Inheritance in Actor Based Concurrent Object-Oriented

Languages

D.G.KAFURA anp K. H.LEE

Department of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.

Inheritance is a valuable mechanism which enhances reusability and maintainability of software. A language design
based on the actor model of concurrent computation faces a serious problem arising from the interference between
concurrency and inheritance. A similar problem also occurs in other concurrent object-oriented languages. In this paper,
we describe problems found in existing concurrent object-oriented languages. We present a solution which is based on a

concept called behaviour abstraction.

Received April 1989

1. INTRODUCTION

Is inheritance inconsistent with concurrency? The in-
terference between inheritance and object-based con-
currency has been noted by others.® ° These observations
centre on the difficulty of locating or copying methods at
run-time in systems without shared memory. However,
we do not consider this to be a fundamental difficulty
because the performance penalty induced by inheritance
may not always be a problem. At an extreme, the sharing
problem may be avoided by allowing multiple copies of
the same code and data on different nodes. Ref. 6
discusses a copy technique which is useful in tais situation.

We believe that the fundamental interference between
inheritance and concurrency is more deeply rooted. This
difficulty can be observed in existing object-oriented
languages, only a few of which support both concurrency
and inheritance. The problem, as will be described later,
is that inheritance and concurrency control tend to
interfere with each other. This interference results in
concurrent object-based languages which either do not
support inheritance or which do so only by severely
compromising some other property. For example, one
language supporting both concurrency and inheritance
compromised object encapsulation.?” A second language
excludes the possibility of inheriting synchronisation
code.® A result of this restriction is limited leverage in
reusability. In yet another language, inheritance had
been tried but was removed later because of limited
reusability.® The same basic problem was found in the
initial approach of our own exploratory language design,
called ACT + +.! The language is a concurrent extension
of C+ +2* based on the actor computation model of
Agha and Hewitt.?

This paper analyses the approaches to inheritance and
concurrency control in existing object-oriented languages
and proposes a solution to the interference problem
using what we call behaviour abstraction. In the remainder
of this paper, Sections 2 and 3 provide background for
the research while the major research contribution of this
paper is found in Sections 4 and 5. In Section 2, we
present our view of inheritance and delegation. Reuse
and sharing are distinguished in order to motivate our
use of inheritance rather than delegation. Section 3
classifies approaches to concurrency control in existing
object-oriented languages. Based on this classification,
an analysis of currently existing concurrent object-
oriented languages is provided. The conflict between
inheritance and concurrency found in an actor based

language is described in Section 4. Section 5 discusses our
solution to this problem.

2. INHERITANCE AND DELEGATION

Both inheritance and delegation are mechanisms for
sharing knowledge in object-oriented programming.
Recently, there has been a great debate on the power of
these two mechanisms.®16-2% In this section, we discuss
a viewpoint on the difference between inheritance and
delegation. This discussion motivates our attempt to
combine the actor model with inheritance rather than
delegation. In order to put our view on this issue in
perspective, we distinguish two concepts, reuse and
sharing. Our position is that inheritance provides more
power in reusability while delegation provides more
power and flexibility in sharing.

2.1 Reuse and sharing

Reuse is the activity of using an existing component in
defining a new component. Reuse has been recognised as
an important activity in software engineering.*® It is
possible to reuse a component without sharing it.

Sharing denotes that the same component is used by
more than a single client at run time. For example, code
sharing occurs if a code segment in memory is used by
different processes. Sharing offers several advantages.
One important advantage of sharing is the flexibility in
modifying properties of objects at run time. For example,
in Smalltalk-80, a class object is shared by all instances of
the class at run time. A modification of a method in the
class is automatically reflected in the behaviour of every
instance of the class. If each instance has its own copy of
the method, this localized modification is not possible at
run time. These advantages are the main motivations
behind the development of prototype-based systems such
as Act1'® and Self,*® where sharing among objects occurs
dynamically.

2.2 Inheritance vs. delegation

Inheritance is closely tied with the notion of a class. A
class captures static properties of objects such as
attributes and methods in an explicit form. A new class
can be defined as an extension of existing classes with the
support of inheritance. Class hierarchies provide a
natural classification of components and enhances
modularised modification. These expectations have been
evidenced in Refs 7, 10, 13.

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 297

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /211 e/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

D.G.KAFURA AND K. H. LEE

While class-based languages allow limited sharing of
values between objects, delegation-based languages pro-
vide strong support for dynamic and efficient sharing of
object properties.'®> However, in a delegation-based
system, sharing seems to be limited to run-time entities
such as values and objects. No explicit organised
collection of reusable components exist.

Classes and inheritance are valuable where reusability
and maintainability are emphasised more than flexibility.
Prototype and delegation based languages are more
suitable when the power of dynamic and flexible sharing
can be maximally exploited. The support for classes and
inheritance in languages seems more natural when strong
type-checking and efficient code are favoured over
flexibility and dynamicity.

3. CONCURRENCY CONTROL IN OBJECT-
BASED LANGUAGES

This section discusses the relationship between con-
currency and inheritance in existing languages. An
observation is made about the interference between the
two mechanisms.

An object in a concurrent object-oriented language
may proceed in parallel with another object. Such an
object has its own thread of control. We call an object
with its own thread of control an active object. In
contrast, an object in a sequential language does not
possess its own thread of control. We will refer to an
object without its own thread of control as a passive
object.

Concurrency implies the need for synchronisation,
without which the state of an active object may become
inconsistent. Since the internal state of an object can only
be accessed via method invocation, previous object-
based concurrency control techniques were implemented
inside the object. There are two directions in providing
concurrency control. One approach centralises con-
currency control in a single procedure. We call this
approach centralised control. The other approach distri-
butes concurrency control among methods without a
centralised procedure. We call this decentralised control.

In centralised control, message reception is explicitly
programmed using guarded commands or SELECT
constructs. CSP,’* ADA, ABCL/1,”® POOL-T,® and
Extended Eiffel* belong to this category. There is a
common problem in attempting to incorporate inherit-
ance into these languages: synchronisation constraints
specified in the centralised procedure cannot be inherited
by a subclass. This point will become clear when we
review these languages later in this section.

Two different approaches to concurrency control are
found in languages with decentralised control. One
approach uses critical sections and the other approach
uses what we call interface control. A majority of
languages adopt the critical section approach. In these
languages, each method is responsible for ensuring a
certain condition before entering a critical section.
Several languages use a locking mechanism. Each method
must explicitly lock a variable before entering a critical
section and must unlock the variable when exiting the

* The language is a concurrent extension of Eiffel. [19]. Since the
language was not given a name in [Ref. 8}, we will refer to the language
as Extended Eiffel.

critical section. Other languages use a construct similar
to a conditional critical region.’> For example, a newer
version of Concurrent Smalltalk provides a construct
called relinquish which allows a thread to wait on a
condition.”® In Trellis/Owl,'® the lock block structure
automatically performs an unlock for a lock variable
when its scope is exited.

Two problems exist in the approach based on critical
sections. First, object encapsulation is weakened. Relying
on a lock variable requires the variable to be visible to
any subclass in the class hierarchy, which is a violation of
encapsulation. A similar observation was made by Ref
22. Second, it is possible for a method to violate the
critical section protocol. For example, if explicit locking
is used, a method may enter the critical section without
performing the locking. This problem is compounded in
a language which supports inheritance. Because the
subclass is separated from the superclass, there is a greater
possibility that methods defined in a subclass may not
observe the critical section protocol.

The other approach in decentralised control is based
on direct control of the object interface. In this approach,
called interface control, message reception is implicit. A
method execution is initiated only when the method is
allowed to access the internal state of the object. The
underlying mail system delivers a message when the
receiver is ready. Hybrid?® and actor based languages
such as Act2% and Act3! are found in this category. For
example, Hybrid provides constructs which control the
availability of methods. A method may be closed
temporarily so that messages for that method are not
allowed to cross the object boundary. The blocked
messages are processed later when the method is opened.
In Act2 and Act3, synchronisation of an active object is
achieved with the operation called become. This operation
allows an object to change to another object, which may
have a different interface and even different data
structures. Neither Act2 nor Act3 supports inheritance.

A serious problem occurs when adding inheritance to
languages using interface control. Defining a new method
in a subclass may invalidate many superclass methods.

The remainder of this section describes how the
problem of combining inheritance and concurrency is
manifested in the following concurrent object-based
languages: POOL-T, Extended Eiffel, Concurrent Small-
talk, Hybrid, ACT3, and ACT+ +. Each of these
languages uses a different approach to concurrency
control. While some of these languages do not support
inheritance, they are included here since a review of these
languages provides insight into the conflict between
inheritance and concurrency.

POOL-T

The concurrency control approach of POOL-T [America
87] is centralised. In POOL-T, the class definition of a
concurrent object consists of a list of methods and a
separate procedure called body which specifies con-
currency constraints. An object explicitly states its
willingness to accept messages in the body using a
construct similar to guarded command. POOL-T does
not support inheritance. In fact, inheritance was tried in
the initial design, but was removed later.® The decision to
remove inheritance from POOL-T illustrates the general
interference between inheritance and centralised control.

298 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /211 e/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

INHERITANCE IN ACTOR BASED CONCURRENT OBJECT-ORIENTED LANGUAGES

The problem is that inheritance in a language with
centralised control does not allow synchronisation code
to be reused. In centralised control languages like POOL-
T, each time a subclass with a new method is defined, the
body must be revised since otherwise no new methods
defined in the subclass can be executed. It is this
consideration that led the designer of POOL-T to choose
not to include inheritance in the language.

Extended Eiffel

A concurrent extension of Eiffel proposed in Ref. 8
supports both concurrency and inheritance using central-
ised control. An active object is defined as an instance of
a subclass of a class called ‘PROCESS-POWER’. A
method in a class is not concerned with synchronisation.
Concurrency control is centralised into a single procedure
called Live which is similar to body of POOL-T. Extended
Eiffel suffers from the problem manifested in an earlier
design of POOL-T. The method Live must be rewritten
if a subclass adds a new method, regardless of the
semantics of the method being added.

The approach of Extended Eiffel excludes the in-
heritance of synchronisation code, and thereby severely
restricts reusability. The synchronisation code of Live
may be a result of an extensive reasoning process. A
subtle error may creep in during the process of copying
and modifying the Live method. This is the very problem
that inheritance intends to solve. While the separation of
concurrency control from sequential action may allow a
more readable definition of an object’s behaviour, we
believe that readability can also be provided by a
language which uses decentralised control. We discuss
this in more detail when we present our solution in
Section 5.

Concurrent Smalltalk

Concurrent Smalltalk is a concurrent extension of
Smalltalk-80 [Yokote 86] which supports both con-
currency and inheritance. The language uses critical
sections for concurrency control. An active object, called
an atomic object, serialises messages to maintain con-
sistency of its internal state. Locking is used for
concurrency control. An active object allows a method to
be executed even when the method execution is im-
mediately blocked. In this case, the client object should
block itself, terminating its current process. A provision
is required in the code of the client which will send the
same message again to the object when the client is
restarted. Since the client is terminated and restarted, it
must have a separate method which will do the
retransmission.

This approach has several disadvantages. One is a
weak object encapsulation. In the language, a sender
must provide the method which will retransmit a message.
This method obscures the readability of the program and
imposes a burden on the sender. The sender is also
required to understand the internals of the receiver
object. This violates the encapsulation principle of object-
oriented languages. Another disadvantage is the use of
unstructured constructs. For example, the Bounded
Buffer problem described in Ref. 26 uses a wait-signal
primitive. The drawback of such a low-level primitive
has been well recognized in operating systems research.

A later version of Concurrent Smalltalk®® improves this
situation by using a relinquish operation and the concept
of a secretary, which is similar to conditional critical
regions.® This approach still has the disadvantages
intrinsic to an approach based on critical sections.

Hybrid

Hybrid?® is a concurrent object-oriented language based
on decentralised control. The language provides a
message queue called delay queue for concurrency
control within an active object. Each method of an active
object is associated with a delay queue. Synchronisation
control for accessing an object is achieved by explicitly
closing and opening delay queues. Each method contains
explicit statements for controlling delay queues. A
message which requests the execution of a method is
blocked if the delay queue associated with the method is g
closed. The message is processed later when the delay 2
queue is opened by some method.

Hybrid supports multlple inheritance. The concurrency &
control approach used in Hybrid presents a problem 3
when we attempt to define a subclass of an active object =
class. To appremate this problem, consider adding a HCWTJ
method in defining a subclass. The new method may =
need to have its own delay queue which was not present 3 &
in its superclass. The question then is how the methods of & 9
its superclass can control this delay queue. Unless the 5
new delay queue is controlled solely by the new method 2
itself, all superclass methods that need to open or close 5
the delay queue must be revised so that the name of the
delay queue may be referenced in their definitions.

wioly papeoj

Act3

Act3 is a concurrent object-oriented language based on
the actor model as defined by Agha.! The language
represents another approach in interface control. A main
synchronisation device of ACT3 is the become operation.
It is also the only synchronisation primitive other than
message passing operations. A become operation in a
method specifies a replacement behaviour, which receives
the next unprocessed message. Each method execution
must use a become operation to name a replacement
behaviour. Specifying a replacement behaviour is the
way an actor changes its state. In the actor model, both
state change and synchronization control is accomplished
using a single become operation. ACT3 does not provide
inheritance. A language which intends to support
inheritance and the actor model of concurrency faces a
fundamental problem, which is similar to that of Hybrid
but more serious. The problem was noticed in the initial
design of our own language ACT + +.

20z IMdy 01 uo 1senb Aq 9€5//€//62/v/2E/8191Me/|ulwoo/woo d

4. THE ACTOR-INHERITANCE CONFLICT

In this section, we use ACT + + to illustrate the conflict
between inheritance and concurrency in a language
based on the actor model. Although we are using
ACT+ +, the interference problem is not specific to
ACT + + and also occurs in other languages combining
concurrency and inheritance. Before presenting the
description of the problem, we provide a description of
the relevant parts of ACT+ +. Other aspects of
ACT+ + are described in 14.

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 299

D. G. KAFURA AND K. H. LEE

ACT + + is a language design which supports both
class inheritance and the actor model of concurrency. As
an expedient implementation strategy, we used C+ + as
the base language, extending it with the concurrency
abstraction of the actor model. In ACT+ +, actors
represent active objects. All non-actor objects are passive
objects. A passive object represents a C+ + object,
which is local to a single active object. A shared object
must be an actor. An actor class, a class whose instances
are actors, is defined as a direct or indirect subclass of the
special class ACTOR. Like passive objects, an actor class
can inherit properties from an existing actor class by
defining itself to be a subclass of the existing actor class.
ACT+ + distributes concurrency control into each
method.

We now describe by example the interference of
inheritance and actor concurrency. Consider producers
and consumers communicating through a bounded
buffer. The bounded buffer is modelled as an active
object which is shared by producers and consumers. The
buffer provides get() and putz() methods to clients.
Producers are actors which send put() requests when
they want to deliver data items to consumers. A consumer
actor sends a get() message to the buffer when the
consumer needs a data item. A bounded buffer actor is
empty when it is initially created. An empty buffer
accepts only a put() message. If the buffer is neither
empty nor full, it acts as a partially filled buffer which
honours both get() requests. If the buffer is full then it
must accept only a get() request from a consumer. We
will call these three states empty_buffer, partial_buffer,
and full_buffer, respectively. A possible transition se-
quence in the states of a bounded_buffer is

empty_buffer — > partial_buffer — > full_buffer
— > partial_buffer — > empty_buffer.

A subtle semantic question now arises. What will happen
if the current state of an actor does not recognize the
method name in a message? For example, what should
be done if the next message to be processed contains a
get() request while the buffer is empty? The answer to
this question in the context of ACT+ + is being
investigated. For the purpose of this paper, we assume
that a message will be put back at the end of the message
queue. Figure 1 shows the definition of bounded_buffer in
ACT+ +*.

The syntax of ACT+ + is close to that of C+ +. A
few new constructs were added to support the actor
abstraction. In Fig. 1, the operation become is used to
specify a replacement behaviour. A become operation
takes an actor class as an argument. An actor class
corresponds to a behaviour script of the primitive actor
model.! The operation reply is used to send a message
to the sender of the message being processed. Since the
class bounded_buffer is defined as a subclass of
ACTOR, the bounded_buffer is an actor class whose
instances are active objects, namely actors. An instance
of bounded_buffer contains instance variables in, out,
and the array buf. In C+ +, a method with the same
name as the class name denotes a constructor. The
procedure bounded_buffer() is a constructor.

* While the primitive actor model assumes no structured types, such
as array, ACT + + provides all data types of C+ +. For the purpose
of this paper, we assume an array parameter is passed by value.

class bounded_ : ACTOR {
int_array buf[MAX]

int in,out;
public:
bounded_buffer()
{in=20; out = 0}
int get()
{
reply buffout+ +] ;
out % = MAX;
if (in= = out)
become(empty_buffer(buf,in,out)) ;
else

become(partial_buffer(buf,in,out)) ,
}

void put(int item)

buffin+ +] = item;
in% = MAX;
if (in==out%MAX)

become(full_buffer(but,in,out)) ;
else

become(partial _buffer(buf,in,out)) ;
}

IR
Figure 1. Definition of bounded_buffer.

To recognise the operations which are appropriate for
different behaviours (e.g. empty, full, partial) we in-
troduce three classes of bounded buffer: namely, empry_
buffer, full_buffer, and partial_buffer. These three classes
are defined as subclasses of the class bounded_buffer. The
subclass empty_buffer is the same as bounded_buffer
except that it does not have the ger() method. The
subclass full_buffer is a bounded_buffer without put().
The subclass partial_buffer is exactly the same as the
bounded_buffer class. These subclasses can be defined as
restrictions of the class bounded_buffer. The definitions
of the three subclasses follow.

class empty_buffer : bounded_buffer {
public :
bounded_buffer :: put;

35
class full_buffer : bounded_buffer {
public :

bounded_buffer :: get;
¥
class partial_buffer : bounded_buffer {
public :

bounded_buffer :: get,
bounded_buffer :: put :
e

The first concern is that many similar classes must be
defined to implement a bounded_buffer. This is a result of
the natural mapping of the primitive actor model into a
class-based object-oriented language. The use of the
become operation implies a different class be defined for
each different interface. This is unpleasant since all of the
different behaviours have almost the same methods, yet
they all must be defined as distinct classes. However, the
real problem occurs when a subclass with its own method
needs to be defined.

300 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /211 e/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

INHERITANCE IN ACTOR BASED CONCURRENT OBJECT-ORIENTED LANGUAGES

Suppose that we want to implement a bounded buffer
with a new method get_rear(), which returns the most
recently deposited item, rather than the oldest one. We
call this an extended_buffer. A plausible solution is
to define the extended_buffer class as a subclass of
bounded_buffer with an addition of a new method
get_rear(). The extended_buffer should be able to inherit
all other methods from bounded_buffer without change.
This is not an unusual expectation of a language with
inheritance. Unfortunately, this solution does not work
as described below.

The possible behaviours of an extended_buffer are:

extended_empty_buffer put()
extended_full_buffer get().get_rear()
extended_partial_buffer get() get_rear(),put()

Comparing these behaviours with those of bounded_
buffer, we find that extended_empty_buffer and
empty_buffer have the same interface. Hence empty_
buffer may be used in place of extended_empty_buffer in
the new class definition. However, extended_full_buffer is
different from full_buffer because of the new method
get_rear() in the extended_full buffer. Similarly, the
behaviours extended_partial_buffer and partial_buffer are
also different. Therefore, extended_full_buffer and
extended_partial_buffer must be defined as new classes.

However, the problem does not end here. Notice that
every method of bounded_buffer must be redefined in the
definition of extended_buffer if the method refers to
either of the two class names, full_buffer and
partial_buffer. Since both get() and put() uses
partial_buffer, none of these methods can be inherited.
Hence, extended_buffer inherits no methods from its
superclass. All of its methods must be implemented
within its own definition! This argument equally applies
to an attempt to define extended_full_buffer as a subclass
of full_buffer and extended_buffer as a subclass of
partial_buffer. The point of this example is that no
methods of the superclass can be reused in the definition
of a subclass.

We have already observed that a similar interference
problem exists in Hybrid. In both ACT + + and Hybrid,
superclass methods are not independent of new methods
being defined in a subclass. The degree of dependency is,
however, higher in a language based on the actor model
of computation.

S. INHERITANCE IN ACTORS

Having described the conflict of concurrency and
inheritance, we now present our solution to this problem.
Our solution is presented in the framework of an actor
based language.

5.1 A Model of an object manager

Each active object (actor) is associated with an object
manager. The object manager is responsible for protecting
the object from unauthorised requests and for dis-
patching method invocations. An object manager is
automatically created when an object is created. The
object manager immediately starts and continues until
the object is destroyed.

The object manager of an object protects the object by
enforcing the interface of the object. Using the ter-

minology of Hybrid, the interface of an object consists of
all open methods. A method is open if the current
interface of object can accept a message for the method.
Otherwise, a method is closed. The interface of an object
is dynamically changed since methods can be opened or
closed during computation. Methods are closed by the
object manager and opened by a method in execution,
called a thread (see below). A message for a method
invocation is authorised if the method is open. A message
for a closed method is unauthorised.

The object manager waits for the arrival of an
authorized message. On finding such a message, the
object manager closes all methods and creates a thread
which will perform the requested method. Unauthorised
messages are buffered by the object manager until their
corresponding methods are opened. Closed methods
may be opened by a become operation executed by a
thread. A become operation specifies a set of methods to
be opened. A thread can perform the become operation
only once in its life. Since a thread is created as the result
of the previous become operation, no thread but the
most recently dispatched thread can execute the become
operation. The become operation will open at least one
method; otherwise, the actor is garbage collected.

There may exist multiple threads inside an object since
the become operation may be executed prior to the
termination of a thread. All the threads proceed in
parallel. A thread dies when the execution of the method
represented by the thread is completed. Among threads,
no variables are shared.

5.5 Implementation of the object manager

The function of an object manager is well-defined and
uniform for every object. Hence, a programmer does not
need to write the object manager. The object manager
can be provided through compiler and run-time support.
This obviates the need for concurrency control mechan-
isms to be centralised in one method. The object manager
can be implemented either as a function of the mail
queue or as a special thread. The former will result in a
sophisticated mail queue while the latter is similar to a
process scheduler.

The object manager will need to keep track of the
object’s interface, which is changed by a become
operation of that object’s most recently dispatched
thread. This problem along with the interference problem
can be solved by redefining the way a replacement
behaviour is specified. For this purpose, we introduce the
concept of behaviour abstraction.

5.3 Behaviour abstraction

A behaviour name is a handle for a set of open method
names. For example, consider the bounded_buffer. The
buffer actor has gne of the following behaviours:

empty_buffer = {put()}
Sull_buffer = {get()}
partial_buffer = {get(),put()}

With these, we have defined three behaviour names;
namely, empty_buffer, full_buffer, and partial_buffer.

A become operation specifies a replacement in terms
of a behaviour name. For example, ‘become full_buffer’
is acceptable if full_buffer is a behaviour name. The

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 301

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /211 e/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

D.G.KAFURA AND K. H. LEE

language should provide a convenient way for specifying
behaviour names. For example, defining a behaviour
name using a regular expression may be desirable. Note
the difference in the usage of ‘behaviour’ in the primitive
actor model and in our model. In our model, a behaviour
denotes a set of open methods while a behaviour in the
primitive actor model means a script of an actor.

class bounded_buffer : Actor {
int_array buff MAX] ;
int in,out ;
behaviour.
empty_buffer = {put()},
Sull_buffer = {get()};
partial_buffer = {get(),put()},
public:
buffer()
{

in=0;
out =0;
become empty_buffer ;

void put(int item)

buffin+ +} = item;

in% = MAX;

if (in== (out+1)%MAX)
become full_buffer;

else
become partial_buffer

}
int get()
{
reply buflout+ +};
out % = MAX;
if (in= = out)
become empty_buffer;
else
become partial_buffer ;
}

}5
Figure 2. Bounded_buffer with behaviour abstraction.

We now present the solution to the problem of
extended_buffer which inherits from the bounded_buffer.
The bounded_buffer and the extended_buffer are defined
using the behaviour names defined earlier in this section.
Figure 2 shows a new definition of the bounded_buffer
using behaviour abstraction. The definition of an
extended_buffer which inherits from the bounded_buffer
is shown in Fig. 3. The extended_buffer has three distinct
behaviours. Each of these constitutes a behaviour name.
We define the following names as the relevant behaviours
for an extended buffer:

extended_empty_buffer = {put()}
extended_full_buffer = {get(), get_rear()}
extended_partial_buffer = {get(),get_rear(), put()}

We must now consider the relationship between the
behaviour names of the subclass and those of the
superclass. Consider the put() method, which is inherited
from the superclass bounded_buffer. The new operation
get_rear() does not belong to any behaviour names
named by put(). It is necessary to let the method put()
know that get_rear() is added in the definition of the

estended_buffer. This is accomplished by redefining the
behaviour names used in superclass methods. The
redefinition is expressed by the ‘redefines’ construct. The
new definition of a behaviour name will be used by all
superclass methods. In some cases, the redefinition of a
behaviour name does not change the set of methods.
Such renaming may be desired to provide the object with
a more appropriate name. For this reason, we redefine
empty_buffer as extended_empty_buffer without changing
its meaning using the ‘renames’ construct.

class extended_buffer : public bounded_buffer {
behaviour :
extended_empty_buffer
renames empty_buffer
extended_full_buffer = {get(), get_rear()}
redefines full_buffer
extended_partial_buffer = {get(), get_rear(),
put()}
redefines partial_buffer ;
public:
extended_buffer()
{

in=out=0;
become extended_empty_buffer

}

int get_rear()

{
reply(buf1--in%max]);
if (in = = out)
become extended_empty_buffer
else
become extended_partial_buffer ,
}

b

Figure 3. Definition of extended_buffer.

Using behaviour names also has several other advant-
ages. First, behaviour names improve program read-
ability. With more expressive and meaningful names, a
program is more readable because the next interface is
denoted by the behaviour name used in a become
operation. Second, an active object requires that a
programmer understand its dynamic run time behaviour.
While the centralized approach provides an effective way
to tackle this issue by separating concurrency control
from sequential actions, the approach has the drawback
of excluding the inheritance of synchronisation code.
While our model allows inheritance, it also allows
concurrency control to be separated. Third, the synchro-
nisation mechanism is structured because no matching
primitive is needed for the become operation. This is an
important requirement of synchronisation primitives
proposed for incremental programming. This avoids
such problems as a new method defined in a subclass
which forgets to signal superclass methods or fails to
observe a critical section protocol. Fourth, it supports an
object-oriented design methodology. The behaviour
names provide a level of abstraction whose granularity is
smaller than data abstraction but larger than procedural
abstraction. With the behaviour abstraction, the behav-
iour of an object can be modelled as state transitions
among behaviour names. Each of these names provides
a higher level abstraction which is more relevant to a

302 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /211 e/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

INHERITANCE IN ACTOR BASED CONCURRENT OBJECT-ORIENTED LANGUAGES

programmer’s conceptual view of an object. The state-
transition behaviour of an object is naturally expressed
with the behaviour abstraction.

5.4 Implementation of behaviour abstraction

The mechanism of redefining a behaviour name in a
subclass is analogous to that of virtual function in
C+ +.2* Every behaviour name declared in a class may
be regarded as a ‘virtual behaviour’ whose meaning a
subclass may override. As in a virtual function in-
vocation, a behaviour name used by an object in a
become operation may denote different behaviours which
are decided by the type of the object. One implementation
scheme resembles the virtual function table of C+ +.
The compiler creates a table of behaviour names for each
class. The become operation is translated into specifying
a set of open methods which are found using a behaviour
name as an index into the table.

6. LIMITATIONS AND FUTURE
RESEARCH

There are several limitations to our approach. The most
fundamental limitation is the assumption of a closed
system. One of the fundamental principles of the actor
model is the openness of the model. Openness means that
an actor can modify itself dynamically (i.e. at run-time)
upon receipt of a message which requires a computation
unanticipated by the original behaviour. The reconfigur-
ability of actor relationships is extended beyond that
conceived of by the programmer. While openness
provides a flexible computation model, it is a significant
obstacle to be overcome in the design of a language like
ACT+ 4+, which prefers safety to flexibility. In the

REFERENCES

1. G. Agha, A Model of Concurrent Computation in Dis-
tributed Systems, MIT Press (1986).

2. G. Agha and C. Hewitt, Concurrent programming using
acors. In Object-Oriented Concurrent Programming (edited
A. Yonezawa and M. Tokoro), MIT Press 37-53 (1987).

3. P. America, POOL-T: A parallel object-oriented language.
In Object-Oriented Concurrent Programming (edited A.
Yonezawa and M. Tokoro), MIT Press 199-220 (1987).

4. T. Biggerstaff and C. Richter, Reusability framework,
assessment, and directions, IEEE Software, pp. 41-49
(March 1987).

5. P. B. Hansen, Structured multiprogramming, CACM 15
(7) (July 1972).

6. J.-P. Briot and A. Yonezawa, Inheritance and synchro-
nization in concurrent OOP, ECOOP '87 European
Conference on Object-Oriented Programming, Springer-
Verlag, pp 33-40 (June 1987).

7. R. H. Campbell, J. Johnston and V.F. Russo, Choices:
class hierarchical open interface for custom embedded
systems, Operating Systems Review 21, 9-17, July 1987.

8. D. Caromel, A general method for concurrent and dis-
tributed object-oriented programming, Extended abstract,
Workshop on Object-Oriented Concurrent Programming,
OOPSLA '88 San Diego, CA (September 1988).

9. P. Freeman, Reusable software engineering: concepts and
research directions, Proceedings of Workshop on Reusability
in Programming, ITT, Shelton, CONN (1983).

10. A. Goldberg and D. Robson, Smalltalk-80: The Language
and its Implementation, Addison-Wesley (1983).

presence of openness, type-checking of a message is
impossible since an actor’s behaviour may mutate
without restriction during execution. While our model
assumes a closed system, we do not consider this a
weakness since type safety is one of our design goals as
other languages have chosen type safety over flexibility.
A natural next step is to relate the concept of behaviour
abstraction to a type system. We are currently investi-
gating a type system based on the behaviour abstraction
which will allow more flexible behaviour replacements.

7. CONCLUSIONS

The interference between inheritance and concurrency
has been identified by several researchers as difficulty in
sharing methods in distributed environments. There is a
more fundamental problem in combining the two
mechanisms in a single language. In this paper, we
described this problem, and presented an analysis of
concurrent object-oriented languages from this per-
spective. Finally, we presented our solution in the
framework of the actor model of concurrent com-
putation. A solution to the problem of combining
concurrency and inheritance, based on the concept of
behaviour abstraction, was discussed in detail using our
exploratory language ACT + +.

Acknowledgements

We are grateful to the anonymous referees and Oscar
Nierstrasz for their comments. We also thank the
members of Real-Time Systems Group at Virginia Tech.
Discussions with Greg Lavender, Michael Leahy, Jeff
Nelson and Sanjay Kohli helped in clarifying the concepts
of the actor model.

11. C. Hewitt, Viewing control structures as patterns of passing
messages, Al MEMO 410, MIT Artificial Intelligence
Laboratory (1976).

12. C. A. R. Hoare, Communicating Sequential Processes,
CACM, (August 1978).

13. R. E. Johnson, J. O. Graver and L. W. Zurawski, TS: an
optimizing compiler for Smalltalk, OOPSLA 88 Con-
ference Proceedings (1988).

14. D. G. Kafura, Concurrent object-oriented real-time
systems research, Technical Report, TR 8847, Dept. of
Computer Science, Virginia Tech (1988).

15. H. Lieberman, Using prototypical objects to implement
shared behavior in object-oriented languages, OOPSLA
‘86 Conference Proceedings (1986).

16. H. Lieberman, Concurrent object-oriented programming
in Act 1. In Object-Oriented Concurrent Programming
(edited A. Yonezawa and M. Tokoro), MIT Press, pp.
9-36 (1987).

17. H. Lieberman, L. Stein and D. Ungar, Treaty of Orlando,
Addendum to the Proceedings of OOPSLA '87, Special
Issue of SIGPLAN Notices 23, 5 (May 1988).

18. J. B. Moss and W. H. Kohler, Concurrency features for
the Trellis/Owl language, ECOOP '87 European Con-
ference on Object-Oriented Programming, Springer-Verlag,
pp. 171-180. (June 1987).

19. B. Meyer, Eiffel: programming for reusability and extendi-
bility, SIGPLAN Notices 22, 22 (January 1987).

20. O. M. Nierstrasz, Active objects in hybrid, OOPSLA '87
Conference Proceedings, pp. 243-253.

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 303

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /811 e/|ulwoo/woo dnorolwspeoe//:sdpy wolj papeojumoq

D.G.KAFURA AND K. H. LEE

27. Y. Yokote and M. Tokoro, Concurrent programming in

28.

29.

30.

Concurrent Smalltalk. In Object-Oriented Concurrent Pro-
gramming, (ed. A. Yonezawa and M. Tokoro), MIT Press
(1987).

Y. Yokote and M. Tokoro, Experience and evolution of
Concurrent Smalltalk, OOPSLA 87 Conference Pro-
ceedings, pp. 406415 (1987).

A. Yonezawa, E. Shibayama et al., Modelling and pro-
gramming in an object-oriented concurrent language
ABCL/I. In Object-Oriented Concurrent Programming
(edited A. Yonezawa and M. Tokoro), MIT Press, pp.
55-89 (1987).

P. Wegner, Dimensions of Object-Based Language Design,
OOPSLA ‘87 Conference Proceedings, pp. 168—182 (1987).

21. C. Schaffert et al, An introduction to Trellis/Owl,
OOPSLA '86 Conference Proceedings (1986).

22. A. Snyder, Encapsulation and inheritance in object-orien-
ted programming languages, OOPSLA ‘86 Conference
Proceedings (1986).

23. L. Stein, Delegation is inheritance, OOPSLA ‘87 Con-
ference Proceedings, 138—146 (1987).

24. B. Stroustrup, The C+ + Programming Language, Addi-
son-Welsey, Menlo Park, CA (1986).

25. D. G. Theriault, Issues in the design and implementation
of Act2, Technical Report 728, MIT Artificial Intelligence
Laboratory (1983).

26. D. Ungar and R. B. Smith, Self: the power of simplicity,
OOPSLA 87 Conference Proceedings, pp. 227-242 (Octo-
ber 1987).

Announcement

19-22 MARCH 1990

UK IT 1990 Conference, University of South-
ampton. The UK IT Conference, organised by
the IEE in association with the BCS, DTI and
SERC, is scheduled to take place at South-
ampton University on 19-22 March 1990. The
aim of the Conference is to provide an annual,
national, technical forum for the presentation
of current work in the enabling techniques for
information processing; i.e. to cover the
middle ground between specific application
areas on the one hand and basic research on
the other.

Scope

Knowledge systems

Speech, vision and natural language
Distributed systems

Human elements of systems
Software engineering

VLSI

Optoelectronics in computation
CAD

Control and instrumentation
Measurement and control systems

Programme and registration

The Conference programme and registration
form will be published a few months before
the event.

304 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

Working language

The working language for the Conference is
English, which will be used for all printed
material, presentation and discussion.
Organisers

The Computing and Control Division of the
Institution of Electrical Engineers, in associ-
ation with The British Computer Society, The
Department of Industry and The Science and
Engineering Research Council.

Secretariat

Conference Services, The Institution of Elec-
trical Engineers, Savoy Place, London WC2R
OBL. Tel: 01-240-1871, ext. 222. Telex: 261176
IEE LDN G. Fax: 01-240 7735.

¥20Z I4dy 01 uo 1senb Aq 96/ /¢//62/¥/2¢ /211 e/|ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

