. Paraskevi,
Athens 15341, Greece

282 THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989

Editor's Comment

What’s in a Name

In his letter, published above, Professorc
Apostolatos expresses a concern that neither o
of the phrases ‘Computer Science’ (Englishg
language) nor ‘Informatique’ (French lan-_.
guage) reflects adequately the nature of the®
subject that the phrases are intended toG
represent. His contention is that the two=
phrases are too closely associated with com- o
puter hardware, whereas the central focus of &
computer-related studies is (or should be)
information itself.

To my mind the principal weakness in the
argument put forward by Professor Apostol-
atos is the contention that computer scientists
should downgrade the importance of the tools
with which they are working in relation to the
medium. This seems akin to the suggestion
that sculptors should rename their subject
according to whether they are working with
clay or bronze or wood or stone rather than in
relation to the art of design. Information and
information systems have been with us since
the beginning of man’s evolution; the tools for
generating computer-based information sys-
tems have been with us only for some 45 years.
Surely the thing that distinguishes the subject
which we are considering is the emergence of
the tools together with the techniques for

anb Aq 8961 £€/282/c/ZE/e10ne/)|

using them effectively and not the medium on
which those tools are operating.

This is not to say that the time has not come
for giving much closer attention to that
medium than we have done in the past. In
1985 this Journal carried a set of special
papers highlighting the need for such an
approach, whilst the current issue is devoted
largely to the study of information and its
related disciplines. The focus of the special
issue is emphasised by the final paper, written
by Gordon Scarrott, in which he attempts to
explore the nature of information and relate
that nature to the wider aspects of computer
science, but to say that we must place greater
emphasis on the nature and role of informa-
tion is not to say that we must discard full
consideration of other things. As Gordon
Scarrott states, the development of computer-
ised judgement leads to the apparent need for
neural nets; the two considerations (and others
like them) go hand in hand.

Throughout its brief history our subject has
been plagued with a plethora of names
combined with little agreement on what those
names should mean. In the early days the most
common phrase in use was ‘programming’,
although a programmer could be anybody
from a numerical mathematician to a coder in
a commercial organisation. Only when the
development of programming languages and
operating systems had reached the point where
they could be studied in their own right did the
phrase ‘computer science’ begin to make an
appearance. Not everyone at that time, how-
ever, did use the phrase ‘computer science’.
Professor M. V. Wilkes, the first President of
the British Computer Society, used for the title
of his personal Chair at the University of
Cambridge the term ‘Professor of Computer
Technology’, whilst on the commercial front
the ‘data processing’ industry was beginning
to take off.

This raises the question of what exactly do
we include within our subject area? Are
computer applications not to be considered as
a part of computer science? Were the early
pioneers of EDSAC — who were carrying out
text processing almost from the day that
EDSAC began operations — not as involved in
computer science as the later experts studying
formal aspects of computing systems? There
are many instances of important developments
in computer science starting in the commercial
data-processing world. The most far-reaching
of these probably has been databases, which
did not become accepted as a respectable
academic subject until long after the work of
the CODASYL Committee had made its
presence felt in commercial data processing.
The recent Bide Committee report (in the
United Kingdom) has stressed the need for
society to place as much emphasis on computer
applications as on original research, and it
appears inconceivable that we can consider as
meaningful a subject area from which this
particular aspect is excluded.

If our subject area is to consider the coming
together of four entities — hardware, software,
liveware and infoware (meaning information
in all its guises, however it is coded symbolic-
ally) — and includes basic research, develop-
ment and application in all these areas, then
what generic term can we use to describe it?
Some years ago the term information tech-
nology was introduced to emphasise the
convergence of telecommunications with com-
puting and to stress that online or distributed
systems were now something to be considered

CORRESPONDENCE

seriously. Again, however, a title of this kind
leads to an emphasis on components, tools
and techniques rather than on the union of the
whole subject area. Among other titles which
are in common use are computer studies,
computing studies, computing science, in-
formation science, information studies, in-
formation systems and information pro-
cessing. The two phrases ‘information science’
and ‘information studies’ have always had
different interpretations, the former being
more generally associated with information
retrieval rather than with computer science.
But again, convergence is taking place, with
multi-media integrated distributed office work-
stations making an appearance, generating
the result that information science has become
as much a part of ‘computer science’ as any of
its other components. The other phrases are
all, at some time, used with the same meaning.

Most recently has come the emergence of
phrases such as software engineering, systems
engineering, information engineering and in-
formation systems engineering. What do they
mean ? The phrases are intended to convey the
idea that we should be building computer-
based information systems using components,
tools, standardisation, quality control, etc.
Some of us may need to do this. But many of
us are genuinely seeking fundamental knowl-
edge about the nature of the environment in
which we are working and, presumably, are
scientists. Those of us who are anxious to
explore the fundamental nature of information
itself are, presumably, genuinely information
scientists and not information engineers.
Many others are concerned with the design of
business systems or the application of com-
puters in a commercial area such as art and
design. None of these would consider them-
selves to be engineers. Other reasons have
been quoted as to why the term ‘engineer’ is
inappropriate (cf. the letter by C. R. Symons,
The Computer Bulletin,Vol. 1, No. 1, February
1989). It is sufficient to say here that the term
is not applicable in a large number of
situations.

Whatever name is chosen there will be
someone who will say that to them it means
something else or that it does not cover
adequately the whole subject area with which
we are concerned. In the circumstances why
do we not stop inventing new names and
resurrect the one name which appears to cover
all the different aspects of the subject area,
that has been with us from the beginning, that
has not been affected by the convergence of
new academic areas or new technologies and
that recognises the single factor which draws
all the areas of study into one subject whole?
This is the name ‘computing’. For the fore-
seeable future, at least, this Journal will wish
to be described as ‘The International Journal
of Computing” with all that that implies.

As Editor of The Computer Journal I have
been reluctant to be the one to comment on the
letter by Professor Apostolatos in case com-
ments which are entirely my personal view are
taken to be, in some way, the official view of
The Computer Journal. Would readers please
note that, with one exception, the comment
above is entirely personal and in no way reflects
the views either of the Editorial Board of The
Computer Journal or of the British Computer
Society. The one exception is the final sentence.

Peter Hammersley

Honorary Editor
The Computer Journal

Dear Sir,

In a recent paper published in your journal,!
M. C. Er has shown that ordered trees with
prescribed degree sequence can be generated
by an elegant recursive algorithm that is
simpler and more efficient than the algorithm
of Zaks and Richards.?

However, we must point out that a superior
algorithm with the same conceptual basis was
published by Ruskey and Roelants van
Baronaigien in 1984.2 Our algorithm is repro-
duced below
procedure GenTree(lb, ub);
var i, j:integer;
begin

ifn, =n,=-

else

for ie{lb,lb+1,...,ub}do

for je{plp > 0 andn, >0} do begin
ny<n—1;
a;< kg,
GenTree (i+1,ub+k));
a;<-0;
n<n+1;

end;

end {of GenTree};

The sequences n; and k; have the same
meaning as in Refs 1 and 3. The number of
nodes with k; children is n;. Our sequence a
corresponds exactly to Er’s codewords C. To
run our algorithm initialise a to be all zeroes
and call GenTree(1,1).

Let us call the algorithm of Ref. | algorithm
R. The similarities of GenTree with algorithm
R are self-evident. In fact, we had in the course
of our research constructed exactly algorithm
R, but later rejected it since it did not run in
constant average time and it is slightly more
complicated than GenTree. Constant average
time means that the total amount of com-
putation divided by the number of objects
produced is bounded by a constant.

Algorithm R is not anlysed in Ref. 1. In Ref.
2 we show that the trees are generated in
constant average time by GenTree if it is
carefully implemented. The main idea is to
maintain n; and k; as a linked list. In Ref. 2 we
also show for the first time that permutations
of a multiset can be generated in constant
average time, and provide a general framework
for showing that similar recursive algorithms
operate in constant average time.

It is our opinion that every paper that is
concerned with generating elementary com-
binatorial objects should at least consider the
question of whether such generation is possible
in constant average time.
yours faithfully,

FRANK RUSKEY
DOMINIQUE ROELANTS VAN
BARONAIGIEN

Department of Computer Science,
University of Victoria,

P.O. Box 1700 Victoria, B.C.,
Canada, V8W 2Y2

= n, = 0 then Print (a)

References

1. M. C. Er, A simple algorithm for gen-
erating non-regular trees in lexicographic
order. The Computer Journal, 31 (1),
61-64 (1988).

2. F. Ruskey and D. Roelants van Baron-
aigien, Fast recursive algorithms for gen-
erating combinatorial objects. Congressus
Numerantium, 53-62 (1984).

3. S. Zaks and D. Richards, Generating
trees and other combinatorial objects
lexicographically. SIAM J. Computing, 8,
73-81 (1979).

THE COMPUTER JOURNAL, VOL. 32, NO. 3, 1989 283

¥20Z I4dy 01 uo 1senb Aq 895 | £€/282/S/2¢/e1o1e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

