The Need for Reduced Byte Stream Instruction Sets

J.P.BENNETT* anp G.C. SMITH

School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 74Y

In the design of byte stream instruction sets, a popular methodology has been peephole refinement of a canonical
instruction set. By this we mean the addition of extra opcodes over the minimum necessary for a viable machine in
order to handle particularly common cases more efficiently. Such machines by the use of ‘escape’ sequences often have
hundreds of different opcodes. By comparison, modern ‘Reduced Instruction Set’ computers, which do not take the byte
stream approach, have a very small number of opcodes. We argue that in fact there is no significant benefit to be
achieved by having byte stream instruction sets of more than around 100 opcodes. A formal basis for the selection of

extra opcodes is used in justifying this view.

Received May 1987, revised September 1987
1. INTRODUCTION

Many computer architectures and intermediate codes,
both general and specialised, are based on the concept of
a byte stream instruction set. Instructions in such a
machine consist of a single-byte opcode specifying the
required operation, possibly followed by a number of
argument bytes.t The number and format of such
arguments is implied by the opcode itself. The number of
opcodes in such architectures is limited by the size of a
byte. Today a byte is almost invariably eight bits, which
means there may be up to 256 opcodes. This may be
extended arbitrarily by selecting some of the 256 opcodes
to be ‘escape’ opcodes, with a subsequent byte acting
as a secondary opcode. A typical example of this is
EM-1.8

A common manner of designing such instruction sets
is to select a range of opcodes sufficient to support the
major concepts embodied in the architecture. We refer to
this as the ‘canonical instruction set’. Supplementary
opcodes, up to the maximum 256 (or more if there are
escape sequences) are then added that support par-
ticularly common cases in the use of the canonical
instruction set. Typically these extra opcodes are deriva-
tives of existing opcodes. Thus an architecture may
provide a canonical LOAD NUMBER instruction,
being a one-byte opcode and four-byte argument, to load
a four-byte constant, within the canonical instruction set.
Extra instructions may then be added to deal with
loading small constants (LOAD NUMBER BYTE, one-
byte opcode, one-byte argument) or specific values
(LOAD NUMBER ZERO, one-byte opcode, no argu-
ment) for example. Furthermore common opcode pairs
may be combined to generate a single instruction, for
example PLUS and LOAD NUMBER may create ADD
NUMBER, to add a constant. These rules for deriving
new instructions may be applied repetitively, so we may
suggest an opcode ADD NUMBER ONE, to add the
constant one.

Such instructions improve the instruction set by
reducing the space occupied by compiled code and
reducing execution time required for fetching of argu-

* To whom correspondence should be addressed.

t The terms ‘opcode’ and ‘instruction’ are used very loosely
throughout the literature. We shall use ‘opcode’ to mean the initial
byte specifying the operation required, whilst ‘instruction’ will be used
to refer to the opcode together with its requisite number of argument
bytes.

ments. It is important to have suitable quantifiable design
criteria, such as code size and execution speed, against
which the benefit accruing from adding a particular
opcode may be measured. This methodology of in-
struction set design, and its automation is reviewed and
discussed in detail by Bennett.2

This paper looks at whether the number of special
opcodes to support a particular canonical opcode or
group of opcodes can be quantified. There is no reference
to such quantification in the literature; all work in this
field relies on the experience and intuition of the
instruction set designer when choosing opcodes. The
only opinion that could be found on the subject was with
regard to CINTCODE, a byte stream instruction set
which supports compiled BCPL,” with the aim of
minimising compiled code size.® Richards suggests® that
the number of extra instructions added to support a
particular canonical opcode or group of opcodes should
be proportional to the frequency with which that opcode
or group of opcodes is found in compiled canonical code.
Thus the observation that half the instructions in
compiled canonical code are to do with loading and
storing leads to the suggestion that half the 256 opcodes
should be load and store opcodes. Furthermore, the
observation that loading is twice as common as storing
leads to the suggestion that the 128 load and store
opcodes should be chosen in a ratio of 2 to 1. CINTCODE
does indeed follow this general idea, although the data
on the frequency of instructions in compiled code are
based more on the designer’s (considerable) experience
than detailed statistical analysis.

We suggest that such an approach is not completely
correct. Specifically we suggest that there is little benefit
to be gained from adding more than a few special
opcodes to the canonical instruction set. There is no need
for a full complement of 256 opcodes, let alone the use of
additional escape opcodes. We first present a justification
of this design approach and then quantify the benefit
that accrues as we add additional opcodes. This is
illustrated by two practical examples of instruction set
design.

2. THE INTEGER PROGRAMMING
APPROACH

Let us suppose that our canonical opcodes are partitioned
into ¢ types, T;, T, ..., T,. This may for example be at the
level of partitioning into data access, data manipulation

370 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z I4dy 01 uo 1senb Aq 0£9/2€/0.€/¥/2E/81P1e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

THE NEED FOR REDUCED BYTE STREAM INSTRUCTION SETS

and flow of control opcodes (¢ = 3), or it may be at the
level of the canonical opcode, with initially only one
opcode of each type, and ¢ possibly quite large. We also
assume that we have a quantifiable criterion for
measuring the benefit accruing though adding extra
opcodes of a particular type. This may be the percentage
saving in code size, or the decrease in execution time per
instruction observed when adding extra opcodes of a
particular type. We now construct our full instruction set
by adding a number of extra opcodes to support each
particular type. For each type 7 let there be x, extra
opcodes. In any body of compiled code we observe that
opcodes of type T; occur with frequency f;. Clearly the
higher this frequency the more incentive there is to
choose x; to be large, since then we increase the benefit
due to these opcodes. For any given type, T;, adding extra
opcodes will give a benefit s;, given by some function g,
of x,
8; = &i(x,).

And thus the total benefit will be

t
S=3s,

i=1
t
=2 gi(xi)'
i=1

We wish to maximise S subject to the constraint
Zix,=c, ie. there is a limit on the number of extra
opcodes permitted, typically 256 less the number of
canonical opcodes. This is a standard problem in integer
programming, the stock-cutting problem. In the case of
instruction set design we observe that if we define

As, ;= 8g() —&(j—1)
then As,; , <As,; for all iel,...,t and j> 1. This
makes the problem particularly easy to solve by a simple
‘greedy’ algorithm of adding one extra opcode, the best
available, at a time until we have reached the constraint,
i.e. we have c extra opcodes.

This works well as a methodology of instruction set
design, although deriving the functions s, may involve
much computer time, typically exhaustive enumeration
of all possible selections of opcodes. In addition it is not
always strictly true that As,, , < As,,, although the
observations in Ref. 2 suggest that in practice it is very
close to the truth.

3. CASE STUDIES

An instruction set generator, ISGEN, has been de-
veloped,! which uses a greedy algorithm to add in-
structions to a canonical instruction set. In our first
example it was used to add instructions to a canonical
instruction set of 49 instructions supporting 32-bit
BCPL, on the basis of the frequency of instructions in
500K of compiled code. In the second example ISGEN
was used to add instructions to an existing instruction set
of 26 instructions supporting the programming language
POLY? on the basis of the frequency of intructions in
200K of compiled code. In both cases the primary design
criterion was reduction in static size of compiled code.
The effect of adding instructions was followed by looking
at the space occupied by the sample body of code as each
new instruction was incorporated by peephole substi-
tution.

This is satisfactory for instruction-set design research,
but is heavy on computer resources. At least initially it
would be helpful if the computer design could be given a
guide as to the number of opcodes required to support
each type of instruction. To this end a model of the
benefits that accrue through the addition of opcodes is
desirable. It is in the construction of such a model that
we see where the underlying weakness of this design
method lies.

4. A MATHEMATICAL MODEL

There are various ways of making a mathematical model
of benefit that will accrue for different values of x,. Let us
suppose we can approximate the benefit functions g, by
a decaying exponential.

Let s, and x, be defined as above. Let us suppose there
exist non-negative constants a;, such that:

s; = af(l — e™%%), where ¢ is a suitably dimensioned
constant.

Thus the total benefit is:
t
S=03Xf(l —e%%) €))
=1

subject to the constraint Zx, = ¢, where c is the number
of extra instructions we have room for in our instruction
set of 256 instructions. The attraction of this model is
that it is in some sense natural; negative exponential
terms are what one might expect. If values of a; cannot
be found to model real choices of instructions accurately
we may have to try a different version of Equation (1) or
even reject the model completely.

We wish to find values of x, which will maximise S. To
this end we use the method of Lagrange multipliers. The
reader is referred to any elementary analysis text for an
explanation.

t
Let g=3%x,—c and S be given by Equation 1.

i=1
Let w=S+4g.
We must solve simultaneously
Vy=0 and g=0.

Thus

afie i =a,fe% forallije{l,..., 1}

t

Let d,= Ila;, then for any ke{l,...,} we have
Jj=1
i

t t
I1 (a,.f e)% =TI (a,f; e “)%,
=1 =1
Therefore

t
(@ fye)it = T1 (a,f))" e 5,
i=1

where
t
a=1la,.
i=1
t
Nowg=0 so Y x,=c
i=1
t
Letb=3Xd,.

i=1

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 371

¥20Z I4dy 01 uo 1senb Aq 0£9/2€/0.€/¥/2E/81P1e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

J.P. BENNETT AND G. C. SMITH

Now we have

t
(ak./;c e‘“k’k)b — H (atf;)di e—ac.
i=1
Let r denote the right-hand side of this equation (which
is independent of k). Let n, = (a,f,)’ and then

’7}: e_b“kzk =r

and finally we have

1 Ny
X, = ba, loge(p) 2)
Such a choice of x,’s will maximise S.

The method of Lagrange multipliers ensures that we
have found a critical point of the saving function. By
considering the problem in question we deduce that this
is a maximum.

The formula of Equation (2) as given is inappropriate
for computation. With a; around 5 x 10~2 and ¢ around
10, d; and b are of the form 107'%, making r and #, of the
order of 10", far too close to unity for easy
manipulation by computer. This is solved by noting that
in the formula of Equation (2) the last term may be
rewritten

loge (%) = loge(”k) -]oge(r)

log,(n,) = log,(a,f.)°
= blog/a,f,)

log,(r) = log, (ﬁ (a.f)* e—ac)

i=1

and

¢
= X d;log,(a,f) — ac.
i=1

These formulas now involve only numbers of the order
of 107'?, well within the capabilities of an ordinary
computer.

5. EXPERIMENTAL SUPPORT

We test the validity of this model by looking at the first
of our examples, the design of an instruction set to
support BCPL using ISGEN. We use the information on
the benefit accruing as each instruction is added given by
ISGEN to fit Equation (1) and obtain values for a, and
af;. For the purpose of our experiments we divide the
canonical instructions into three types, and look at the
predicted and observed support for these three types in
the final instruction set. The three groupings are data
access instructions, data manipulation instructions and
flow of control instructions. In the canonical instruction
set we have 14, 21 and 14 instructions respectively
supporting these three types. Compiled canonical code is
observed to contain 72%, 3% and 25% of the three
types respectively.

We tried fitting Equation (1) to our data, to obtain
values of a,, f; and hence obtain predictions of the
number of instructions of each type to be incorporated in
the instruction set. There is a slight problem in that
instructions formed by combination of instructions of
two different types end up belonging to a new sort of
combined type (for example CALLGLOBAL), but this
problem is overcome by counting such an instruction as
half an instruction of one type and half of the other.

Table 1. Model instruction set distribution for three types.

i af, a, X, s,
1 133000 0.003 127 42100
2 12000 0.04 16 6550
3 54000 0.009 64 23700
Total — —_ 207 72400
1004
90+
804
704
1S3
g 60~
g. Partial
3] 504
o
3
& 40-
30+ Complete
20
104
0 T

T T T T 1 T T T 1
0 20 40 60 80 100 120 140 160 180 200
Number of additional opcodes

Figure 1. Percentage space saving due to additional opcodes.

Statistically, fitting Equation (1) by least-squares re-
gression is far from satisfactory, particularly since we
have no model of error behaviour. However, Table 1
shows the best results that we could achieve using our
model Equation (1). The prediction of number of opcodes
is not too bad; ISGEN suggests that a partition of 137,
10 and 60 is optimal. However, the predicted saving of
72400 bytes is out by a factor of nearly 5 from the saving
of 358762 bytes in the size of the code sample achieved
with the instruction set selected by ISGEN.

The model of Equation (1) would appear inadequate
for the task. It is unable to give really reliable predictions
of the number of opcodes of different types required. Its
predictions of the savings to be achieved bear no
discernible relationship to reality. To be of any use in
practice we would not measure af; and q, by curve fitting
of completed data, but would attempt to estimate them
in advance. This would of course lead to even less
believable predictions.

These results have led us to review the mechanism of
this style of instruction set design.

6. ANEW CRITERION FOR OPCODE
SELECTION

The source of the problem with our model can be seen if
we look at the savings that accrue as we add opcodes
with ISGEN. A graph of space occupied by the sample
compiled code as a percentage of its initial size as we
incorporate in turn each additional opcode suggested by
ISGEN is given in Fig. 1. For comparison we show a

372 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

¥20Z I4dy 01 uo 1senb Aq 0£9/2€/0.€/¥/2E/81P1e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

THE NEED FOR REDUCED BYTE STREAM INSTRUCTION SETS

partial use of ISGEN, permitting only the option of
generating an opcode by combination with a specific
argument value, rather than the three ways of generating
outlined above; roughly akin to the methodology of
Tanenbaum.® The fact is that whether we use 110 or 140
opcodes of type 1, or 10 or 20 of type 2 or 60 or 70 of type
3 makes very little difference. Almost all our benefit is
coming from the first few special opcodes that we add.
When we run ISGEN using three methods of generating
new opcodes, 90 % of the space saved is achieved from
the first 44 additional opcodes of all types. Thereafter
additional opcodes make very little difference. Even with
our partial use, after the manner of Tanenbaum we see
90 % saving using little more than half the additional
opcodes. When we look at our model we see that this is
where we are on the flat part of the exponential decay.
We can also explain the error in estimation of savings.
This is due to error in fitting the first rapidly decaying
part of the exponential. Slight errors in estimation of g,
will lead to gross under- or over-estimates of the savings
to be expected. Our efforts to refine to the last opcode the
addition of opcodes to our instruction set are really
pointless. We can achieve 90% of our aim with an
instruction set of just 93 opcodes. If we look at less easily
quantified measures of benefit, such as dynamic code size
or memory bus loading, we are unlikely to be able to

REFERENCES

1. J. P. Bennett, Automated Design of an Instruction Set for
BCPL. Technical Report No. 93, University of Cambridge
Computer Laboratory (1986).

2. J. P. Bennett, A Methodology for Automated Design of
Computer Instruction Sets. Ph.D. Thesis, University of
Cambridge (1987).

3. D. C. J. Matthews, Poly Manual. Technical Report No. 63,
University of Cambridge Computer Laboratory (1985).

4. D. A. Patterson and C. H. Sequin, A VLSI RISC. Com-
puter 15 (9), 8-21 (1982).

quantify the benefit due to a particular opcode with as
much as 10 % accuracy anyway. ISGEN has in any case
achieved a 17 % improvement merely by extending from
one to three the number of methods of constructing new
opcodes.

For comparison we took a second example, an
instruction set for the programming language POLY.
This is a far more sophisticated language than BCPL
with a polymorphic type system. We might expect to
need a larger instruction set, but even here 90 % of the
benefit possible with a full complement of 256 opcodes is
achieved using just 116.

7. CONCLUSIONS

It seems there is a simple message for the designer of a
byte stream architecture. Only add those extra opcodes
you really need. There really is little point in filling up an
instruction set with little-used opcodes. Fewer opcodes
mean less microcode, and more silicon for hardware
assistance. It also makes the compiler writer’s job easier,
with fewer options in selecting opcodes. Under these
conditions many of the benefits seen from RISC
technology (see for example Ref. 4) may be possible,
whilst retaining the advantages found with byte stream
architectures.

5. M. Richards, The Design of CINTCODE (personal com-
munication, 1983).

6. J. Richards and C. Jobson, BCPL for the BBC Micro-
computer. Acornsoft Ltd, Cambridge (1982).

7. M. Richards and C. Whitby-Strevens, BCPL, the Language
and its Compiler. Cambridge : Cambridge University Press
(1980).

8. A.S. Tanenbaum, Implications of structured programming
for machine architecture. Communications of the ACM 21
(3), 237-246 (1978).

THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989 373

¥20Z I4dy 01 uo 1senb Aq 0£9/2€/0.€/¥/2E/81P1e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

