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Optical waveguides allow for enhanced bandwidth, loosened loading constraints and large physical distribution of
computing resources. Moreover, optics enjoys a unique property that is not shared with electronics, namely the
unidirectional propagation of signals. It is this property that is exploited in this paper to increase the effective
bandwidth of optical buses. Specifically, a space-multiplexing technique for pipelining messages on optical buses is
introduced and analysed. It is shown that pipelined buses support arbitrary routeing permutations in synchronous
systems with only linear hardware complexity. Further, a bus arbitration protocol which extends the technique to
asynchronous systems is presented. The pipelining of control and data signals represents a significant departure from
the conventional exclusive access discipline which characterises bus-interconnected multiprocessors. By relaxing the
exclusive access requirement, space multiplexing can support the design of large-scale, distributed, tightly coupled

multiprocessor systems.
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1. INTRODUCTION

There are three fundamental constraints which bound
bus interconnections in electronic systems: limited band-
width, capacitive loading, and cross-talk caused by
mutual inductance. Optical systems provide both an
opportunity and a challenge to redesign our traditional
multiprocessor solutions free of these limitations. Al-
though direct technology substitution may alleviate, to
some extent, the communications bottleneck in computer
systems, there are obvious limitations to such sub-
stitution. For example, any interface between electronics
and optics lowers the speed at that interface to the speed
of electronics. Even though optical pulses as short as a
few femto-seconds may be generated and detected,* 2
such short pulses may not be used to transmit data on an
optical bus, since no existing electronic circuit at the
transmitting or the receiving end of the bus can match
that speed. In other words, the speed of electronics puts
bounds on the transmission speed of optical buses.

Another limitation concerns the end-to-end propa-
gation time of long buses. Due to the absence of self-
inductance or -capacitance, long optical buses may be
constructed without the need for signal repeaters. Several
designs of optical communication networks have already
been constructed taking advantage of this property.!-# 11
However, the control overhead associated with the
networking environment is relatively high and cannot
support efficient distributed multiprocessing. The major
requirement for multiprocessing is that many short
messages are transmitted with low overhead. Specifically,
the assumption of exclusive access to the bus resource
limits throughput to a function of the end-to-end
transmission time for the signals on the bus, irrespective
of the length of the messages. End-to-end transmission
times for optical signals are not inherently shorter than
for electronics.

A unique property of optics provides an alternative to
exclusive bus access. Namely, the ability in optics to

* This work is, in part, supported under the Air Force Office of
Scientific Research contract AFOSR-88-0198.
t To whom correspondence should be addressed.

pipeline the transmission of signals through a channel. In
electronic buses, signals propagate in both directions
from the source. Thus, for directional propagation in
pipelines, electronic systems introduce directional ampli-
fiers between adjacent bus sources. These amplifiers
cause unpredictable delays, which make any large-scale
distributed implementation impractical. On the other
hand, optical channels are inherently directional and
have predictable delay per unit length. This allows a
pipeline of signals to be created by the synchronised
directional coupling of each signal at specified locations
along the channel. This property, which has been used to
parallelise access to shared memory? and to minimise the
control overhead in networking environments,'® is
applied in this paper to optimise the use of optical buses
in multiprocessor systems.

We present a technique for space multiplexing of
optical channels in distributed tightly coupled multi-
processors. In the next section we introduce the concept
of pipelined optical buses as applied to synchronous
processor arrays. We show that by pipelining messages
on a single bus we may realise arbitrary routeing
permutations. We provide a detailed example of em-
bedding tree interconnections in linear arrays of pro-
cessors. In Section 3 we continue in the more general
framework of asynchronous multiprocessors. The pri-
mary concern in such an environment is the realisation of
a distributed arbitration mechanism for pipelined buses.
We introduce such a mechanism in Section 3.2, and
study its performance in Section 3.3. In Section 3.4 we
further analyse the technique in the context of large
shared-memory multiprocessor systems.

2. SPACE MULTIPLEXING OF
WAVEGUIDES IN SYNCHRONOUS
PROCESSOR ARRAYS

Multistage networks have been studied extensively!® as a
means of making processor—processor and processor—
memory interconnections. In the context of synchronous
processor arrays, however, an n x n multistage network
with logn stages may not realise arbitrary permutations in
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a single pass. For example, it has been shown in Ref. 17
that the Omega network® needs at least three passes in
order to realise arbitrary permutations, and that,
alternatively, a network with three logn stages may be
used. The hardware complexity of such multistage
networks is clearly of the order of O(nlogn). In this
section we shall demonstrate that a single optical bus,
which has O(n) hardware complexity, may be used to
realise arbitrary routeing permutations, as well as many-
to-one and one-to-many routeings.

2.1 Pipelining messages on optical buses

Consider a linear array of n nodes connected by a single
optical bus (waveguide) that is also connected to a host
as shown in Fig. 1. Each node may inject optical signals
into the waveguide through a directional coupler. The
injected signals propagate from left to right and may be
read by any subsequent node on the waveguide. As
would be the case in electronics, the bus of Fig. 1 may be
used as a medium for broadcasting messages from the
host to the nodes. However, because of the directionality
of signal propagation, the same bus may also be used
to transmit messages from node 1 to node 2, from node
2 to node 3 and, in general, from node i to node i+1,
i=1,...,,n—1, simultaneously.

Figure 1. An optically interconnected linear array.

Assuming that each message transmitted between any
two nodes consists of b bits, and that each bit is
represented by a light pulse of duration w (sec), the
concurrent transmission of the n— 1 messages described
above may be accomplished if the following criteria are
met.

(1) All transmissions are synchronised to start sim-
ultaneously. This may be enforced by the use of a
synchronisation signal that arrives at all the nodes at the
beginning of each transmission cycle.

(2) The length of the optical path on the waveguide
between any two consecutive nodes (d in Fig. 1) is larger
than bwc,, where c, is the velocity of light in the
waveguide. For example, if ¢, =2x 10®m/sec, and
10-bit messages are transmitted at 10 GHz, d should be
larger than 20 cm. This minimal optical path length can
be reduced by decreasing the message length via parallel
transmission on multiple waveguides, by decreasing c,
via the use of waveguides with higher refractive indices,
or by shortening the pulse width. Here we note that d is
the optical path length between any two nodes, which is
not necessarily equal to their physical separation. Also, d
does not have to be the same for every pair of adjacent
nodes.

Conditions 1 and 2 guarantee that the signals
corresponding to two different messages do not physically
overlap at any point on the waveguide (hence the term
‘space multiplexing’). If the first of the & bits in each
message is a start-of-message indicator that is always set
to one, a receiving node may pull-off the b—1 bits

following the start-of-message bit, and ignore any
following signal up to the initiation of the next
transmission. With this scheme every node may send a
message to its right neighbour, simultaneously, on the
same waveguide. Note, however, that the initiation of
consecutive transmission should be separated by at least
nd/c, sec, where n is the number of nodes in the array.
Clearly, the size of the array should be such that the
value of nd/c, is compatible with the computation speed
in the nodes. For example, if d=10cm and n = 50
nodes, transmission may be initiated every 25 nsec.

2.2 Realisation of arbitrary permutations

Nearest-neighbour connections are not the only point-
to-point communications that may be supported by the
single waveguide of Fig. 1. In fact, using space
multiplexing, point-to-point messages between any pairs
of nodes may be transmitted simultaneously as long as
their paths do not intersect in space and time. To be more
specific, let m;, ,,,, ., be a message that is sent from node
i to node dest (i), and let M = {m, ,,,..,; 1 <i<n}bea
set of such messages for some one-to-one function dest.
If conditions 1 and 2 above are satisfied and dest is a
strictly increasing function, that is dest (i) > i, then all the
messages in M may be transmitted on the waveguide
simultaneously without causing any signal overlap.

Let S={i:m, 4., €M} and D = {j:m, ;e M} be the
sets of source and destination nodes, respectively, for
messages in M. If all the nodes in S initiate transition
simultaneously, then a node j in D, where j = dest (i) for
some i in S, .may have to skip a few messages before
reading the message m, ; intended for it. Specifically, j has
to skip a number of messages equal to the number of
nodes between i and j that are in S. That is:

ji-1
skip(j) = X ¢() (1)
l=i+1
where
_f1 ifleS
o) = 0 otherwise

Hence, by using a single waveguide, it is possible to
send messages from any node i to any destination des? (i)
> i. In order to support communications from i to some
destination dest (i) < i a second waveguide may be used
as shown in Fig. 2. Clearly, the two directional
waveguides in Fig. 2 may support the simultaneous
transmission of any set of messages M for any per-
mutation function dest. Specifically, M can be parti-
tioned into two set M, and M, such that M, contains the
messages with dest (i) > i, and M, contains the messages
with dest (i) < i. Messages in M, are transmitted on the
left-to-right waveguide and messages in M, are trans-
mitted on the right-to-left waveguide. The sets of
source nodes, S, S,, and destination nodes, D,, D, may
be defined for M, and M,, respectively, and at each
destination node je D, U D,, the number of messages that

N N ad N ad N N 284
Node Node Node Node Node
1 2 3 4 5
> S > R e > S > N

Figure 2. A dual waveguide system.
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have to be skipped on a particular waveguide before
reading m, ,,,,, may be determined by an expression
similar to (1).

The dual waveguide system of Fig. 2 may be viewed as
a communication network that may realise any per-
mutation. Given a specific permutation dest, a single
register, SKIP, may be used at each node j to store
information about message reception; the sign of SKIP
may indicate whether j is in D, or D,, and its magnitude
may indicate the number of messages to be skipped
before reading the appropriate message. With this, setting
and changing of the interconnection patterns may be
accomplished at run-time by programming the values of
the SKIP registers at the nodes. Compared to cross-bar
switches or multistage interconnection networks, our
system uses less hardware (linear with n), eliminates
switch delays, and may be re-configured by programming
registers that are local to the processors.

The same communication capabilities of the dual
waveguide system may be obtained in the folded
waveguide system of Fig. 3. In that system each node
writes its message on track 1 of the waveguide and senses
any signal on the waveguide through a photo-detector
coupled to track 2. At the reception of the synchron-
isation signal, each node puts its message (b bits) on
track 1 of the waveguide. The n messages form a train
which travels on track 2, thus allowing each node to read
the message that is destined to it. As in the single-
waveguide system, a register SKIP may be used at each
node to indicate the number of messages to be skipped
before reading the appropriate message. In this case,

skip(j) = % #(),

I=i+1
where ¢(/) is as defined in (1). Note that the folded
waveguide system uses less couplers and photodetectors
than the dual-waveguide system at the expense of
doubling the optical length of the bus. A new round of
communication may be initiated on the folded waveguide
every 2nd/c, secs.

Track 1 dc, dc, dc, dc,

Track 2 /7. £z / ; s
a v 2
Device Device Device Device Device
i1 2 3 4 5

Figure 3. A folded waveguide system.

In addition to allowing arbitrary permutations, a
pipelined optical bus may allow many-to-one communi-
cations if the appropriate number of SKIP registers are
provided. For example, if two registers are provided in
each node, each node may receive up to two messages in
each bus cycle. Moreover, if the length of the optical path
d between two adjacent nodes is increased to Kbwc,,
where, as before, bwe, is the length of a s1ng1e message
then each node may send up to K messages in each bus
cycle, and thus one-to-many communications may also
be allowed. This flexibility may be applied to realise
several logical interconnections. We demonstrate this
capability by an example.

2.3 Tree-interconnections on pipelined buses: an example

Consider a multiprocessor system which consists of n =

2%—1 processors logically connected in a complete binary
tree structure. If a breadth-first numbering is used to
identify the processors, the tree connection implies that a
processor j should be connected to its parent, processor
L//2], and to its children, processors 2j and 2j+ I (see Fig.
4(a) and Fig. 5(a) for examples). If the n processors are
connected by a dual-waveguide system similar to the one
shown in Fig. 2, the left-to-right waveguide may support
messages from parent processors to children processors,
and the right-to-left waveguide may support messages
from children processors to parent processors.

Figure 4. Simultaneous transmission from children processors to
parent processors.

skipl =0 skipl = 1 skipl = 2
skipr =1 skipl =2 skipr =

aggoppe

First, we illustrate the many-to-one communication
capability by assuming that each processor is to send a
message to its parent. Clearly, a processor j, j < 271, will
receive one message from each of its two children, and
hence two skip registers are needed at each node. Let
skipl (j) and skipr(j) be the number of messages that a
node j has to skip before reading the messages addressed
to it by its left child (processor 2j) and right child
(processor 2j+1), respectively. Each of the 2j—j—1
processors between processor 2/ and processor j sends a
message to its parent, and hence processor 2/ will have to
skip j— 1 messages before reading the message of its left
child. That is

skipl(j) = j—1 j=1,...,25
Similarly, we find that
skipr() =j j=1,...,21-1

The values of skipl and skipr are shown in Fig. 4(b) for
the case L = 3.

In order to illustrate the one-to-many communication
capability, we assume that each processor (except the leaf
processors) is to send out two messages, the first to its left
child and the second to its right child. If each processor
writes its two messages consecutively on the right-to-left
waveguide, and the length of the optical path between
any two processors is larger than 2bwc,, where b is the
number of bits per message, the messages will not
overlap on the waveguide. Let skip(j) be the number of
messages that a processor j has to skip before reading the
message sent to it by its parent, namely processor |j/2|,
where Li/2| is the largest integer smaller than j/2.

If j is even, then there are j/2—1 processors between
processor j and its parent, j/2. Denote by S; the set
containing these processors. Now, if j is not a leaf
processor each processor in S; will write two messages on
the waveguide, and j will have to skip these messages
before reading its message. That is, skip (j) = 2(j/2—1)
=j—2. However, if j is a leaf processor j—21 of the
processors in S; are also leaf processors that will not
write any messages on the waveguide. In this case, j
will have to skip only 2(j/2—1—j+25) =2L—j—2
messages before reading its message.

1—1
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Figure 5. Simultaneous transmission from parent processors to
children processors.

If jis odd, its parent is (j—1)/2 and the set S contains
(j—1)/2 processors. Again, if j is not a leaf, each
processor in S; will write two messages on the waveguide.
In addition to skipping these messages, processor j will
have to skip one more message because its parent,
(j—1)/2, writes the message destined to its left child,
J—1, before the one destined to its right child j. Hence, in
this case, skip (j) = j. However, if j is a leaf processor the
2 —j—2 leaf processors in S, will not write any message
on the waveguide resulting in skip (j)—j. In summary, we
have

j=2 if j is even and j is not a leaf
processor

skip (j) = j if j is odd and j is not a leaf
processor

2“—j—2 if jis even and j is a leaf processor

2b—j if j is odd and j is a leaf processor

The values of skip are shown in Fig. 5(b) for a tree with
three levels.

Finally, it should be noted that an analysis similar to
the one presented above may be applied if a folded
waveguide system is used. Also, pipelined buses may be
used to realise other logical interconnection structures
such as the barrel switch networks, the shuffle/exchange
networks and the hypercube network.®

3. MESSAGE PIPELINING IN
ASYNCHRONOUS MULTIPROCESSORS

In the previous section, space multiplexing was applied
to computational models which assume a fixed com-
munication pattern at each cycle. Systolic arrays and
SIMD multiprocessors are clear examples of such models.
However, the same dual-waveguide and folded-wave-
guide configurations shown in Figs 2 and 3 may also be
used to multiplex messages between arbitrary sources
and destinations. Clearly, this may be accomplished if
each message includes the address of its destination, and
if individual messages are framed by appropriate
delimiters. As described earlier, each of the n devices may
put its message on the bus during the same bus cycle,
provided that the bits of different messages do not
overlap. That is, provided that all devices start the
transmission simultaneously and that the length d, of the
optical path between any two devices satisfies d > d,,, =
Wb, €, Where b, is the number of bits in the longest
message (address +data + delimiters). For a given d,,,,,
this condition represents an upper limit on the length of
the messages that may be transmitted on the bus.

For asynchronous MIMD multiprocessor systems, it
may not be possible to synchronise the simultaneous
transmission of messages to the accuracy required in
optical systems, especially if the transmitting devices are
physically separated, as is the case in distributed
multiprocessor systems. In order to resolve this problem,

— yal y /7 7 )
(% I~
1 2 3 4 5
\ \ \ \O

Control waveguide Central

controller
Figure 6. Synchronising transmission in physically distributed
systems.

a grant signal may be issued by a central controller and
propagated through the processor array on a separate
waveguide. For example, in the folded-waveguide con-
figuration, the grant signal may be propagated in a
direction opposite to that of track 1 of the message
waveguide (see Fig. 6). The arrival of the grant signal at
device i initiates the transmission of the message from
that device. Because the grant signal and the signal on
track 1 of the message waveguide propagate in opposite
directions, the bus cycle becomes 2nd/c, and the
condition on the inter-device optical path length d
becomes d > 0.5 wb, . c,.

So far we have described a multiplexing method in
which a train of » slots, one for the message transmitted
by each device, is pipelined on the waveguide. This is
quite acceptable provided that the messages fit in the
designated slots, and provided that a central controller
assumes the charge of issuing the synchronisation signal
or the grant signal. In distributed asynchronous multi-
processor systems these conditions are not generally
satisfied, and different techniques must be applied to
arbitrate the access to the bus. A distributed arbitration
technique is described in the next section.

3.1 Distributed control of pipelined optical buses

In addition to pipelining the data signals on the bus, the
unidirectional propagation of optics may be applied to
pipelining the control signals on the bus. The arbitration
mechanism described in this section relies on the
directional propagation of signals on a control waveguide
that is folded into three tracks as shown in Fig. 7. This
three-track waveguide is similar to the one used in Refs.
15 and 16 to pipeline modulated data signals, except that
it is used exclusively for control signals. The mechanism
results in a batch priority queue protocol.® In brief, all
devices that request the bus while the bus is idle form a
batch, and requests in the batch are serviced in linear
priority until all requests are satisfied. Requests that
arrive while a certain batch is being serviced have to wait
until all the requests in that batch are serviced and then
form a new batch.

Normally, the control waveguide is at logic zero (no
light). A device which wants to use the bus may assert a
request signal on track 1 of the control waveguide only if
a logic zero is read on the ack input which is coupled to
track 3 of the control waveguide. If ack is high, this is
considered as an indication that a batch has already been
formed, and hence the device has to wait until that batch
is serviced before it may assert its request. As will be
explained later, this will be indicated by a high-to-low
transition on ack.

Clearly, the end of a batch formation period is
signalled at each device by a rising edge on ack (low-to-
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Figure 7. Distributed control of pipelined optical buses.

high transition). This edge, which travels towards the
right on track 3 of the control waveguide, is the feedback
of a signal that is generated on track 1 of that waveguide
by some device asserting a request signal.

A device is included in the current batch as soon as it
asserts request. However, it is not granted control of the
bus until it reads both a one on ack (end of batch
formation) and a zero on the priority input, which taps
track 1 of the control waveguide. With this scheme, after
the formation of a batch, the devices within the batch
will be granted control of the bus in the order at which
they are connected to the control waveguide. Hence, in
Fig. 7, the leftmost device requesting the bus is granted
the bus first. Here we note that the only function of
track 2 of the control waveguide is to cause the feedback
signal on track 3 to travel in the same direction as the
request signal on track 1. As proved in Ref. 3, this ensures
that the arbitration mechanism handles simultaneous
requests correctly.

After a device i is granted the bus (ack = 1 and priority
= 0), it sends its message on the message waveguide, and
after sending the last bit of the message it relinquishes the
bus by lowering the request line. This will cause a low-
going edge to travel on track 1 of the control waveguide.
The next requesting device, say j, will receive that edge at
the same time when the last bit of the message sent by
device i passes through the coupler dc,. In other words,
when device j is granted control of the bus upon the high-
to-low transition on priority, it may immediately start to
transmit its own message on the message waveguide. The
two messages from device i and device j, say m; and m,,
will thus be pipelined on the message waveguide. The
spacing (separation) between m, and m, depends on the
time required for processing the control signal within the
controller of device j.

Since electronic delays cannot be predicted to the
accuracy of optics, it is impossible to eliminate completely
the separation between messages in the pipeline. How-
ever, such separation can be reduced if the request signal
of device i is lowered before the transmission of the last
bit of m; by a time period 7, ,,,, equal to the minimum
electronic delay expected in a controller. The actual
separation between messages will therefore vary within
the specified tolerances of a small number of gates in the
control circuit. Specifically, if 7, = z, ,;, + A, is the actual
time consumed by device j to process the control signal,
then m, and m, will be separated on the waveguide by a
distance of A,c,. This, of course, assumes that the time
to transmit m; is larger than 7, . If this is not the
case, then the separation between m, and m; becomes
(t,—b;w)c,, where b, is the number of bits in m, and

1/w is the baud rate used for transmission. In order to
simplify future analysis, we assume that the separation
between messages is 7, c,, where 7, is a delay due to few
electronic gates (for a precise estimation of 7, we refer to
Ref. 3).

With the above scheme, all the messages transmitted
by devices in a particular batch will be pipelined into a
train that will travel on track 2 of the message waveguide
and thus will be seen by every device. It is the
responsibility of each device to recognise its address
within each message and to read the messages that are
addressed to it.

When the rightmost device in the batch finishes sending
it message and lowers its request line, the corresponding
low-going edge will travel on the control waveguide all
the way to track 3 of that waveguide. The detection of
this high-to-low transition on the ack input of a device is
interpreted by that device as a signal of completion of the
current batch, and thus as a permission to assert request
if the device was waiting to request the bus.

3.2 Control overhead

In the above bus arbitration scheme there is an
overhead associated with forming a batch and with
signalling the termination of a batch. For a given batch
we use the term ‘batch initiation’ to refer to the instant
of time at which the first device in the batch asserts its
request signal. We also use the term ‘batch termination’
to refer either to the instant of time at which all devices
are notified that the service of the current batch has been
completed, or to the initiation of the next batch,
whichever is first. Note that in the case of high bus
contention the bus is never idle, and thus batch
termination is always due to the initiation of the next
batch. Now, we may define batch formation overhead as
the time interval between batch initiation and the instant
when the highest priority device in the batch starts the
transmission of its message. Similarly, we may define
batch release overhead as the time interval between the
instant at which the lowest priority device in the batch
finishes the transmission of its message and batch
termination.

In order to estimate the overhead associated with
batch control in a high-contention environment, we
assume that device r is the lowest-priority (rightmost
device) in some batch and that device f is the leftmost
device that is waiting for the termination of that batch to
request the bus. In this case, by tracing the control
signals on the control waveguide it is easy to see that the
batch release overhead is equal to 21, , — 1, ,, where 7, , is
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Figure 8. A snapshot of the pipelined messages on track 2 of the
message waveguide.

the signal propagation delay between devices i and j, and
thus 7, , is the bus end-to-end propagation delay. Given
that f'is the highest-priority device in the next batch, the
batch formation overhead for that batch is equal to
27, ,+1,, where 27, , is the time for the request signal
asserted by fon track 1 of the control waveguide to wrap
around and reach the ack input of £, and 7/ is the logic
delay from the time the ack input of f goes high to the
time f starts writing its message on the bus. This logic
delay is of the same order as the logic delay 7, discussed
earlier, and it will be assumed, for simplicity, that ¢’ = T,.

Hence, the time interval between the instant at which
r finished the transmission of its message until the instant
at which fstarts its transmission is 4t, ,—1, ,+1,. This
interval creates a spatial separation on the message
waveguide between the two trains of messages cor-
responding to the two batches. Specifically, if, as in
Fig. 7, the direction of propagation on the message
waveguide is identical to that of tracks 1 and 3 of the
control waveguide, then, as shown in Fig. 8, the spatial
separation between the two trains of messages is equal to
(47, +7)¢,

3.3 Performance analysis

An important measure of performance of any bus
control protocol is its efficiency, defined as the ratio 7 =
T,/(T.+ T;), where T, is the time spent for transmitting
data on the bus and T, is the time spent in controlling the
bus. This ratio is particularly important if the bus is
subject to high contention. That is, if the bus is never
idle; an assumption that we will maintain throughout
this section.

The optical bus protocol described in the previous
section utilises the property of undirectional propagation
of optical signals in two different ways. First, by
pipelining control signals, the control overhead of
4t, ,+1,is only paid for each batch rather than for each
message. Secondly, due to the pipelining of data signals,
each device holds the bus only while writing a message on
the bus and there is no need to wait for the signals to
reach their destination after each transmission. Assuming
that N,,, 1 < N,, <n is the average number of devices
included in each batch, and that b,, is the average
number of bits in a message, then, over a time span
required to process a given number of batches, the
efficiency of the pipelined bus protocol is

’7 -— Mvﬂav (2)

P A+, + N (B + 7))
where B, = b,, wis the average time length of a message.
If the same number of messages are transmitted on an

electronic or an optical bus, using a protocol which does

not exploit the unidirectional propagation of signals, the
upper bound on the efficiency is

— Mb ﬂav (3)
o TN Qe+ 20, 4B
where it is assumed that the minimum arbitration time
for each message is 7, , +27,, for some logic delay r,. It
is also assumed that the physical location of the receiver
is not known to the sender, and hence each sender should
not relinquish the bus unless it is certain that the message
reached the receiver. This requires, at least, an average
time of 7, , per message. Note that the efficiency of non-
pipelined buses does not reach the bound (3) in practice.
By comparing (2) and (3), it becomes clear that the
efficiency of pipelined buses is always larger than that of
non-pipelined buses as long as N,, > 1 - that is, as long
as each batch contains more than one request. Moreover, 5
pipelining the bus becomes more advantageous when the 5
arbitration overhead is dominated by the end-to-end §
propagation delay — that is, when 7, , > 7,. For example, &
if sub-nanosecond ECL electronics is used for the control 5
logic and the bus is longer than a few metres, then 3
7,.. > 1,, and the effect of 7, in (2) and (3) becomes
very small. In this case, #,,, and #,,, ,,. may be
approximated to

moQ

N,
. — av 4
”plpe zp_‘_[\{“ ( )

and

1
= —— 5
”non-plpe (zp 1) H ( )

where p = 7, ,/B,, is the ratio of bus length to message
length. In Fig. 9(a), Equations (4) and (5) are plotted for
a bus connecting n = 64 processors, assuming that N, =
n/4. The plot shows that pipelined buses may be efficiently
used even for values of p larger than unity. For such p,
the length of the messages is smaller than the end-to-end
delay and the overhead associated with non-pipelined
buses becomes prohibitive. In Fig. 9(b), we fix p at p = 2
and show the effect of N, on the efficiency of pipelined
buses. As expected, the efficiency of the pipelined protocol
increases when the bus becomes busier and the batches
become larger.

038 038 1 pipe

n 0.6
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Figure 9. Bus efficiency for 7 > T,

Pipelining the bus reduces the control overhead, even
for short buses in which the logic delay 7, may not be
neglected. In order to illustrate this, we consider
Equations (2) and (3) with n = 64 and N,, = n/2 and we
plot, in Fig. 10, the bus efficiency against the ratio
(o = B,,/7,) for different values of p. If the same electronic
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technology is used for both the controller circuit and the
transmitter circuits, it is reasonable to assume that the
width of the pulses used for transmission is approximately
equal to one logic level delay in the controller circuit.
With this assumption, o = b, /g, where b,_ is the average
number of bits in a message and g is the number of logic
levels in the controller circuit (in the controller design
described in Ref. 3, g = 5). We have chosen to use o
instead of f,, in Fig. 10 because o is a measure of the
length, in bits, of the messages transmitted on the bus,
and is independent of the electronic technology used in
the system.
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Figure 10. Bus efficiency as a function of o.

3.4 Application to distributed common bus
multiprocessors

The results of the previous section indicate that optical
buses may be used for the construction of distributed
multiprocessor systems with relatively large physical
separations. Specifically, pipelining the signals on the bus
provides high message throughput and thus large
bandwidth, even for relatively short messages. In order
to illustrate this point, we consider a 64-multiprocessor
system with N,, =n/2=32, b,, =32, g=35, and we
assume a | nsec delay per logic level. For such a system,
o = 6.4and p = 0.104L, where L is the length of the bus
in metres. By substituting these values in (3) we find that,
in order to maintain a bus efficiency of more than 0.5, the
physical length of the bus should be less than 3.4 m.
From (2), this same efficiency may be obtained for
pipelined buses of length up to 64 m. The ability of
pipelined optical buses to support distributed multi-
processors increases as the number of processors
increases. For example, with N, =128, o =64,
p =0.104L and a 50% bus efficiency, pipelined optical
buses of length up to 259 m may be used. This clearly
allows for the construction of distributed multiprocessor
systems across buildings in university campuses or
industrial sites.

Pipelining the messages on the bus, however, does not
shorten the delay required for delivering any particular
message. This delay remains proportional to the length
of the path travelled by that message. For shared-
memory multiprocessor systems such delay is especially
critical, since it represents a performance bottleneck. In
the remaining part of this section we shall analyse in
some detail the memory-response time in shared-memory
systems interconnected by pipelined optical buses.

Consider a system of n processors, each connected to
a local memory such that the n local memories form a

global memory space that is addressable by any processor
in the system. The processors are connected by an optical
bus that is used to transmit memory requests to non-
local memories. Also, memory modules receiving read
requests from remote processors use the bus to send back
the content of the requested memory locations. For
simplicity, it will be assumed that messages are of some
fixed length, say b bits. This is a reasonable assumption,
since only three types of message are needed for ‘read
requests’, ‘write requests’ and ‘returned data’, and since
separate message waveguides may be used for address,
data and processor identification. If, as before, the bus
cycle time, 7., is defined as the time for servicing the
bus requests in one batch plus the associated control
overhead, then

TCYCIG = 4'Tl. n + Te + Mv(ﬁ+ Te)’ (6)

where f = bw.

The memory-response time for a read operation,
denoted by 7., is the time elapsed between the instant
when a processor issues a memory read request and the
instant it receives the addressed data. For a non-local
memory read, the value of t,,,., depends on the location
of the processor relative to the addressed memory
module, and on the status of the bus at the time of the
request. In order to compute the worst response time, we
consider a processor P, which issues a read request to a
module M just after the formation of a batch. In this
case, P has to wait for one complete bus cycle before it
can even request control of the bus. Thus the read
request will be transmitted on the bus during the
following bus cycle (call this cycle 2). If P is the lowest-
priority device on the second batch, M will receive the
request at the end of cycle 2 and may not have time to
fetch the data before the formation of the third batch.
Thus the data will be sent back to P during cycle 4, and
if M has a low priority the data will reach P at the end
of cycle 4. In other words, 1,,,.,, may be as high as 4z_,,,..

The above analysis assumes that memory contention
within M may be resolved in a 7, time. That is, if a
given batch contains k read requests, k < n, for locations
in M, then all the k requests will be fetched during cycle
3, stored in a queue, and sent back during cycle 4. If this
is not possible some requests will not be ready during
cycle 4, and the response time for these requests will be
greater than 4r, .. This is a memory-contention
problem, which is typical for all shared-memory multi-
processor systems. In our system such contention will
only delay memory access to M, but unlike multistage
interconnection networks will not affect request to other
memory modules. Specifically, for multistage networks,
this situation, referred to as a hot spot!®, creates a
saturation tree which affects all memory requests,
including those that do not address M.’

By carefully following the path of the different control
signals in the pipelined bus, it becomes clear that, even if
P is the lowest-priority device and the read request to M
is the last message in batch 2, there is a period of 27, ,
between the instant when M receives the read request
and the instant when M receives the rising edge on ack
indicating the formation of batch 3. Hence, if M can
fetch the required location in a time less than 27, , the
requested data may be sent back on the bus during cycle
3. For relatively long buses the above condition is usually
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satisfied and thus the upper bound on Treten 18 3Toyere- The
lowest bound on 1, is obtained when P is the lowest-
priority device and M is the highest-priority device. In
this case it takes at least 7, , time units for the request of
P to reach M. The next batch, which includes the reply of
M, requires 27, , time units for its formation, and an
additional 1, , is needed for the data to travel back from
M to P. In other words,

4T1.n < Tfetch < 3Tcycle' (7)

For a distributed 64-processor system connected by
a 100 m-long bus, if N,, =32, b =32, w=1nsec and
7, = 5 nsec, we have 4t, , = 1.32 usec and N, (B+71,) =
1.18 usec. Hence, from (6) and (7), the memory-access
time for non-local memory is between 1.32 and 7.5 usec.
This is comparable to the memory-access time in
multiprocessor systems that use multistage intercon-
nection networks.!* However, the use of optical buses
allows for a separation of 100 m between the processors
in the system. In addition, a bus structure has the
obvious advantage of using hardware that is linear with
the number of processors.
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