CORRESPONDENCE

problem, and states that the ‘conventional
MAC is not recommended for multicast
messages’. It instead recommends the use of a
128-bit Bidirectional MAC (BMAC), the
means of computation for which is described
in Appendix A.2 of Ref. 2.

Yours faithfully

C. MITCHELL
Hewlett-Packard Laboratories,
Filton Road,

Stoke Gifford, Bristol BS12 6QZ

REFERENCES

1. C. Mitchell and M. Walker, Solutions to
the multidestination secure electronic mail
problem. Computers and Security 7, 483
488 (1988).

2. J. Linn, Privacy enhancement for Internet
electronic mail: Part I: Message en-
cipherment and authentication pro-
cedures. Request for comments 1040 (RFC
1040), IAB Internet Privacy Task Force
(1988).

A note on dividing integers by two

Dear Sir,

A number of algorithms require that a two’s
complement integer be divided by two. The
division operation can be performed rapidly
by shifting the integer one place to the right.
Many microprocessors have the Arithmetic
Shift Right instruction for this purpose to
give, at first sight, binary division by two.
However, there is asymmetry between dividing
positive and negative integers using this
method which can be problematic. This note
describes a simple method of removing this
problem.

The problem

In two’s complement notation, an 8-bit num-
ber can be used to represent the integers from
— 128 to +127. A positive integer has the top
bit zero and the lower 7 bits indicate the value
of the integer: bit r is a 1 if the integer has a
component 2'. After such an integer has been
shifted to the right, the bit which indicated if
the integer had a component 27, now shows if
it has a component 2"-!. Hence shift right
gives integer divide by two. For example,

3 = 00000011 is shifted right to 00000001 = 1

That is, 3 DIV 2 = 1: this is sufficiently close
to the correct answer given that integers only
are represented.

To convert to a negative integer, all the bits
are inverted (one’s complement) and then one
is added (two’s complement). For example,

3 = 00000011 : complemented is 11111100:
+1 gives 11111101 = -3

If a negative integer is shifted arithmetically to
the right, the top bit is preserved to maintain
the sign, for example

—3 = 11111101 is shifted to 11111110 = —2

Hence —3 DIV 2 = —2.

However, +3 DIV 2 = +1, but —3 DIV 2
= —2: this can be a problem. This result is
due to the asymmetry of two’s complement
notation : one more integer can be represented
less than zero than can be represented greater
than zero.

Dividing —1 by two in this way gives
another potential problem:

—1 = 11111111 is shifted to 11111111 = —1

Thatis, —1 DIV 2 =—1.

In the Midpoint Subdivision Clipping al-
gorithm,! integers are processed in a loop of
the form:

REPEAT
do some operations
divide integer by 2
UNTIL integer = 0

which will never stop if the integer is negative.
A solution to this problem is to treat —1 as a
special case and say shift right of —1is 0. A
more general solution is to add | to any
negative integer before shifting:

~1 = 11111111, add 1 = 00000000,
shift right = 00000000 = 0

but this also works for all negative integers,
for example

=3 =11111101, add 1 = 11111110,
shift right = 11111111 = —1

—4 = 11111100, add 1 = 11111101,
shift right = 11111110 = -2

The algorithm

Hence, to maintain symmetry in processing
both positive and negative integers, prior to
doing the arithmetic shift right, the integer to
be processed should be incremented if it is
negative. This is equivalent to rounding the
answer if it is negative, but not if it is positive.
This very simple operation could be performed
easily in hardware, although no current micro-
processor has such an instruction.

Justification

This action can be justified easily. If it is
assumed that shifting right a positive integer
divides the integer by two correctly, then
shifting right a one’s complement integer
correctly divides such an integer by two (each
bit has been inverted only). Two’s complement
is one’s complement+1: adding one gives
one’s complement+2; shifting this to the
right gives one’s complement shifted right
(which is correct) + 2 shifted right (equals 1),
that is the two’s complement integer has been
divided by 2.
More formally, for n-bit binary integers, a
positive integer can be represented by?
n-1
P= 3 (C2)
i=0
{where C,is 0 or 1, and C,_, is 0}

The two’s complement of P is
n-1
—-P=3(C29+1
i=0
{where C, means NOT (C,)}
P shifted right arithmetically, denoted by
ASR (P), is thus given by

n-2
ASR(P)=C, 2!+ 3 C,,,2
i=0

n-2
—ASR(P)=C,_ 2"+ 3 (C,,,2)+1
i=0

n-1
ASR(—P+1) = ASR() (CiZi)+2)
i=0
n—1
= ASR(Z (€, Zi))+ASR(2)

i=0

380 THE COMPUTER JOURNAL, VOL. 32, NO. 4, 1989

n-2
=C, ;1 2"+ 3 (C,,2)+1
i=0
Hence —ASR(P) = ASR(—P+1).

Conclusion

A simple algorithm is given which provides
fast division by two for both positive and
negative integers. This algorithm could be
implemented easily in hardware.

Yours sincerely

R.J. MITCHELL and

P. R. MINCHINTON
Department of Cybernetics,
University of Reading,

3 Earley Gate,
Whiteknights,

Reading, Berks.

)

Qo

=

=4

References S
Q.

1. J.D. Foley and A.Van Dam. ‘FundaQ

mentals of Interactive Computer Gra=
phics’. Addison Wesley. 1982. %
2. D. L. Lewin, ‘Theory and Design ofs
Digital Computers’. Nelson. 1985.

)

o olwapese//:sdy

Dear Sir,

In the course of my work I find it necessar-ﬁ
to use a computer, and am faced with thg
choice between using a structured languagel
such as Pascal or an unstructured one such a8
FORTRAN. Though the structures of PascaE
give great clarity, I find that there are certaire
recurring schemes that can be implemented’
more concisely using the conditional GOTOsg_'
of FORTRAN. This appears to be due to a3
deficiency of Pascal which I propose could bé&>
remedied to some extent by the judicious
addition of extra constructions to theél
language; in particular the addition of am»
andif clause to the existing if then else structure~

Any number of andif clauses could b%
appended to an if and each would have the
effect of transferring control to the else if thes
associated condition was not met (or the nextg
elseif, or out of the if andif structure in the®
absence of an else or elseif). S

In the simplest case (using a single andif),—
where it is now necessary to write in Pascal

if {condition I then
begin
{calculation concerning condition 2);
if {condition 2 then
{action I
else
{action 2)
end
else
{action 2

¥20z 1Mdy 0

or

FLAG: = false

if {condition Iy then
begin
{calculation concerning condition 2
if {condition 2) then FLAG:= TRUE
end

if FLAG then
{action I

else
{action 2)

