A Proposal for Making Eiffel Type-safe

W.R.COOK

Hewlett- Packard Laboratories, 1501 Page Mill Road, P.O. Box 10490, Palo Alto, CA 94303-0969, USA

Statically type-correct Eiffel programs may produce run-time errors because (1) attributes may be redeclared during
inheritance, invalidating assignments in the superclass, (2) a formal method argument type may be restricted in
violation of the contravariance of function types, and (3) two applications of a generic class are assumed to conform if
the actual arguments conform. The third problem is solved by case analysis on the variance of generic parameters.
Declaration by association provides a solution to the first two problems, but it suffers from additional difficulties. Type
attributes, or generic parameters with default values, are suggested as a replacement for most cases of declaration by
association. The special association type used to express type recursion cannot be explained using type attributes, and it
appears to be a truly novel construct for typing object-oriented programs. One consequence of this construct is that
Eiffel’s conformance hierarchy is a proper subset of its inheritance hierarchy.

Received April 1989

1. INTRODUCTION

This paper discusses several problems in the Eiffel type
system, as defined in the book Object-Oriented Software
Construction.® We argue that the language has three
fundamental errors connected to the contravariance of
function types. In particular, the Eiffel type system seems
to assume that a function with a restricted set of legal
inputs can be used in a context where a function with a
wider set of legal arguments is expected — with the obvious
consequence that illegal values may be passed to functions
during execution. This assumption causes problems in
the conformance rules for type redefinition and generic
classes. The obvious approach to fixing the problems
would limit the expressive power of the language. To
avoid this, Eiffel’s novel mechanism of declaration by
association is examined as a way to express similar, type-
safe programs. However, further problems in declaration
by association are identified, which in the end call for its
complete reformulation in terms of explicit type attri-
butes. The special case of using declaration by association
to express recursive types cannot be handled by type
attributes, and is identified as a truly novel construct for
typing object-oriented programs. We also discuss prob-
lems in using the export mechanism for encapsulation.

The next section of this paper is a short review of the
typing rules in the definition of the language. Sections 3
and 4 demonstrate problems caused by redeclaration of
attributes and methods respectively, and propose cor-
rected typing rules. Section S shows how these problems
affect formal argument types declared by association,
and argues that a restriction of the conformance relation
is needed. Section 6 discusses the problem of conformance
of generic class types. Section 7 describes some problems
with declaration by association, and suggests that they
be reformulated as explicit type attributes and treated
like generic parameters. Section 8 illustrates the inability
of the export clause to ensure encapsulation. All of the
Eiffel code given has been compiled and type-checked
without errors using the Eiffel system, and they all signal
fatal exceptions when run (except the last example, which
merely violates encapsulation). The conclusion summar-
ises our recommendations for Eiffel.

2. THE EIFFEL TYPE SYSTEM

Eiffel is a strongly typed object-oriented programming
language with a rich type system and a conformance
(subtype) relation linked to the inheritance hierarchy. A
type in Eiffel is either a simple type (REAL, INTEGER,
etc.), a class type P[U,, ..., U,] where P is a generic class
with n parameters and U,,...,U, are types, a formal
parameter T inside a parameterised class definition, or an
association type of the form 1ike anchor. When a class
type does not have generic parameters (i.e. n = 0) it is
written as P (instead of P[]).

A class definition specifies the features of the class.
Features may be either attributes or routines (we will use
the more familiar term method instead of routine). The
attributes define the local state of each instance of the
class (attributes are called instance variables in most
oject-oriented languages). Methods define the behav-
iour of instances. A class must export a feature in order
for it to be used outside the class definition. The special
symbol Current plays the role of se1f in Smalltalk or
this in C++. The value of an attribute can only be
changed from within the class in which it is defined,
although it can be accessed from outside. Inheritance is
used to define a new class as an extension/modification
of an existing class.

The two Eiffel classes presented below serve as the
basis for later examples. The class Base has a single
method base which multiplies its argument by two. The
subclass Extra has an additional method extra that
squares its argument. The only significant aspect of these
classes is that Extra has a feature not present in Base.
Export clauses have been omitted for brevity ; we assume
that all features are exported.

class Base feature
base(n : Integer) : Integer is
do Result : = n * 2 end;
end

class Extra inherit Base feature
extra(n : Integer) : Integer is
do Result : = n * n end;
end

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 305

¥20Z Iudy || uo 1senb Aq GGG/ /€/S0€/v/ze/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

W.R.COOK

In Eiffel, type conformance is a relation intended to
capture the notion of one type being immediately
compatible with another, in the sense that in a context
where a value of some type is expected, any value of a
conforming type can be used. Conformance is often
called subtyping. In Eiffel, conformance follows the
inheritance hierarchy: Y conforms to X if Y inherits from
X. This is the definition of conformance in Eiffel.®

A type Y is said to conform to a type X if and only

if one of the following applies:

(1) X and Y are identical;

(2) X and Y are class types, X has no generic
parameters, and Y lists X in its inheritance clause;

(3) X and Y are class types, X is of the form P[U,, U,,
..., U,], and the inheritance clause of Y lists PV},
V,, ..., V,] as parent, where every V, conforms to
the corresponding U,;

(4) Y is of the form like anchor, and the type of
anchor conforms to X;

(5) there is a type Z such that Y conforms to Z and Z
conforms to X;

The link between conformance and inheritance is
indicated by the use of the phrase ‘Y lists X in its
inheritance clause’. In the example given above, the type
Extra conforms to the type Base.

Since conformance is defined directly in terms of
inheritance, the inheritance mechanism should guarantee
that subclass instances can in fact be used wherever a
parent instance is expected. This is ensured by restrictions
on the kinds of modification that can be made during
inheritance. Besides the traditional modifications of
adding attributes or changing the implementation of
methods, Eiffel allows the types of features to be changed.
The redeclaration of features during inheritance is
governed by a type redefinition ruel.®

An attribute, a function result or a formal routine
argument declared in a class may be redeclared with a
new type in a descendant class, provided the new type
conforms to the original one.

This rule is intended to ensure that instances with
redeclared attributes will in fact function properly when
used where instances of the superclass are expected.

Type compatibility is an extension of type conformance
that determines when values of one type may be assigned
to variables of another type or passed as parameters to
a procedure expecting another type of value. Type
compatibility is essentially the same as type conformance,
except that it defines the primitive type INTEGER to be
compatible with REAL,; this special compatibility seems
to be separated from the general conformance rule
because it requires a coercion, while conformance in
general does not. In the example above, Extra is type-
compatible with Base.

Types of the form 1ike anchor represent declaration
by association, and will be called association types. The
informal meaning of the type expression 1ike anchor is
that it represents the type of anchor, where anchor is an
attribute or the pseudo-variable Current. Since the
type of an attribute may be changed during inheritance,
association types are naturally understood as a way to
use attributes as bounded type variables. The type variable
is bounded because of the type redefinition rule, which
ensures that an attribute can be redeclared only to a type

that conforms to the original type. The expression 1ike
Current is a special case of this construction, which
automatically takes on a new value during inheritance.

3. ATTRIBUTE TYPE REDEFINITION

The type redefinition rule allows attributes to be
redeclared during inheritance, yet an inherited method
may assign a value of the original type to the attribute,
resulting in a dynamic violation of the type system.

The example below illustrates the problem of as-
signment to an attribute that is redeclared. The class P1
defines an attribute a of type Base, and a method
setup that assigns a new instance of Base to the
attribute a. The subclass C1 redeclares the attribute to
have the type Extra, which conforms to Base in
accordance with the type dedefinition rule. It also defines
a problem method which calls the inherited setup
method to initialise a, and then accesses the extra
feature of a.

class P1 feature
a : Base;

setup is
local
X : Base;
do
x.Create; —step 2: create an instance of
Base
a: = x; —step 3: assign the new instance to a
end;
end

class C1 inherit P1 redefine a feature
a : Extra;

problem : Integer is
do
setup; —step 1: call setup (see above)
Result : = a.extra(2); -—step 4: a is an
instance of Base
end;
end

The comments describe the steps that occur when the
problem message is sent to an instance of C1l; a
dynamic violation of the type system is produced in
step 4.

The source of the problem is an interaction between
assignment and attribute redeclaration. An assignment
that is type-correct given the original declaration is no
longer valid in the context of the redeclaration. In the
face of this very fundamental problem, most program-
ming languages have been forced to prohibit redeclara-
tion of attributes.

Eiffel, however, has a way of getting round the
problem of attribute redeclaration to some extent with
declaration by association. If the declaration x: Base
were changed to x: 1ike a then the problem would not
arise, because setup would be sensitive to possible
redeclaration of a. Some problems with declaration by
association are discussed in Section 7; the solution we
propose obviates the need for redeclaration of attributes,
replacing it by rebinding of an explicit type variable.

306 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z Iudy || uo 1senb Aq GGG/ /€/S0€/v/ze/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A PROPOSAL FOR MAKING EIFFEL TYPE-SAFE

4. METHOD ARGUMENT TYPE
REDEFINITION

The restriction of a formal method argument during
inheritance, as permitted by the type redefinition rule,
introduces the potential for dynamic type-errors within
statically type-correct Eiffel programs. The problem
arises when a subclass instance with a redefined argument
is used where a superclass value is expected. In this
situation an argument may be passed to the method that
is not compatible with the redefinition, and a dynamic
type-error may occur. In order to avoid type-errors, it is
necessary that the original type conform to the new type
(the conformance is in the opposite direction from result
types); this property of function types is known as
contravariance.

The following example illustrates a dynamic type-error
resulting from method redeclaration in a statically type-
correct Eiffel program. Class P2 is declared to have a
method get which calls the base method of its
argument. The subclass C2 redeclares the get method
and redefines it to call the extra method instead:

class P2 feature
get(arg : Base) : Integer is
do Result : = arg. base(1) end:
end

class C2 inherit P2 redefine get feature
get(arg : Extra) : Integer is
do Result : = arg. extra(2) end;
end

The example looks reasonable enough, until one con-
siders that C2 conforms to P2 because C2 inherits P2.
This means that objects created by C2 may be assigned
to a variable of type P2. Manipulating a variable of type
P2 which refers to an instance of C2 may lead to errors,
as illustrated below:

local
a : Base;
v: P2;
b: C2;
do
a.Create;
b.Create;
v : = b; —statically type-correct because C2 con-
forms to P2
v.get(a); —call C2. get which calls
a.extra(?)
end
Since v has static type P2, v.get has type

Base—Integer, and v.get(a) is statically type-
correct. But v contains an instance of C2 and methods
are selected dynamically, so v. get refers to the get
method of C2. This method, when passed a as a
parameter will access the extra method of a, which
does not exist.

This problem does not arise when redeclaring attri-
butes, because assignment, although contravariant, is
not part of the external interface of a class.

This type-error can also be created from within a class
without using type-compatibility of assignment. If a
redeclared method is called from within another parent
method (sending a value that the parent considers

appropriate), then dynamic type-errors may occur
because the subclass method expects more specific
arguments than the parent passes. This case is similar to
the problem of attribute redefinition, where message
sending is analogous to assignment. In this case, Eiffel is
violating basic type-constraints on inheritance.*

The following example illustrates how the redeclara-
tion may cause an error within a class. P2 is augmented
by a problem method that creates an instance of Base
and then uses the get method to extract its base
feature.

class P2
problem : Integer is
local
X : Base;
do

X.Create;
Result : = get(x);
end;
end

A dynamic error occurs when an instance of class C2 is
created and sent the problem message, because it will
pass an instance of Base to the redefined get method
which requires an instance of Extra.

Type-systems are conservative, in that they prevent the
possibility of errors, but sometimes prohibit programs
that do not in fact produce dynamic errors. This effect is
an essential consequence of the locality of type-checking,
and to prevent errors the only recourse is to invert the
formal argument redefinition rule. The corrected type
redefinition rule would read:

A function result or a formal routine argument
declared in a class may be redeclared with a new type
in a descendant class, provided the new type conforms
to the original one if it is a result type, and the original
one conforms to the new type if it is a formal argument

type.

This rule is used in other object-oriented languages,’ but
has the unfortunate effect of making argument type
redefinition almost useless, since it is generally not very
useful to redefine a method to accept a larger class of
arguments.

5. METHODS DECLARED BY
ASSOCIATION

Although changing the Eiffel type-redefinition rule would
prevent run-time type-errors associated with contra-
variance, it would also impact the use of association
types for formal argument declaration. This is because
redeclaring an attribute indirectly causes the restriction
of any formal argument associated with it, even though
the type-expression representing the formal argument is
not changed. In particular, if 1ike Current is used, the
method argument is effectively redeclared in any subclass,
leading to the error outlined in Section 4.

We illustrate the problem using like Current,
although the example could easily be changed to use an
attribute as anchor. For this example the features of
Base and Extra are combined with the classes

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 307

¥20Z Iudy || uo 1senb Aq GGG/ /€/S0€/v/ze/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

W.R.COOK

illustrating method redeclaration in Section 4. This
combination allows the use of a like Current
argument in the method get :

class P3 feature
base(n : Integer) : Integer is
do Result : + n * 2 end;
get(arg : 1like Current) : Integer is
do Result : = arg. base(1l) end;
end

class C3 inherit P3 redefine get feature
extra(n : Integer) : Integer is
do result : = n * nend;
get(arg : 1like Current) : Integer is
do Result : = arg. extra(2) end;
end

The example behaves just like the one in Section 4, and
it produces a similar dynamic type-error:

local
a: P3;
v: P3;
b: C3;

do
a.Create;
b.Create;
v:=Db;
v.get(a);

— valid because C3 conforms to P3
—call C3. get which calls
a.extra(2)
end

In Section 4, when faced with this problem, we concluded
that the only solution was to prohibit redeclaration. If
this approach were adopted here, it would mean
prohibiting the use of declaration by association for
formal argument types. This seems unreasonable; the
special nature of association types allows a more
acceptable solution.

We propose to eliminate the conformance relation that
allowed the assignment v : = b, an essential step in
producing the dynamic error. We propose that if a class
has an argument declared by association, an inheriting
class does not conform to that parent if the type of the
anchor is redefined. In particular, the type of Current
is always redefined, so formal arguments of type like
Current prevent conformance.

The problem of internal consistency of a class,
illustrated in the second example of Section 4, is handled
by the reformulation of association types presented in
Section 7. The changes amount to requiring actual
argument types to be identical to the association type
specifying the formal argument.

The solution given above has a subtle effect upon the
conformance of 1ike Current. The problem is that the
conformance rule allows 1ike Current to conform to
the type of Current, while this is exactly the con-
formance relation we are proposing to eliminate.

To illustrate this problem, consider the effect of adding
the following features to the class P3. These features will
then be inherited by C3.

class P3

not_assoc(arg : P3) : Integer is

local
x: P3;

do
X.Create;
Result : = arg. get(x);
subvert(arg : 1like Current) : Integer is
do
Result : = not.assoc(arg);
end;
end
If ¢ has type C3 then executing c. subvert(c) pro-
duces a dynamic type-error because not. assoc calls
c. get(x) where x is an instance of P3.
The solution to this problem is simple: in a class A with
a formal argument declared by association, 1ike Cur-
rent does not conform to A. Note that eliminating the
conformance relation from descendants of such classes
has an effect on their use as the bound for quantification
over all its subclasses. This happens primarily in bounded
generic classes, an FEiffel feature not described in Object-
Oriented Software Construction (Ref. 6). However, it
may be possible to define a type-safe interpretation for
such classes as bounds.?

6. CONFORMANCE OF GENERIC
INSTANCES

The conformance rule for generic classes is too permissive
in assuming that two applications of a generic class
conform if the actual arguments conform. This as-
sumption does not always hold true, so that statically
type-correct Eiffel programs using generic classes may
produce dynamic type errors.

Before examining this problem, however, it is useful to
clarify a smaller problem in the statement of the
conformance rule for class types. Y conforms to X if:

(2) X and Y are class types, X has no generic
parameters, and Y lists X in its inheritance clause;

(3) X and Y are class types, X is of the form
P[U,,U,,...,U,], and the inheritance clause of Y
lists P[V},V,,...,V,] as parent, where every V,
conforms to the corresponding U,.

Clause (2) prohibits X from having generic parameters.

This restriction seems unreasonable, because it seems
that if Y lists X in its inherits clause then Y should
conform to X, independent of the form of X. Inheritance
ensures that Y will have all the features of the type X,
even if it is a generic class type.

Clause (3) prevents Y = P[V] from conforming to X =
P[U] when V conforms to U, even though this seems to
be in the spirit of the rule. The problem is that the rule
is stated in terms of the inherits clause of Y, not in terms
of Yitself. One reason why this restriction seems arbitrary
is that defining a trivial class that is equal to P[V] allows
the conformance to obtain:

class PV inherit P[V] end

According to the clause (3), PV conforms to P[U],
although P[V] does not conform to P[U]. The following
two clauses are proposed as a more intuitive and faithful
characterisation of conformance in Eiffel.* Y conforms
to X if:

* Additional evidence that the rule is incorrect comes from the Eiffel
implementation (version 2.1), which does not obey the clauses as stated
above.

308 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z Iudy || uo 1senb Aq GGG/ /€/S0€/v/ze/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

A PROPOSAL FOR MAKING EIFFEL TYPE-SAFE

(2) X and Y are class types and Y lists X in its
inheritance clause;

(3) X and Y are class types, X is of the form
PU,U,,...,U,, Y is of the form PV, VY, ..., V],
and every ¥, conforms to the corresponding U,.

Combined with the transitivity clause (5) of the original
conformance rule, these clauses cover all the cases of the
original, and allow P[V] to conform to P[U] if V
conforms to U.

This reformulation of the generic conformance rule
does not eliminate the fundamental problem, it merely
clarifies it. It is still incorrect to assume that one
application of a generic class conforms to another simply
because the actual arguments conform.

Using the generic class Cell from the Eiffel library,
it is easy to construct a program which is syntactically
correct but produces a dynamic type error. The class
Cell is defined as follows:

class Cell[T] feature

info : T;
change_info (x: T) is
do info : = x end;

end

The following code illustrates the problem with generic
conformance :

local
X : Base;
a: Cell[Base];
b: Cell[Extra];
do
X.Create;
b.Create;

a:= b; -legal because Cell[Extra] conforms
to Cell[Base]

a.change_info(x); -setb (and a) to contain x

b.info. extra(4); —x. extra does not exist

end

Two cells a and b are declared to contain instances of
Base and Extra respectively. The cell b is created and
the variable a is made to point at the b cell. This is type-
corrected because of case (3") of the conformance rule.
Finally, an instance of Base is inserted into a (the same
cell as b), and retrieved from b. At this point the result
has static type Extra but is actually an instance of Base
at run-time.

To correct the generic class conformance rule, we
suggest distinguishing the various kinds of context in
which a formal type parameter in a generic class may
appear. If the type parameter is used to type attributes or
method return values, but is not used as the formal
argument type of a method, it is a covariant parameter.
If it is used only to type the formal arguments of
methods, and never as the type of an attribute or the
result-type of a method, it is contravariant. If the
parameter is used as both a method argument type and
as either an attribute type or a method result-type, it is
bivariant. In the class Cell above, the parameter T is
bivariant because it is both the type of the attribute info
and also the formal argument type of the method
change_info.

A conformance rule for generic class types may be

formulated which depends upon all parameters being
either co- or contravariant. A single bivariant parameter
prevents conformance among the different instances of
the generic class. Y conforms to X if

(3”) X and Y are class types, X is of the form
PU,,U,,...,U,], Yis of the form P[V,,V,,...,V,],
and for all i either the ith formal parameter of P is
covariant and ¥V, conforms to U, or it is con-
travariant and U, conforms to ¥, or it is bivariant
and U, equals V.

This check is reasonable because it only involves the
interface of P, not its internal implementation. But as
a result of this rule many generic class types will have
no conformance relation at all among their instances.
For example, Ce11[U] will only conform to Cell[V]
ifu="vV.

7. ASSOCIATION TYPES

Association types have been mentioned several times as
a way to preserve expressive power when restrictions are
proposed to make Eiffel type-safe. Unfortunately, dec-
laration by association has problems of its own which
call for a complete reformulation.

The conformance rule for association types prohibits
some type-safe expressions. The first problem appears
when using an instance, in calls to a method with a
formal argument declared by association. According to
the conformance rule, such a method can only be used on
an actual parameter of exactly the same association type,
because no other types conform o an association type.
The problem is that the conformance rule for association
types is designed to protect against errors that occur
when attributes are redeclared, but types in the interface
of an instance are fixed and cannot be changed. To
illustrate, consider that the last line in this program
fragment is not type-correct according to the Eiffel rules:

class C feature

a: T,
m (arg : like a) ..
end
local
c: Cy
b: T;
do
c.m(b); —illegal because T does not conform to

like a

This problem is corrected by viewing the type of an
instance as having all its association types replaced by
the types they stand for. This is merely a clarification of
the typing rules, not a serious problem.

A related problem has to do with the relationship
between an anchor and the type like anchor within a
class definition. As it stands, the conformance rule
prevents anchor from being assigned to a variable of type
like anchor, or passed to a method where the formal
argument has type 1ike anchor. To illustrate, consider
the following fragment:

class C feature

x: T,
y: like x;
test is
do y : = x end; -illegal because T does not
end conform to like x

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 309

¥20Z Iudy || uo 1senb Aq GGG/ /€/S0€/v/ze/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

W.R.COOK

The assignment y : = x is type-correct only if the type of
X, i.e. T, conforms to the type of t, i.e. 1ike x. But in
general T does not conform to 1ike x because x might
be redeclared so that the conformance fails, as noted by
Meyer.® However, assignment of the anchor x itself
should be allowed because 1ike x is always equal to the
type of x’.*

To solve these problems, explicit type attributes are
suggested as a replacement for declaration by association.
An explicit type attribute is a type variable that may be
redefined during inheritance to a type that conforms with
its previous definition. The declaration t = T specifies a
type attribute t and binds it to the type T. Using this
idea, the declarations above may be rewritten as

t="T;
x: t
y: t

In this form, both assignments x : = yand y : = x are
valid. Type attributes are closely related to generic
classes, in that the example above is equivalent to the
following one using genericity:

class GC[t <T] feature - abstract over the type
attribute (with bound)
x: t
y:t.
end

class C inherit GC[T] end - bind the parameter
to the ‘default’ value

Meyer’s comparison of inheritance (with declaration by
association) and genericity should be re-examined in this
light.®

The careful reader will observe that the special
association type like Current cannot be explained by
type attributes. 1ike Current represents a truly novel
aspect of Eiffel of both theoretical and practical
interest.?3

8. THE EXPORT MECHANISM

The independence of exportation and inheritance is
subverted by the Eiffel conformance rules. Any feature
that is exported in any ancestor of a class cannot be
effectively hidden by omitting it from the export clause.
These features can always be accessed by simply assigning
the instance to a local variable whose type is the ancestor
that exports the feature, and then accessing the feature
using the local variable.

Access to ‘hidden’ features that are exported by an
ancestor class is easily illustrated. If the class Extra
defined in Section 2 were defined to export extra but
not the inherited feature base, then for a variable
e:Extra the expression e.base would be illegal.
However, it is easy to access the value of e. base by the
following sequence:

local

v : Base;
do

vV:=¢e;

Result : = v. base;
end

* Additional evidence that the type rules are incorrect is provided by
the Eiffel compiler, which allows the assignment.

This trick can be used whenever access is needed to a
feature that is exported in an ancestor but not in its child.

The example above demonstrates that in some sense
exportation is cumulative: all the exported features of
ancestors are available regardless of what their de-
scendants try to specify in their export clauses. In view of
this, we recommended that Eiffel drop the pretence of
allowing inheritors to prevent access to features exported
by an inherited class. With this change, classes would
automatically inherit the export lists of their parents, and
would only need to list those locally defined features
which are to be exported.

9. CONCLUSION

Some problems in the Eiffel type system have been
described and solutions proposed. Our recommendations_
for the Eiffel language are summarised below. g
(1) Replace declaration by association (except theZ
special type 1ike Current) with explicit type attrlbutes,g
which act like bounded generic parameters with defaulta
values. o
(2) Eliminate attribute type redefinition and invert thej
method argument redefinition rule.
(3) Use the variance of generic parameters, types
attributes and like Current to determine whatm
conformance relations arise from inheritance. rD
(4) Determine the type of a class instance by replacmgo
all generic parameters by the type to which they arec
bound.
(5) Make export clauses cumulative if the subclassa
conforms to its parent.
Perhaps the most significant aspect of these recom-=
mendations is the elimination of unsafe conformancem
relations between subclasses and their parents. On a
practical level, it is uncertain to what degree existing
Eiffel programs would be affected by this change. There Y
are essentially three possibilities. (1) A program does not&
use unsafe conformance relations. With minor syntactm\
changes, it would remain valid after the proposed 3
changes. (2) A program uses the conformance relatlonsm
but does not produce execution errors. The programg
would not be valid after the corrections to Eiffel. Suche
programs could probably be made type-correct by simple &
changes, for example by introducing additional types. (3) 2
A program is type-correct but produces dynamic errors. -
The corrections to the language should be useful >
in detecting the cause of the run-time errors.
From a theoretical point of view, it is significant that S S
a subclass does not always conform to its parent. In ¥
Eiffel the conformance hierarchy is based on inheritance,
but inheritance may create subclasses that do not
conform, so the conformance hierarchy is a subset of the
interface hierarchy. This means that the inheritance and
conformance hierarchies are distinct. This conclusion is
especially significant because it is a consequence of
contravariance interacting with generic parameters or
like Current, rather than deletion of messages.®

[:sdpy

ood

ulwooy

I3!1

Z ud

Acknowledgement

The author would like to thank Walter Olthoff, Walt
Hill, Peter Canning and Alan Snyder for comments on
this paper.

310 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

A PROPOSAL FOR MAKING EIFFEL TYPE-SAFE

REFERENCES

1. L. Cardelli, A semantics of multiple inheritance. In
Semantics of Data Types, Lecture Notes in Computer
Science 173, pp. 51-68. Springer-Verlag, Heidelberg (1984).

2. P. Canning, W. Cook, W. Hill, J. Mitchell and W. Olthoff,
F-bounded polymorphism for object-oriented program-
ming. Proc. of Conf. on Functional Programming and
Computer Architecture. (1989).

3. P. Canning, W. Cook, W. Hill and W. Olthoff. Interfaces
for strongly typed object-oriented programming. Proc.
of Conf. on Object-oriented Programming: Systems,
Languages and Applications. (1989).

4. W. Cook, A Denotational Semantics of Inheritance. PhD
Thesis, Brown University (1989).

5. B. Meyer, Genericity versus inheritance. Proc. of Conf. on

Object-oriented Programming: Systems, Languages and
Applications. pp. 391-405 (1986).

. B. Meyer, Object-Oriented Software Construction. Prentice-

Hall, Englewood Cliffs, NJ (1988).

. Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian

and Carrie Wilpolt, An introduction to Trellis/Owl. Proc.
of Conf. on Object-oriented Programming: Systems,
Languages and Applications. pp. 9-16 (1986).

- Alan Snyder, Encapsulation and inheritance in object-

oriented programming languages. Proc. of Conf. on
Object-oriented Programming: Systems, Languages and
Applications. pp. 38-45 (1986).

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 311

¥20Z Iudy || uo 1senb Aq GGG/ /€/S0€/v/ze/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

