Formal Hierarchical Object Models for

Fast Template Matching
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A formal class of object models is defined, called repnets, which take advantage of the repetitive structure of objects, so
that repeated sub-objects need not be stored more than once. Since sub-objects may contain repeated sub-sub-objects a
hierarchy results. It is shown that the efficiency of template matching can be greatly increased if the template is
decomposed into a compact repnet, and potential applications are identified in the inspection of printed circuit boards

and in the application of edge-detection operators to pictures.

Received May 1987

1. INTRODUCTION

The concept of a hierarchical object model is very
simple: an object is defined in terms of its component
parts, which in turn are defined in terms of their
components, until some basic level is reached at which
further decomposition is not worthwhile. For example a
human being may be defined as a head, a body, two arms
and two legs in permissible relative positions. An arm
may be defined in terms of a hand, an upper arm and a
lower arm, with a hand being decomposed further down
to the level of the individual bones of the fingers.

Although the description of a jointed object in terms
of its rigid component parts is very important in practical
computer vision algorithms for the recognition of, for
example, a human being in different positions such as
sitting, standing, running and jumping,’ in this paper we
are concerned only with the elimination of repetitive
calculation when a component part occurs twice or more
in the hierarchical model of a rigid object. For example,
in a crude model of a human being with two identical
arms, it is only necessary to perform one search for arms
in the picture, instead of two separate searches for left
and right arms. Because of this elimination of repetitive
calculation, hierarchical object models may produce a
significant and even combinatorial reduction in the time
to search for an object in a picture compared with iconic
definition of an object, in which a single image of an
object is stored in memory.

This paper is a study of a formal class of hierarchical
decompositions. In keeping with a research aim of
finding provably correct algorithms for computer vision
we have concentrated on a simple non-trivial problem,
the recognition of two-dimensional rigid objects of a
fixed orientation, before considering the full generality of
three-dimensional flexible objects subject to arbitrary
transformations. A solution to this simple problem using
hierarchical object models could lead to practical
applications in the automatic inspection of printed circuit
boards.

Multi-resolution techniques are effective for the effi-
cient storage and recognition of objects because of the
local repetitiveness of object-images : pixels close together
in an image have a higher than random probability of
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being the same or nearly the same. However, a multi-
resolution object model cannot efficiently store the
repetitive pattern of, for example, a chessboard or a page
of text, since the repetitiveness is between non-adjacent
parts of the object-image. We will show how an object
can be defined by a network, which we call a repnet,
capable of characterising non-local as well as local
repetitive structure.

2. REPNET: A NETWORK OF REPEATS

A repnet is a data structure which eliminates repeats in
an object definition by use of pointers in a hierarchical
structure. As a purely illustrative example Fig. 1 shows a
black object on a white background. Fig. 2 is a
decomposition of it into progressively more basic
elements, and Fig. 3 shows how these data may be
compressed by the use of pointers labelled with two-
dimensional offsets. Those sub-objects which are identical
except for translation have been merged to a single
node.

More formally, a repnet is a cycle-free network, in
which every sink is a pixel and every source is an object.
The repnet in Fig. 3 has only one sink because every pixel
in the object in Fig. 1 has the same value, and only one
source because it represents a single object. A repnet with
more than one source represents a set of objects, repeated
component-parts between different objects being stored
only once. It is intriguing to imagine a repnet storing all
the objects a human being can recognise.
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Figure 1. An object.
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Figure 2. A decomposition of the object in Fig. 1 into sub-objects.

Figure 3. The repnet of the object in Fig. 1 corresponding to its
decomposition in Fig. 2.

Associated with every arc from a node A to a node B
in a repnet is an offset (x, y), which is the offset of the
component part B within the component A. For example,
the rightmost arc leaving the source of the repnet in Fig.
3 means that the object contains a copy of the sub-object
pointed to by the arc and the bottom left-hand pixel of
this copy is at position (3, 1). Every path between a
source OBJECT and a sink p means that OBJECT
contains a pixel of value p, and it occurs at the coordinates
given by the sum of the offsets associated with the arcs on
the path. For example, in the repnet in Fig. 3 the dotted
path represents the bottom right-hand pixel of the object
with coordinates

0,0)+(2,0)+(1,0) = (3,0).

3. FAST MATCHING USING REPNET
TEMPLATES

Template matching is a commonly employed technique
in picture analysis, and its advantages and disadvantages
are well documented.? It is closely associated with cross-
correlation, which has been recognised as being one of
the basic algorithms that must be implemented in an

352 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z I4dy 60 U0 1senb Aq G19//¢/1S€/v/ze /81 e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq



FORMAL HIERARCHICAL OBJECT MODELS FOR FAST TEMPLATE MATCHING

image-processing system.®* Gemmar® has reported that
on a 1 MIPS sequential computer, applying an 800-pixel
template at only 961 positions of a picture required 15
seconds. Due to computational limitations, matching
against, say, a 1024 x 1024 picture is only practical for
very small templates. Various sets of 3 x 3 templates have
been proposed as edge-detection operators.>'° Repnets
can significantly speed up the application of a template at
every position of a picture.

The template matching problem can be expressed as
follows.

Given an MP x NP picture array PICTURE and an
MO xNO template array OBJECT determine those
positions [k, /] in the picture for which S[k, /] is less than
a threshold ¢, where

Sk, 1] =
) d(OBJECTIx, y], PICTURE[k +x, [+ y])

pixels [z, y] in OBJECT
such that [k+z, l+y] is
in PICTURE

and d is a distance function between pixel values of
OBJECT and PICTURE.

By this definition, correlation, in which d(a,b)
= —a*b, is just one example of template matching.

The additive nature of the score S ensures that if a
template OBJECT is the union of two disjoint templates
OBJ1 and OBJ2, then

S(OBJECT) [k, /] = S(OBJ1)[k,!]+ S(OBJ2)[k,[], (1)

where S(OBJ) is the array S obtained when applying the
template OBJ to the picture. If OBJ1 is identical to OBJ2
except for a translation (x, y) then the cost of calculating
S(OBJECT) is almost halved, because each S(OBJ2)
[k, ] does not need to be recalculated since

S(OBJ2)[k, 1] = S(OBJ1) [k +x,I+y].

As a concrete example, consider the template OBJECT
in Fig. 1 whose repnet is illustrated in Fig. 3. It is
composed of six disjoint components: three copies
(OBJ1, OBJ2, OBJ3) of a horizontal bar of length 4
pixels, a single pixel (OBJ4) and two copies (OBJS,
OBJ6) of a template composed of a pair of pixels
separated by a vertical distance of 3 pixels. Therefore, for
each position [k, /],

S(OBJECT) [k, /] = S(OBJ1)[k, 1+ S(OBJ2) [k, ]
+ S(OBJ3) [k, 1]
+S(OBJ4)[k+3,1+3]
+S(OBJS) [k, I+ 1]
+ S(OBJ6) [k, I+ 1].
In this example S(OBJ1), S(OBJ4) and S(OBJ5) are the
only sums which need to be calculated, since S(OBJ2),

S(OBJ3) and S(OBJ6) are copies of these arrays at the
following offsets:

S(OBJ2)[k, 1] = S(OBJ1)[k,[+2]
S(OBI3)[k,1] = S(OBJ1)[k, I+ 5]
S(OBJ6)[k, 1] = S(OBJIS)[k+3,1].
OBJ1 can be decomposed further
S(OBI1)[k,[] = S(OBJ7)[k, ]+ S(OBJ8) [k, ]

into two copies (OBJ7, OBJ8) of a horizontal bar of
length 2 pixels, only S(OBJ7) being required to be
calculated, since

S(OBJ8)[k,!] = S(OBIT)[k+2,1].

Both OBJ7 and OBJS are in turn composed of two copies
(OBJ9, OBJ10 and OBJ11, OBJ12) of the single-pixel
object, OBJ4:

S(OBIJ7)[k, ] = S(OBJ9)[k,!]1+ S(OBJ10) [k, /]
S(OBJS) [k, 1] = S(OBJ11) [k,/]1+ S(OBJ12) [k, 1]
where
S(OBJ10) [k, 1] = S(OBJ9) [k +1,/] = S(OBJ4) [k+1,1]
S(OBJ12) [k,[] = S(OBJ11) [k, !+ 3] = S(OBJ4) [k, [+ 3].

The optimal calculation of S(OBJECT) for this
template would be

FOR ALL [k, /] DO
S(OBJ4) [k, 1]: = d(‘black’, PICTURE[K, []):
FOR ALL [k, /] DO
S(OBI7) [k, 1]: = S(OBI4) [k, []+ S(OBJ4) [k + 1, 1];
FOR ALL [k,/] DO
S(OBJ1) [k, 1]: = S(OBI7) [k, []+ S(OBJ7) [k +2, 1];
FOR ALL [k,/] DO
S(OBJS5) [k, I]: = S(OBJ4) [k, I]+ S(OBJ4) [k, I+ 3];
FOR ALL [k,/] DO
S(OBJECT) [k, /]: = S(OBJ1) [k, ]+ S(OBJ1) [k, [+ 2]
+S(OBI1) [k, I+ 5]
+ S(OBJ4)[k+3, 1+ 3]
+ S(OBJS)[k, I+ 1]
+ S(OBIS)[k+3, 1+ 1].

A loop over all positions [k, ] is performed for each
node of the repnet in Fig. 3, beginning with the sink and
ending with the source OBJECT. Appendix 1 contains a
Pascal program Repnetcalc which performs this calcu-
lation for any template OBJECT defined in terms of a
repnet. This divide-and-conquer computation of S(OB-
JECT) has asymptotic time complexity of the order of
MP*NP* (number of arcs in the repnet of OBJECT), for
a picture of size MP by NP. The optimal form for a
repnet, representing the largest template that can be
constructed with a given number of arcs, is illustrated in
Fig. 4. Thus the minimal asymptotic time complexity for
the repnet template application algorithm occurs when
the template can be applied by successive doubling
(successive calculation of (1)) and is of the order of
MP*NP*log (number of pixels in OBJECT). Examples of
templates which can be represented by this form of
repnet are illustrated in Fig. 5.

Finding the most efficient repnet for a given template
would involve a search over a combinatorial number of
distinct repnets. We assume that if a template is to be
applied many times it is worth the investment of effort to
find a compact (though not necessarily optimal) repnet
either by machine or by hand.

A variation on the problem of template matching
stated above occurs when the template must simply be
applied at every position of a picture, as an operator, for
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Figure 5. Examples of templates which have optimal repnets.
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example in edge and line detection. As a purely illustrative
example of the use of a repnet in this case, Fig. 6 shows
a repnet for the set of nine 3 x 3 templates proposed by
Frei and Chen® for edge and line detection. In this case
the speed-up factor would be at most two, but it may be
possible to apply larger versions of these templates, say
5 x5, using the repnet algorithm with the same compu-
tational time required to apply the identical number of
3 x 3 templates using the direct method, repeats being
more likely for larger templates.

4. REPNETS AND OTHER FAST
TEMPLATE-MATCHING STRATEGIES

This section is a discussion of how repnets can be
combined with other fast matching strategies, and in
particular subtemplate matching.!' It is shown that
subtemplates with very compact repnets can be found in
templates representing subsections of a digitised picture
of a printed circuit board.

Subtemplate matching is a technique by which a subset
of the template is applied to the picture, and only at those
positions [k, /] at which a rejection threshold ¢1 is not
passed by the partially calculated sum S[k,/] is the
remainder of the template applied. If a subtemplate with
a compact repnet is chosen the cost of the first stage can
be greatly reduced. Unfortunately the repnet algorithm
cannot then be used on the remainder of the template
since most of the positions [k, /] in the picture will have
been rejected, and the repnet algorithm is only valid if
S(OBJ) [k, 1] is calculated for all positions [k, /], and for
all the sub-objects OBJ corresponding to the nodes of the
repnet for the complete template, OBJECT.

Pixel-by-pixel comparison is best suited to situations
where the template represents a solid object without the
possibility of distortion. This is often the case in
automatic visual inspection’? and in particular in the
inspection of printed circuit boards (PCBs), where the
technique is the only reliable method of detecting major
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Figure 6. A decomposition of the template boundary-detection operators of Frei and Chen. This repnet takes advantage of the linearity
of the distance function d, as well as the repetitiveness of the templates, to eliminate repeated calculation. The numbers shown by the

arcs are multiplication factors. Offsets are not shown.
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Figure 7. A PCB mask.

faults.’> With the increasing density of printed circuits
and the resulting lower productlon yields, automatic
optlcal mspect10n technology is rapidly becoming a
major pacing factor in PCB manufacture. In order to test
the feasibility of the subtemplate/repnet algorithm a
digitised picture of a PCB mask was examined. Fig. 7
shows the complete board, and Fig. 8 shows the detail
within a 32 x 64 rectangle using a fairly coarse digitisation
for the whole board.

Repnets were found ‘by hand’ for subtemplates of
various sizes of the template of Fig. 8. Their properties
are summarised in Table 1. The number of additions
required to apply the subtemplate is proportional to the
number of arcs in the repnet representing the sub-
template. The calculation of essential memory re-
quirement to apply the subtemplate is more complicated
and is explained below. All the subtemplates were
required to have a reasonable balance of black and white
pixels to prevent spurious matches against all-black or
all-white areas of the picture. For this particular example
a subtemplate covermg half the pixels of the full template
can be applied using only 40 basic operations, an
improvement factor of 25 over the naive template-
matching algorithm.

There is often a possible trade-off between space and
time, and this is illustrated in the fourth row of Table 1,
where the time and space requirements are given for two
different repnets of the same subtemplate. Although it is
always possible to construct a repnet such that the
template-matching calculation requires only 2*MP*NP
memory cells, a different repnet may exist for the same
template which can be applied faster but with greater
memory requirements.

This trade-off only occurs for large templates. There
are two distinct algorithms for template matching using
a repnet. In the first algorithm the subtotal arrays
S(OBJ) are calculated in full for the sub-object OBJ at a
node before going on to the next parent node, and the
computation of S(OBJ) requires only one pass through
the repnet. This is the algorithm given in Appendix 1.
The memory requirement is MP*NP*(number of work-
ing arrays in use), which depends on the ‘breadth’ of the
repnet. As was stated above, this can always be as low as
2*MP*NP since every template has a decomposition as a

union of optimal repnets (i.e. as a union of repnets such -

as the one in Fig. 4). This is essentially a sequential
algorithm.
A second algorithm exists which, as will be demon-
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Figure 8. A 32 by 64 template from the PCB mask of Fig. 7.

Table 1. Computational requirements for the application of
subtemplates, of various sizes, of the template in Fig. 8

Number of
additions to apply Memory require
Number of pixels subtemplate ment excluding
in subtemplate (all figures PICTURE and
(maximum = 2048) *MP*NP) OBJECT arrays
256 8 8*MO*NP
(=131,072)
512 17 17*MO*NP
(=278,528)
1024 40 40*MO*NP
(=655,360)
1536 121 4*MP*NP
(=1,048,576)
1536 156 3*MP*NP
(=786,432)
2048 ~400 3*MP*NP
(=786,432)

strated in the next section, is more naturally parallel-
isable. After an initial set-up period, the computation is
a succession of passes through the repnet, with as few as
one addition being performed at each node. One such
pass calculates S(OBJECT) [k, /] for one position [k, ].
In this case, for each component template OBJ, values of

S(OBJ) [k, I] which will not be referred to again need not
be stored. If the object is stored in an MO x NO array,
the picture can be scanned in either an MO-deep
horizontal scan or an NO-wide vertical scan, with a
storage requirement of min{MO*NP, NO*MP}*
(number of nodes in repnet). The figures in the table are
based on MP = NP = 512, MO = 32, NO = 64.

As a final point it should be observed that the
optimisation problem should not be equated with
minimising the computational cost. The problems of
non-detection and false detection must also be con-
sidered.™ From the theory of matched filters!® it is
known that optimal discrimination is obtained when
both PICTURE and OBJECT are ‘whitened’ before
template matching, thus destroying any self-correlation
in PICTURE and OBJECT. By selecting the subtemplate
with the greatest repetitive structure we may also be g
choosing the most likely subtemplate to match spuriously s
with the picture. Thus it is advisable that, for each
different repnet, the rejection threshold 71 be chosen &
empirically after trials on real pictures.

It is essential to the nature of the repnet algorithm
that the score S(OBJ)[k, /] is calculated for all positions
[k,/] and all sub-objects OBJ corresponding to nodes
in the repnet. Hence strategies such as Barnea and
Silverman’s'® monotonically increasing threshold or
Nagel and Rosenfeld’s'” ordering placed on the pixels of 3
OBJECT have very limited application in combination
with the repnet algorithm, since both these algorithms
work by quickly eliminating the majority of possible
positions [k, /] for a template.

speoe//:sdyy wouj p

S. PARALLEL IMPLEMENTATION OF
REPNET TEMPLATE MATCHING

The network of a repnet would seem to be an ideal
candidate for parallelisation. However, unless a par-
ticular template was permanent it would be extravagant
to construct an MIMD (multiple instruction, multiple
data) machine with one processing element (PE) for each
node of the repnet. However, with the possibility of
switchable interconnections it is possible to foresee a
multiple processor machine which could be reconfigured
to a new repnet. The computation performed at each PE
would simply be the calculation of the array S(OBJ),
where the corresponding node of the repnet represented
the sub-object OBJ, as the sum of the inputs S(OBJ1),
S(OBJ2), ..., S(OBJn) from connected PE’s representing
the sub-sub-objects OBJ1, OBJ2, ..., OBJn which
constitute OBJ, in accordance with the second algorithm
discussed above. Each PE would be required to store an
array no larger than MO*NP or NO*MP, except at the
PE corresponding to the root of the repnet where the
complete array S must be stored. The total processing
time in a perfectly pipelined system would be

20z 1Mdy 60 uo 1senb Aq G19//€/LGE/p/2E/8191./|ulWwod/woo dno-ol

(initial set-up time)+ (number of positions [k, /])
which is of the order of
MO*NP +(MP+MO—1)*(NP+NO—1),

which is of the order of MP*NP. With the necessary
parallel hardware it is therefore possible to search for an
object in a picture in time linear in the number of pixels
in the picture.

Since special-purpose or reconfigurable MIMD mach-
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ines may be extravagant, it is worth considering an
alternative cheaper architecture. It has been demon-
strated that a speed-up of N can be achieved for template
application when the picture is divided equally between
the N processing elements of an SIMD (single instruction,
multiple data) machine.'® This can easily be generalised
to the case where each PE executes the repnet algorithm.
Each PE could operate with 1/Nth of the memory
requirements of the sequential version of the algorithm,
which will be at most a small factor times the memory
requirements of the direct template-matching algorithm,
as is evident from the final column in Table 1.

6. COMPARISON OF THE FOURIER
TRANSFORM AND REPNETS FOR
TEMPLATE MATCHING

In order for an algorithm for template matching to be
practical it should preferably have time complexity no
greater than the order of MP*NP*log(MO*NO). Al-
though several fast algorithms have been published,® the
only one which can guarantee this performance for any
OBJECT and PICTURE is the Fourier domain method,
which is

(1) transform OBJECT and PICTURE to the Fourier
domain using the fast Fourier transform (FFT);

(2) perform a pointwise multiplication of the trans-
form values;

(3) transform the result back to the spatial domain
using the FFT.

This is only a sketch of the Fourier domain method of
correlation, and the interested reader should consult the
textbooks of Rosenfeld and Kak? or Pratt'® for more
details.

The repnet algorithm cannot be combined with the
Fourier transform method, which is why a direct
comparison is being made between the two. (In fact, an
attempt to do so only resulted in an algorithm with
asymptotic complexity MP*NP*MO*NO, which is as
bad as the naive template-matching algorithm.)

The Fourier domain method has two disadvantages,
as follows.

(A) It is less efficient than the direct method for
templates less than a certain size. Pratt'® has calculated
this to be between 6 x 6 and 12 x 12, for square templates
and pictures, depending on the proximity of MP (=NP)
to the next power of 2.

(B) It can only be used to calculate the cross-
correlation, that is, S, with the specific distance function
di(a,b) = —a*b. This measure is based on the Euclidean
metric dg(a,b) = (a—b)* = a*+b*—2*d.(a,b). This is
perfectly adequate for binary or grey-level pictures which
contain exact copies of the template except for the
addition of Gaussian noise.

Given A, above, correlation by the repnet algorithm is
certainly worth considering as an alternative to the
Fourier transform method for templates of size less than
12 x 12. Most templates used as operators — as edge or
line detectors for example — are smaller than this critical
size.

A distance function d(a, b) which could have a different
value for each (a,b) and did not depend only on the
difference a— b would be a considerable improvement on
the Euclidean metric. Let p(a, b) be the probability that

pixel value a in the template is garbled to pixel value b
when the template occurs in the picture, and let g(b) be
the a priori probability that a background pixel in the
picture (i.e. a pixel which does not correspond to a pixel
in the template) has value b. Then p(a,b)/q(b) is
proportional to the likelihood that a pixel of value b in
PICTURE is a garbled version of a pixel of value a in
OBJECT. A proof in Appendix 2, based on Bayes’ rule,
shows that setting

d(a, b) = log{q(b)/p(a, b)} )

would make S[k,/] equal to a constant minus the log

likelihood that OBJECT occurs at position [k,/] of

PICTURE, under the following assumptions:

(i) each position [k,!] is a priori equally likely;

(ii) the noise at distinct pixels is independent and
identically distributed;

(iii) the background pixels of PICTURE are inde-
pendent and identically distributed.

Under these conditions the position [k, /] at which the
minimum value of S[k, /] was attained would be the most
likely position for OBJECT in PICTURE. Since the
‘background’ of PICTURE probably consists of real
objects, including copies of OBJECT, the repetitive
structure of real pictures is a two-edged sword, providing
an efficient repnet algorithm while invalidating (iii)
above. Despite this failing (2) is however a less arbitrary
distance function than the commonly used measures d,
dg and the city-block metric. The repnet algorithm can
make use of any additive distance function. A compre-
hensive list can be found in Cormack.?® Since d would
simply be stored as an array of values d(a, b), it can be
used to model any kind of noise (subject to condition (ii),
above) and any systematic transformation of pixel values
between those of the template OBJECT and its occur-
rence in PICTURE, such as a uniform increase in
lighting.

When the pixel values of OBJECT and PICTURE are
actually tri-stimulus colour values the validity of the
cross-correlation is even harder to maintain. This
statement is based on the fact that the perceptual colour
difference between two colours is given by the length of
a geodesic in Riemannian space,’® and it has been
shown?®! that it is not possible to map the tri-stimulus
values into another three-dimensional space which is
Euclidean, such that the colour difference measure is
preserved. It is possible however to calculate the
perceptual difference between colours, based upon
computation of colour geodesics.2? These values could be
stored in the array 4 and used in the repnet algorithm.
Whether a function of the perceived difference between
colours is the most appropriate distance function to use
in template matching is, of course, another matter.

The essence of the repnet algorithm for template
matching is that repeated subtemplates need only be
compared with the picture once, and hence repeated
computation is avoided by storing intermediate results.
This is the trademark of algorithms derived from the
‘divide and conquer’ strategy. In this sense there is a
resemblance between all divide-and-conquer algorithms,
and a particularly strong resemblance between the fast
Fourier transform and the repnet algorithm. The familiar
diagram to illustrate the FFT is almost a repnet for the
basis vectors of the transform.
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Figure 9. A picture (), its successive division into quadrants (5)
and the resulting quadtree (c).
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7. DATA COMPRESSION: QUADTREES AS
A SPECIAL CASE OF REPNETS

Decomposing an object-image in the form of a repnet
not only provides an efficient algorithm, repnetcalc, for
template matching, but also allows the object-image to
be stored in a compressed form. This section shows that
repnets and quadtrees are close relatives, repnets poten-
tially providing greater data compression but being less
easy to calculate.

Quadtree has become a generic term used to describe
a class of hierarchical data structures for data com-
pression.”® The original quadtree was based on a
successive division of two-dimensional space into four
quadrants,® stopping when the quadrant had a constant
value. Fig. 9(a) shows a picture, Fig. 9(b) its division
into quadrants and Fig. 9(c) the resulting quadtree.

(@)

(b)

Generalisations of this idea include the bintree, formed
by successive division of space into two halves instead of
four quadrants, the k-tree,?® which is the extension of
quadtrees to k dimensions, and trees in which the
division of space is not predetermined but is different for
each image so as to reduce the storage requirement
further.?®:*” All these forms of quadtree can be expressed
as repnets.

Quadtrees are an example of a wider class of data
compression and image-analysis techniques which de-
scribe an image in terms of a vocabulary of given shapes.
In the case of region quadtrees this vocabulary is a set of
constant-value rectangles with horizontal and vertical
sides each of length a power of 2 pixels. A rectangle with
sides 2" and 2° can be represented by an optimal repnet,
as illustrated in Fig. 4, with r + s+ 1 nodes, since it can be
decomposed into two equal rectangles and the sub-
rectangles similarly decomposed until the level of
individual pixels is reached. Thus a quadtree can formally
be extended to a repnet by replacing the leaf nodes of the
quadtree by optimal repnets and labelling the original
branches of the quadtree with offsets determined by the
position of the corresponding son ‘quadrant’ in the
father ‘quadrant’. Thus quadtrees are transformable to,
although not exactly equivalent to, a subclass of repnets.

Repnets potentially provide a much greater data
compression than quadtrees, because of their far greater
generality. Repeated sub-objects of any shape, and not
even necessarily consisting of connected pixels, can give
rise to data compression if the object is stored as a
repnet. Dyer®® has shown that a square object of size 2™
X 2™ in a 2" x 2" image will be encoded as a quadtree
ranging in size from the order of n—m nodes to the
order of 2™** + n—m nodes as the position of the object
varies in the image. The region quadtree is really only
efficient for the representation of a small number of
regions, and the worst example of inefficiency is the
chessboard pattern, whose quadtree, shown in Fig. 10, is
less space-efficient than the original image. By contrast,
the repnet representation of the same pattern is shown in
Fig. 11. Similar examples of regularly repeating patterns
with very compact repnets, but inefficient region quad-
trees, are patterns consisting of regular stripes, polka
dots, checks, etc. Because all quadtrees can be converted
to repnets there are no objects which have a compact
quadtree but no efficient repnet. However, we are not

&

w8 QR K40 alal II nia! a0 aln

Figure 10. A chessboard patterm (a) and its quadtree ().
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aware of a non-combinatorial algorithm to find the most
concise repnet of an object, and it seems unlikely that
such an algorithm exists. The advantage of a quadtree is
that it can be constructed in time proportional to the
number of pixels in the image.

Further research is required to find a compromise
between quadtrees and repnets which are efficient to
construct but are not limited to such a restrictive alphabet
of sub-objects as constant-value rectangles.

8. DISCUSSION AND FURTHER WORK

A hierarchical data structure has been introduced which
is unusual in that non-local repetitiveness can be utilised
to store an image efficiently. As introduced above,
repnets can only describe exact repeats at the same
orientation and dilation. In printed circuit boards the
majority of repeats are of this form, and a potential
application of repnets has been identified in the automatic
visual inspection of PCBs.

However, the ideas behind the repnet can be transferred
to any coordinate system and extended to any number of
dimensions. That is, if a template is to be applied at
different orientations as well as translations, then the
repnet of the template can take advantage of repetitive
patterns in which the repeated element is rotated as well
as translated. The greater the number of dimensions, the
larger the probability of repeats. This brief analysis has
ignored the problem of the differences in the digitisation
of a rotated template and the fact that applying a
template at a set of orientations as well as translations
would be impractical for all but the smallest templates.

When the range of pixel values is large repeats may be
sparse. But if 4 satisfies the triangle inequality

d(a,c) < d(a,b)+d(b, c)

it may be possible to approximate OBJECT by a template
with a compact repnet and thus efficiently determine a
range of values within which S[k, ] must lie.

Sets of pixels can be subtracted as well as added in a

%

4,0

<=

=

©,0) ©,2)

<

=

0,0 2,0

<

©.1) (0, 0) repnet. This would be applicable if an object were
' regularly shaped apart from small or regularly shaped
holes.
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Figure 11. A repnet of the chessboard patter in Fig. 10(a).
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MATCHING
The following global declarations are required:
TYPE
pixelvaluerange ={application-dependent}
sumptr =4{sumarray;
sumarray =array[l..MP,1..NP]
of real;
repnetptr =4repnet;
listofsubobjects =tlistitem;
listitem =RECORD
subobject : repnetptr;
xoffset,
yoffset : integer;
next : listofsubobjects
END;
repnet =RECORD
Sptr : sumptr;
subobjects : listofsubobjects;

pixel : pixelvaluerange;
timesneeded: integer

END;

VAR Picture=array[1l..MP,1..NP] of pixelvaluerange;

FUNCTION d (templatepixel,picturepixel

pixelvaluerange) real

{distance function :

The following recursive procedure calculates S(OB-
JECT) for a template OBJECT whose repnet (or rather
a pointer to it) is passed as a parameter, p. After
completion of Repnetcalc(p), S(OBJECT)[k,!/] will be

application-dependent}

stored in pt.Sptrt[k,[]. The repnet must be constructed
beforehand with the following information at each
node:
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Sptr = NIL

subobjects =a list of the subobjects (and
their offsets) which consti-
tute the object OBJ repre-
sented by this node

pixel =pixel value of OBJ if it is a
single pixel

timesneeded = number of arcs in the repnet
which point to this OBJ, i.e.
number of times S(0OBJ) will be
referred to when Repnetcalc
is executed for the complete
template OBJECT

PROCEDURE Repnetcalc (VAR p : repnetptr);
VAR k, 1 : integer;

nextOBJ : listofsubobjects;

OBJp : repnetptr;

BEGIN IF p?. Sptr=NIL THEN
{Otherwise S has already been calculated
for this object}
BEGIN

IF pt. subobjects=NIL

THEN {Calculate S for this single-pixel

object}

FOR k: =1 TO MP DO

FOR 1: =1 TO NP DO
pt. Sptrfi[k,1]: = d(p?t. pixel,
Picture[k,1])

ELSE {Calculate S for this object as
the sum of the arrays S(OBJ) for
its subobjects OBJ}

BEGIN
new(p?t. Sptr);
FOR k: =1 TO MP DO
FOR 1: =1 TO NP DO
pt. Sptr(k,1] : = 0; {initialise}

next OBJ : = pt. subobjects;

WHILE next OBJ ¢ ) NIL DO

BEGIN OBJp : = nextOBJ?t. subobject;
Repnetcalc (OBJp); {Calculate S
(OBJ)}

WITH nextOBJ4 DO
WITH OBJp?t DO
BEGIN
FOR k: =1 TO MP DO
FOR 1: = TO NP DO
pt.Sptrt[k,1] : = p}. Sptrt
[k,1]+Sptrt[k+xoffset,
l+yoffset];
timesneeded : = timesneeded
IF timesneeded=0
THEN {S(OBJ) is not needed
again} dispose(Sptr)
END;

{Get next subobject}
nextOBJ: =next0BJt. next
END
END
END
END;

APPENDIX 2. BAYES RULE DERIVATION
OF d

The following assumptions are made:

(i) each position [k,/] for the template is a priori
equally likely;

(i) the noise at distinct pixels is independent and
identically distributed ;

(iii) the background pixels of PICTURE are inde-
pendent and identically distributed.

Let X be the event that the object occurs at the
position corresponding to [k, /] in the picture array. Let
A be the event that the picture has the pixel values given
by PICTURE.

Bayes’ rule says that

Pr(4| X)*Pr(X)
Pr(A)

Under the assumptions (ii) and (iii) above,
Pr(A|X)= 11  Pr(A(i,j))|X)

pixels(i, j]
inPICTURE

where A(i,j) is the event that pixel [i,j] in the picture
array has the value PICTURE[, ).

Let p(a, b) be the probability that a pixel of value a in
the template is garbled to a pixel of value b in the picture,
and let g(b) be the a priori probability that a background
pixel of the picture has value b. Then, for all pixels
[k+x,1+ y] of the picture,

Pr(X|4) = 3)

P(OBJECT(x, y],PICTURE

[k+x,1+y])
Pr(A(k+x,1+y)| X) = {if [x,y] is a pixel in the template -
g(PICTURE[k + x,/+ y))
otherwise
Therefore
Pr(4]X) =
et POOBJECTLx, yLPICTURE[K + x, 1+)]) 0

(k+a Loyl PICTUR E g(PICTURE[k +x, [+ ])

where

Q= II g(PICTURELk + x, [ +y])
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I1 q(PICTURE][, ]
s P

Q, Pr(X) and Pr(A) are all independent of [k, /], under
assumption (/). From (3) we can see that, by defining

d(a, b) = log{q(b)/p(a, b)} = —log {p(a, b)/q(b)},

S[k, ], as defined in the text, will be equal to a constant
minus log{Pr(X| A)}. Hence the position [k, /] at which
S[k, ] attains its minimum value (including positions at
which the template only partially overlaps the picture),
will be the most likely position for the object.
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