Implicit System Specification and the Interface Equation

M. W. SHIELDS

Electronic Engineering Laboratories, The University, Canterbury, Kent CT2 7NT

This paper investigates a method of systems design via implicit specification and develops mathematical theory for the
solution of a particular kind of context equation which could be used to automate the design of interfaces.

Received April 1987

1. INTRODUCTION

In this paper, we initiate a study of implicit system
specification.

The general approach is roughly as follows. One is
required to design a system which is to interact with a
given environment in such a way that the interaction
gives rise to a desired form of externally visible behaviour.

Such a problem may be formulated mathematically in
a suitable algebraic specification language —in this
paper, we use Milner’s Calculus of Communicating
Systems (hereafter, CCS)® — as the problem of solving an
equation of the form

ClX]~q

where C[] is a context in CCS, representing the
environment, and ¢ is a CCS agent, representing the
desired externally visible behaviour. A solution for this
equation is an agent r such that C[r] ~ ¢. Such a solution
may be considered as an abstract description of a system
which, by virtue of r satisfying the equation, is ‘correct’.
If solutions to such equations may be derived mechanic-
ally, then we have abolished the need for design and in
any case there is no need to verify the system.

An example of such a problem is the design of an
interface. Fig. 1 pictures a situation in which two i/o
devices called p1 and p2 are given.

rl p2

Figure 1.

It is required to construct an interface X (see Fig. 2) so
that when linked with pl and p2 and internal com-
munication is hidden, the result is indistinguishable from
some hypothetical system g.

The system pictured in Fig. 2 could be described by the

CCS expression
(P11 X|p2)\4

where A4 is a set of communications to be internalised.
We therefore need to find X such that

(P11 X|p2\A ~ q

~
>
=
[%]
14
Q

Figure 2.

Setting p = pl|p2, we arrive at an equation of the

form
(PIXN\A =~ q

which we call an interface equation.

In this paper, we investigate the solution of a large
class of equations of this form. The solution essentially
involves a quotient construction of the kind to be found
in elementary algebraic automata theory.

We begin in Section 2 with a brief summary of CCS.
Readers already familiar with CCS are advised that the
section contains one or two items of notation which are
not standard (i.e. not in Milner®). In Section 3, we
introduce a property called weak determinacy, which is
an ‘observational’ version of the strong determinacy
presented in Milner.? This property entails that a given
equation and solution — which are mostly determined by
a triple (p,q,r) - determine a set of triples (p’,q’,r),
where p’, ¢’ and r’ belong to the ‘state spaces’ of p, g and
r respectively. From this set of triples we may construct
a map from the set of ‘states’ r’ into sets of pairs (p’, q’).
These matters are dealt with in Sections 4 and 5. Section
6 discovers how ‘state transition’ between the states of r
is reflected in relationships between the sets of (p’, g,).
From this, we are able in Section 7 to give necessary
conditions for a solution in terms of conditions on sets of
pairs (p’, ¢"). In Section 8, we show these conditions to be
sufficient and present a crude algorithm for generating
solutions.

2. ASUMMARY OF CCS

In this section, we shall give a brief outline of some ideas
and notation from CCS. For a full account of the
Calculus, the reader is referred to Milner.?

CCS involves a language of expressions, which may be
used to define the behaviours of agents. An agent’s
behaviour consists of the making and receiving of
communication with its environment or with other
agents, this latter providing a means to combine agents
into systems of communicating subsystems. Communi-
cations are represented by /abels, which we shall norm-
ally write as lower case Greek characters.

We assume a set A of labels. To each label A is
associated a unique complementary label, denoted 1. If 4
is a set of labels, we let

A ={f|uecA}.
Define A=A U A.
The complementation operation provides us with a
means of determining inter-agent communication. If an
agent p may make a A communication and another agent

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 399

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

M. W. SHIELDS

g may make a 4 communication, then the two agents
combined have the option of handshaking, the result
being a special action called v which denotes a silent,
unobservable action.t

If neA, then = pu. We make the convention that
T=rtand that A n A = {1}.

We also assume a set of behaviour identifiers. Roughly
speaking, these may be used to name agents.

We now give the rules for forming CCS expressions.

2.1. Definition

(@) NIL is a behaviour expression; it describes an
agent that does nothing.

(b) If E is an expression and ueA, then u.E is an
expression: it describes an agent that may perform a u
communication and then behave like E.

(c) If E and E’ are expressions then E+ E is an
expression: it describes an agent that may non-deter-
ministically choose to behave either like E or like E'.

(d) If E and E are expressions then E|E is an
expression : it describes an agent composed of two agents
E and E° communicating through complementary
ports.

(e) If E'is an expression and 4 = A—{t}, then E\A is
an expression: it describes an agent which may behave
like that described by E except that it may never perform
an action which is a member of 4 U 4.

(f) Behaviour identifiers are expressions.

Finally, if b is a behaviour identifier and E is an
expression then we write b < E as an equation signifying
that b is to have the behaviour determined by E.

Behaviour expressions determine sequences of com-
munications, representing the visible behaviour of some
agent. Formally, we may describe this behaviour by
derivations of the form:

E, ~*E,

to indicate that an agent described by E, has the
capability of making a u communication, after which the
agent behaves like E,. We write E, ->* to indicate that
E, >*E, for some E,.

2.2. Definition

Let E, E' E’, E, E; be expressions, ucA and b a
behaviour identifier.

(@) NIL has no actions: NIL—*E is false for all
UEA,E.
(b) Guarding: u.E always has a y action:

u.E~*FE.

(c) Summation: the composite agent has the capa-
bilities of both:
E_)[,[E// E/ 9” E/I
E+E >*E"E+E »*E"

1 In the full calculus, the labels represent ports through which data
transfer is possible. By convention, unbarred labels represent input
ports and barred labels represent output ports. For the sake of
simplicity, we shall not consider data transfer here.

1 We have omitted one operator, the renaming operator which we
shall not use in this paper. See Ref. 3.

(d) Communication: the composite may allow its
composites to behave independently or handshake,
producing a silent () action:

E'E” E >'FE”
E|E'->*E"|E E|E -*E|E"

E,~*E and E, >*E}
E\|E,~"E||E,

(¢) Restriction: the agent may perform any action
which is not indicated by the restriction set:

E-"E
E\A>"E\A

(f) Assignment: the behaviour identifier is associated
with the behaviour of the defining expression:

b<Eand E~*E’
b—*FE

if {ugynd=g.

2.3. Definition

Let E be an expression. We denote by Ee the set of all
communications it can make immediately :

Ee = {ucA|E~"E someE').

2.4. Definition

We may now define sequences of communications
possible to an expression.

Let se A*. If E and E’ are expressions and pe€ A, then
we define:

(@) E=?E where Q denotes the null string.

(b) E=**E’ iff there exists E” such that E—*E” and
E'=*FE.

Now, suppose se€ (A —{z})*. We define E =* E’ iff there
exists s’€ A* such that E=*E" and s'|, = 5. Here, s,
denotes the string obtained from s* by erasing all 7’s.

We shall write R(E) to denote the reachability set of E,
that is the set of all expressions that may be derived from
E via = derivations:

R(E) = {E'| E=*F', somese (A —{1})*}.

We write A(E) to denote the set of all communications
it may ever possibly make:

A(E) = {ueA U A|ueE o some E €R(E)}.

Note that if E=°E’, then A(E’') < A(E).

Finally, we say that E is rigid iff ©¢ A(E).

We now come to two notions of equality. The first
defines two expressions to be equivalent if they are
indistinguishable in terms of visible behaviour, that is
ignoring 7 actions. The second is stricter and takes t
actions into account. Both are equivalence relations. The
second is also a congruence relation, that is, for example,
if E, ~ E, then E,+E ~ E,+E.

2.5. Definition

Let E,, E, be expressions. We shall say that they are 0b-
servationally equivalent (and write E, ~ E,) if E, ~ , E,,
for all natural numbers »n, where:

(a) We always have E, ~ E,.

(b) E, ~,,, E, iff for all se(A—{1})*.

400 THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION

(i) If E;=°E] then there exists E, such that
E,=°E, and E; ~ , E,.

@) If E,=> E’ then there exists E; such that
E,=°E; and E E

2.6. Proposition

(1) For each n, ~, is an equivalence relation.
(2) =~ is an equivalence relation.

2.7. Definition

Let E,, E, be expressions. We shall say that they are
strongly congruent (and write E, ~ E,)if E, ~ , E,, for all
natural numbers n, where:
(a) We always have E, ~ E,.
(b) E, ~,., E, iff for all ueA.
(i) If E,~>*E; then there exists E, such that
E,~"E, and E| ~ E,.
@) If E ~>"E then there exists E; such that
E, —*F; and E ~ E.

2.8. Proposition

(1) For each n, ~, is a congruence relation.
(2) ~ is a congruence relation.
(3) E, ~ E, implies E, ~ E,.

3. WEAK DETERMINACY
We begin with some of the key definitions.

3.1. Definition

q is weakly determinate iff ¢ is weakly-k-determinate for
all k. Every g is weakly-0-determinate. If £ > 0, then g is
weakly-k-determinate iff

(a) For all seA*:q=°q implies ¢’ is weakly-k-1-
determinate.

(b) For all seA*:g="g, and q¢="g, implies ¢, ~ g,.

This ‘observational’ analogue of strong determinacy
was considered by Milner [p. 154]® but not adopted. We
have found it a technically useful idea, however. In fact,
we have shown* that an agent is weakly determinate iff it
is observationally equivalent to an agent which is rigid
and strongly determinate.

The significance of this is that weak determinacy is the
weakest property that an agent ¢ may have in order that
it is observationally equivalent to a (not necessarily
finite) state machine.

The following sequence of lemmas present some useful
consequences of this property.

3.2. Lemma

Suppose ¢ is weakly determinate and q=>°q’, then ¢’ is
also weakly determinate.

Proof

We show that for all k, ¢’ is weakly-k-determinate. Since
g is weakly determinate, it must be weakly-k+ 1-
determinate for each k. Since ¢g=°q’ and gq is
weakly-k + 1-determinate, it follows, by 3.1(a), that ¢’ is
weakly-k-determinate.

3.3. Lemma

Let ¢ be weakly determinate and suppose p ~ g and
p—*p’, some ue A—{1}, then there exists ¢’ such that
q=*q and p' =~ ¢q

Proof

Since p = ¢ then by 2.5(b), for all n there exists g, such
that ¢ =*¢, and p’ ~ , q,,. Since q is weakly determinate,
it follows from g¢=+*g, and ¢=*g¢, that ¢, ~ q,, by
3.1(b). Thus, if we let g’ = Kl then for all n, ¢ =*¢" and
q N Thus, for all n, p’ Xodn X .4 - Thus, for all n,
P’ =,q, by 2.6(1). Thus p’ = ¢/, by 2.5.

3.4. Lemma

Let g be weakly determinate and suppose p ~ ¢ and
p—>*p’ and g—>*q’, some ue A—{1}, then p’ ~ ¢q'.

Proof

By 3.3, there exists ¢” such that ¢g=*¢” and p’ ~ ¢q".
Since g is weakly determinate, from g =>#¢’ and ¢ =*¢" =
and 3.1(b), we obtain ¢’ x ¢”. Since p’ & q”, we may use =
2.6(2) to conclude that p’ = ¢’ as required.

y wouly papeojumoq

3.5. Lemma

Let q be weakly determinate and suppose p ~ g andc
p—"p then p’ ~ q.

Proof

Since p=2p’ and p ~ q, it follows that for all n there =
exists ¢, such that g =%¢, and p’ ~, q,,. Since ¢ =g and & o
q is weakly determinate, we must have g x ¢, each n, by &
3.1(b). Thus p’ =, ¢, all n, and hence p’ ~ g by 2.5.

o1pe/|ulwoo/wod dno-olwapede

3.6. Proposition

Let g be weakly determinate and suppose p = ¢, then p is
weakly determinate.

Proof

We argue by induction on k that if p & ¢ then p is weakly
k determinate.

This is true for £ = 0, by 3.1.

Suppose true for k and let p=°p’. Since p ~ g,
for each n there exists g, such that ¢ =g, and p’ ~ , q,,.
Since g is weakly determinate, there exists ¢’ (= ¢,) such
that ¢’ ~ , q, for each n. By 2.6(1), we have that p ~ , ¢’
for each n and that hence p’ ~ ¢'.

By 3.2, ¢’ is weakly determinate. By induction, p’ is
weakly k determinate. We have shown that if p ~ g and
p="p’ then p’ is weakly k determinate. Thus, by 3.1, p is
weakly k+ 1 determinate. This concludes the induction
step and the proof.

(on
«

N

W

202 Iudy 01 uo1senb Aq | L1 L0Y/66€/G/2E

4. THE INTERFACE EQUATION
4.1. Definition

An interface equation is an expression of the form
(PIXN\A =~ q

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 401

M. W. SHIELDS

where
(1) g is weakly determinate and
(2) A(p) N A(g) = {1}
B)ApNA=g
@ AMpnuA)=3T.

4.2. Definition

r is a solution to the equation (p| X)\4 = q iff r satisfies

(1) (plN\A ~q.

(2) A() N A(p) < {1}

The constraints are for technical reasons, mostly in
order to make the proofs of lemmas work. Weak
determinacy, for example, ensures that the implications
(I), (IT) and (IIT) below hold. Constraint (2) is needed to
ensure that proposition 8.2(1)(c) is true.

Note that if constraint (4) does not hold, then there is
an action e A(g) such that u #+ 7 (since ue 4 U A) but
1é A((p| X)\A). Accordingly, g = for some string s, but
we cannot have (p|X)\A4 =**. Thus, by 2.5(b), 4.2(1)
cannot hold and hence there is no solution.

The aim of the rest of this section is to prove that
derivations preserve interface equations, that is, if
(p|n\A4 = q then

D (plH\A->*(p'|r)\A4 and g —~*q implies

(PIrNd=q'.

D (pIN\A->"(p’"|r)\A implies (p’|r\4 ~ q

(II1) g—~>"q’ implies (p|r)\4 = ¢q'.

This will enable us to relate the structure of r to that
of certain sets of subsets of R(p) x R(g) which become
significant when we try to build solutions.

Propositions such as (I), (II) and (III) are not generally
true in CCS and will depend on the fact that g is weakly
determinate.

4.3. Lemma

Suppose r solves the interface equation (p| X)\4 =~ g and
suppose (p|r)\4 ->*(p’|r')\4 and g~*q" with ue A— {1},
then (p'| X)\4 = ¢’ is also an interface equation and has
r’ as a solution.

Proof

We check the conditions of 4.1.

(1) ¢’ is weakly determinate, by lemma 3.2. Since
A(p") = A(p) and A(q") < A(g) (see 2.4), it follows that

(2) A(P) N Alg') = Alp) N Alg) < {1}

BG)AP)NASApNA=D _

4 A@)N(AUA)=sA@g@n(4U A)=(T.

Thus (p'| X)\4 ~ ¢’ is an interface equation.

Now we check the conditions of 4.2.

(1) (p'|r)\A4 = q’ follows from lemma 3.4.

(2) Since A(p’) = A(p) and A(r) < A(r) it follows
that A(r") n A(p") € A(r) n A(p) < {t}.

4.4. Lemma

Suppose r solves the interface equation (p| X)\4 =~ g and
suppose (p|r)\A —=>"(p"|r')\A, then (p'| X)\A = q is also
an interface equation and has r’ as a solution.

Proof

(p'| X)\A4 = q is an interface equation since

(1) gis weakly determinate by hypothesis and as in the
proof of 4.3 we have

) A(P) N A@) = A(p) 0 Alg) < {1}

@) AP)nASAp N A=

4) A(g) n (4 U A) = & by hypothesis.
Checking the conditions of 4.2, we have

(1) (p'|r')\A4 =~ q follows from lemma 3.5

(2) A() n A(p’) = Alr) 0 Ap) = {1}

4.5. Lemma

Suppose r solves the interface equation (p| X)\4 = g and
suppose g—"¢’, then (p|X)\4 =~ ¢’ is also an interface
equation and has r as a solution.

Proof

(p| X)\A4 =~ q is an interface equation since

(1) ¢’ is weakly determinate by 3.2

(2) A(p) N A(g) = A(p) N Alg) = {1}

(3) A(p) n A = J by hypothesis

@ AG)INMAUVA)SAPN(AUA)=D.
Now we check the conditions of 4.2.

(1) From the hypothesis, ¢ =%¢’. But we also have
g ="q and so, since q is weakly determinate, it follows by
3.1(b) that g~ ¢q’. Thus (p|r)\4d =~ q=q and so, by
2.6(b), (p|r)\A4 ~ q’ as required.

(2) A(r) n A(p) < {t} by hypothesis.

5. SOLUTION TRIPLES AND (p,q)
SYSTEMS

In lemmas 4.3 to 4.5, we saw that an equation
(pl| X)\A4 ~ q and solution r, gave rise to new equations
(p’ | X)\A =~ ¢q’ and solutions r’. In this section we look at
tuples such as (p,q,r) and (p’,q’,r’) which determine
‘equation-solution’ triples, the point being that solutions
r’ are related to sets of pairs (p’, ¢") in a useful sort of way.

We may define a map ¢ from the set of such r’ to sets
of (p’,q’) such that (p’,q’,r’) is a ‘solution triple’. We
shall also (Section 6) define derivations between such sets
which makes ¢ into something like a homomorphism.
Later, we shall see how solutions may be constructed
from such sets and derivations.

First, we set up the means for recursively generating
the set of triples.

5.1. Definition

Suppose p’,q’,r',p”,q",r" are agents. Define:
@ (p.q,r)>"(p"q" 1) if
@) (7’1" N\A~"(p"|r")\A and ¢’ = ¢" or
(ii) ¢ >'q”and p’=p”" and ' =r".
(b) If peA—{z}, then (p’,q,r")->"(p",q",r") if
(P IrN\A-"(p"|r")\A4 and ¢’ ~>"¢".
We extend — to strings in the obvious way. If se A*
and €A, then we define
© (P,d,r)=2(p.q.r)
@ (p,q,r) = (p",q",r") if there exists (p”,q",r")
Such that (p/’ q/’ r/) ﬁ)A (p!/!’ ql!!’ r!!/) and (pﬂl, q///’ r!//) bs

(p”’ q//’ r”)

402 THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989

¥20Z I4dy 01 uo 1senb Aq | L L0Y/66€/G/2E/2101e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION

(e) (p, q r')="(p",q",r") if there exists s'e A* such
that (p',q',r')= (p’, q r”) and s = 5|,

We may now restate lemmas 4.3, 4.4 and 4.5 in this
terminology.

5.2. Lemma

Suppose (p|X)\A4 ~ q is an interface equation with
solution r and suppose s€ A* and A€ A then

(1) if (p,q,r)=*(p’,q',r') then (p’'|X)\4 = ¢’ is an
interface equation with solution r’.

(2) if (p,q,r)="(p",q",1") then (p"| X)\4 ~ ¢” is an
interface equation with solutlon r.

3) if (p,q,r)=°(p",q",r") then (p”"| X)\4 ~ q” is an
interface equation with solution r”.

Proof

(1) By 5.1, we have three cases to consider.

The case (p|r)\d->*(p’'|r)\A and q-*q with
neA—{t} is covered by lemma 4.3.

The case (p|r)\A—>"(p"|r')\4 and g = ¢ is covered by
lemma 4.4.

The case g—"¢q" and p=p’ and r =1’ is covered by
lemma 4.5.

(2) follows from (1) and induction on the length of s.
(3) follows from (2) and 5.1 (e).

We collect together the triples that may be ‘derived’
from (p, q,r).

5.3. Definition
Suppose p, g, r are agents. Let R(p, g, r) denote the set:

{(P',q',r')eR(p) xR(q) xR(r) [(p,q,r)
e°(p’,q', 1) some seA*}.

Note that (p,q,r)=*(p,q,r) and so (p,q,r)eR(p, q,r).

We shall call the elements of R(p, g, r), solution triples
because of (2) of the following.

5.4. Corollary

(1) Suppose that (p’,q’,r)eR(p, q,r) and se A* and

(7',q.r)=*(p",q",r"), then (p”,q",r")eR(p,q,r)
(2) Suppose r is a solution,{ then for all

(».4',r)eR(p,q,r),
(p']X)\4 = ¢’ is an interface equation with solution
r.

Not every element of R(r) of a solution r will actually
be reached during the simulation of ¢ by (p|r)\4. We
isolate the set of states, R, (r), which are reached. We
may then relate elements of R, (r) to subsets of
R(p) x R(9).

5.5. Definition
Define
R, () ={reR@I|(p,q,r)eR(p,q,r) somep’,q'}.

Each element of R, (r) ‘appears with’ at least one pair
', q)eR(p)x R(g). We let ¢(r') denote the set of all
such pairs.

t From now on, we shall assume p,q to be fixed and abbreviate
‘Suppose (p|X)\A4 =~ q is an interface equation with solution r’ by
‘Suppose r is a solution’.

Define
¢:R, (r):— P(R(p) x R(q))t

¢(r') =p'.q) (P, q',r')eR(p,q,7)}.

From 5.4 and 5.5, we obtain:

5.6. Corollary

Suppose r is in a solution, then if r'eR, (r) and
(p',q)ee(r'), then (p'|X)\Ad=gq is an interface
equation with solution r'.

We next uncover a characteristic property of sets ¢(r’),
where r’€R,, (r) and r a solution. It transpires that every
such set is closed under three relations, denoted -/, >**
and —"¢, thatisif (p’,q") e ¢(r') and R is one of the three
relations and (p’,q") R(p”,q"), then (p”,q")ed(r'). We
then define a relation —,, to be the pre-order generated
by _)l U __)I.P U _>1.Q'

It now follows that the sets ¢(r’) are unions of sets
closed under —,..

Let us define -/, »"F and —-*¢©.

5.7. Definition
Let (p,q), (p",q")eR(p) xR(q) and peA—{z}.

(a) Define (p’,q")>""(p",q")iffp’>*p” and ¢’ >*q".
Define (p’,q") =" (p",q")iff (p',q") >*"(p”",q") for some

u.
(b) Define (p’,q")>""(p",q")iffp’>"p” and ¢’ = q".
(c) Define (p’,q")>"9(p",q")iff ¢ ->q” and p’ = p”.

We now show that the sets ¢(r') are closed under our

three relations.

5.8. Lemma

Suppose r is a solution and that (p’,¢")e@(r’) for some
r'eR, (r) then if (p',q")>""(p".q"), then (p”,q") € $(r").
Proof

Since (p’,q")=>""(p",q") it follows that p’—*p” and
q —~"q", by 5.7(a). Since ueq’'e we have u¢ A U A4, by
4.1(4). Since p’ >*p” and u¢ A U A, we have

(P IrN\A->*(p"|r')\A4

by 2.2(d) and 2.2(e). Thus, (p’|r')\Ad—~*(p”|r')\4 and
q'—~"q” and so from 5.1(b) we may conclude that:

202 Iudy 01 uo1senb Aq | LvL017/668/9/29/e|0!u19/|U[LuOO/woo'dn0'0!wepeoe//:sduu woly papeojumoq

p.q,r)->"(p".q",r). (5.8.1)
Now (p’,q")€¢(r’) and so by 5.5
(P'.q,r)eR(p,q,r). (5.8.2)

Applying 5.4(1) to (5.8.1) and (5.8.2) we obtain

(p".q",r')eR(p,q,r)
and by 5.5, this implies (p”,q”)e¢(r’), as required.

5.9. Lemma

Suppose r is a solution and (p’,q’)e¢(r’) for
some r'eR, (r). Suppose (p’,q')->""(p",q"), then
(p",q")ed(r').

t If X is a set then P(X) denotes the power set of X.

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 403

M. W. SHIELDS

Proof

Since (p’,q")—>""(p”,q") it follows that p'~'p” and
q" = ¢’, by definition 5.7(b). By 2.2(d) and 2.2(e), we
have (p’[r')\d—"(p"|r')\A. By 5.1(a)(i),

P q,r)=>"(p".q",r). (5.9.1)
Now (p’,q’)e¢(r’) and so by 5.5
(r’.q',r)eR(p,q,r). (5.9.2)

Applying 5.4(1) to (5.9.1) and (5.9.2) we obtain
(»".q",r')eR(p,q,r)
and by 5.5, this implies (p”,q”)e ¢(r'), as required.

5.10. Lemma

Suppose r is a solution and (p’,q')ed(r’) for
some r'eR, (r). Suppose (p’,q')—=>"2(p”,q"), then
(p",q4") e d(r).

Proof

Since (p’,q')—>"%(p",q") it follows that q —>*q” and
p” = p’, by definition 5.7(c). By 5.1(a)(ii)

Pqr)=>"(p".q",r). (5.10.1)
Now (p’,q')e¢(r') and so by 5.5
(r'.q',r')eR(p,q,r). (5.10.2)

Applying 5.4(a) to (5.10.1) and (5.10.2) we obtain
(p”, q”’ r/)e R(p’ q, r)
and by 5.5, this implies (p”,q”)e #(r’), as required.

5.11. Definition

Let —, denote the reflexive transitive closure of
>1 U>t'P U _)I,Q'

Define B,(p',q") = {(p".q) (P, q') >,(p",q")}.
5.8, 5.9, 5.10 and transitivity of —,, now give:

5.12. Proposition

Suppose r is a solution and let r'eR, (r) and
(P9)ed(r),

then B,(p’,q’) < 4(r').
From 5.12, 4R, (r)) is a set of unions of sets
B, (p’,q"). This motivates our next definition.

5.13. Definition
Define

I(p,q) ={B..(p".q)|(P',q")eR(p) x R(g)}.

Let Y(p,q) ={U B|X < I(p,q)}

BeXx

¥(p,q) is the set of all sets that are unions of =1,
classes.

By (p, q)-system (or just system, if p,q is understood),
we mean a set S < ¥(p, g).

5.14. Corollary

Let r be a solution, then #(R, () = ¥(p,q), that is,
#(R, (n) is a (p, g)-system.

5.15. Lemma

Suppose r'eR,, (r) and (p’,q") e #(r'). Suppose
HeA—{t}

then if ¢’ =#¢” and p’ —*p”, then (p”,q") e ¢(r’).

Proof

By hypothesis, we have g,, g, and numbers n, m > 0 such
that

g =g g, g (5.15.1)

Since p’—#p”, we may use (5.15.1) together with 5.7
and 5.11 to deduce

?.q) > (P q,) =1 (P".45) >, (", q")

so (p,q') >, (p".q"). Since ¢(r')e¥(p,q),
(P'.q")€¢(r'), then by 5.12, (p",q") e §(r')

and

5.16. Lemma
Suppose r'eR,, (r) and (p’,q")e#(r'). Suppose
nelA—{z}

then if if ¢'>*q” and (p'|r')\Ad="(p"|r")\4, then
(P".q")eo(r").

Proof

By hypothesis, we have p,,p,,r,,r, and numbers
n,m = 0 such that

(P IPNA =T (py I ONA > (py | P\ A =" (p" | F)\A.
(5.16.1)

Since ¢’ +*gq”, we may use (5.16.1) together with 5.1 to
deduce

”on

r.q, r/)’:brn (P1q'sr) =" (Prq”, rz)btm r".q",r").

Thus, by 5.1,
(p,q,r)="(p".q",1"). (5.16.2)

But, (p,¢")e¢(r') and so by 5.5, (p”,q") € ¢(r").

6. DERIVATIONS INSIDE (p,q)-SYSTEMS

We have managed to locate some of the structure of r
inside R(p) x R(g). We shall next see how the derivation
structure of r is reflected in that of one we may impose on
¥(p,q).

There are three types of derivation to consider (a)
non-t derivations of which g is also capable, which we
shall call O-derivations (b) non-t derivations of which
q is not capable, which we shall call C-derivations and
(c) derivations. Each of the three is reflected in some
way within ¥(p, q).

404 THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION

O-derivations

First we consider the case in which r ‘eR, (r) has a
communication x4, and x # 7 and ue A(q). Condltlon 4
of 4.1 entails that x4 will not be restricted by \ 4 and so for
any p’, (p’|r')\A has a u action. Now, if (p’,¢q)e¢(r),
then (p’|r')\A =~ ¢’ and hence, we must have ¢’ =*, for
each (p', ') € 4(r").

Thus if r'—#, then ¢’ =* for each (p’,q')e¢(r'). In
particular, ,ueA(q) Since, by 4.2(2), A(r) n A(p) = {T}
we have that yue A(g)— A(p) so these are the communi-
cations that we consider in this category.

It now turns out that if r'—#r” and ¢’ =*¢”, then
(P’,q")e¢(r”). This suggests that we can define deriva-
tions between elements of (p, g)-systems in such a way
that r'—*r” implies ¢(r')>*@(r") — actually, we shall
write ¢(r') > ¢(r").

O-derivations are introduced formally in definition
6.1. Lemma 6.2 confirms that they have the desired
property.

6.1. Definition

Let (p',9')€R(p) x R(g). We define (p',q')>"°(p",q")
if p=p” and ¢’ =*q” and pe A(q)—A(p) and u + .

If K,K'e¥(p,q) then define K—-*°K iff for all
(p’,q") €K there exists (p”,q”)e K’ such that

r,q)-"°(p".q").
6.2. Lemma

Suppose r is a solution and let r eRp q(’) Suppose
reA(@)—A(p) and p=+7, then r —>#r implies
o) > g(r").

Proof

Suppose (p’,q") € ¢(r'). We shall show that there exists ¢”
such that (p’,q")>*°(p’,q") € ¢(r"), which, in virtue of
definition 6.1, will conclude the proof.

Now, (p’,q")ed(r’), so by 5.6

PIrnNd=q (6.2.1)

Since peA(g), then by 4.1(4) we have u¢ A U A and
since we also have r—#r” by hypothesis, it follows from
2.2(d) and (e) that

P IrN\A=>*(p'|r")\4 (6.2.2)

But, ¢’ is weakly determinate by 5.6 and 4.1(1) and so
from (6.2.1) and (6.2.2) and 3.3, we deduce that there
exists ¢” such that ¢’ =+¢4".

Thus, for some n,m > 0 and ¢,, q,, we have

’ ™ u ™
9= 4.>"9=> q

whence, by 5.1

(P g)" (P40, 1) (0 gV (P g1
(6.2.3)

Since (p’,q"')e¢(r’), by 5.5 we have

(r’,q,r)eR(p,q,r). (6.2.4)
We may now apply 5.4(1) to (6.2.3) and (6.2.4) to deduce
that (p’,q",r")eR(p,q,r) and hence, by 5.5, that
p, q”)e¢(r”) as requ1red
Finally, since ¢ =*¢” and ueA(q)—A(p), then
(»,9)->"°(p’,q"), by 6.1, and we are done.

C-derivations

The second kind of action available to r is that not
belonging A(g) and not equal to 7. Supposing u to be
such an action, then it must either belong to 4 U 4 or
not. If the latter were the case, then (p | r)\A =" for some
s but we may never have ¢ =" which in view of 2.5(b)
and the fact that r is a solution would be a contradiction
to assumption 4.2(1). Thus, this second kind of action
belongs to 4 U A.

Suppose r'—>#r”, with ueA U A. Consider all pairs
(P',q')e¢(r'). If we have p’ —* for none of the p’, then the
4« communication is redundant, it is suppressed and never
accepted This will certainly be the case if ue A, since
p’ ~* would contradict assumption 4.1(3). Thus, we only
consider elements ue A.

If the x communication is capable of being accepted byU
P’, say in a derivation p’—#p”, then we may show thatg
(p”,q')e¢(r”). This indicates how we might deﬁnea
derivations of this second type in such a way thata
r'—*r” implies that ¢(r') —>* ¢(r”). Solutions such thatQ
C-communications are always accepted by some p’ areS

3

defined below to be irredundant. =
©

4

6.3. Definition §
Let (p',9')€R(p) x R(q). We define (p',¢') > (p",q"
if ¢ =¢” and p’="p” and pe A and u + 1. o
If K, K" e ¥(p, q) then define K—~*€ K" iff 5
(i) there exists (p’,q')eK and (p”,q”)e K such that
u,c ” i
»,q)->"(p".q9"). 3
(i1) for all (p',q")e K if (p’,q")>* (p",q"), for some3
(r”,q9")eR(p) xR(g), then (p”,q")e K. 2

Note, mmdentally, the difference between 6.3 and 6.1. :1
In the latter, in order that a derivation between the SetSq)
exists, it suffices that there is at least one derlvatlonsN
between pairs. If (p’,¢") does not have a u, C derivation,Z S
this simply indicates that p’ is not capable of com—@
municating via u with r’ and the action is prevented byo
the restriction, since ue A4 U 4. =

We may not have an exact analogy with lemma 6.2 in>
the case of C derivatives because of the possibility
mentioned earlier that there are ' €R,, (r) and ,ueA suchC
that ' —* but for no (p’, ¢’) e ¢(r’) do we have p’ —*#: the
u communication is offered but never taken up by p. We
isolate the well-behaved solutions.

L u

¥20z 1Mdy 0

6.4. Definition

r is irredundant w.r.t. p and q iff for all r "eR,, (r) and for
all ue A if r' —* then for some (p’,q’') e ¢(r') there exists
p” such that p’ —*p”.

We do not lose anything by concentrating on
irredundant solutions because of the following result.

6.5. Theorem

(p1X)\4 has a solution iff it has an irredundant solution.

Proof

Certainly, if there is an irredundant solution then there is
a solution. We prove the converse. Let r be a solution.
We construct an irredundant solution.

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 405

M. W. SHIELDS

If r"eR(r), then define r’° to be the set of all pairs
(4,r”) such that

(1) r>*r

(2) If A€ A, then there exists (p’,q’)e@(r’) such that
P>~

Define

rlTT <~ Z A’ rlrr
(A, rer°

By 2.2(d) and 2.2(e) and the definition of r, if
(P/Ired\A~"(p" | FE\A then (p'|rN\A~*(p"|r")\A.
We shall prove the converse.

Suppose (p’,q")e¢(r') and suppose

(P'I ' N\A > (p" [P\ A.

By 2.2(d), there are three cases to consider.

The first is that " = r” and p’>*p” and A¢ 4 U 4. In
this case, from 2.2(d) and 2.2(e) we may readily deduce
that (p'| Fl,)\ ~* v I\)

In the second case r'—*r” and p’ =p” and A¢A U A,
and so rj,,—*r_ and hence by 2.2 again,

(P e\ A~ (p" [FE\A.

The third case is that A =t and for some ueA—{1},
p'—="p”and r'—*r" If u¢ A then rj, —"r. . Butif ue A,
then by hypothesns there exists (p,§)e@(r’) such that
p—*, and so (u,r")er°. Hence in both cases rj,, ~*r/.,

and so, again by 2.2(d) and (e), (p|r{,)\A4 " (p"| Fi)\ A.
We have shown that if (p’,q’)e¢(r’) then

(P Ire\NA = (P [INA T (P | P \NA—*(p” | r)\A.
(6.5.1)

Next, we shall show that r,, is a solution. Evidently
A(ri,) € A(r) and so A(ri.,) N A(p) € A(r) 0 A(p) < {7}
giving 4.2(2). For 4.2(1), we shall actually show that
if (p’,q")ed(r') then

(PIN\A ~ (plre)\A. (6.5.2)

For, by 2.8(3), (6.5.2) implies that (p|r)\4 ~ (p|r,.)\A4,
which, together with 2.6(2) and the fact that (p|r)\4 = ¢q
entails that (p|r,,)\4 = ¢ as required.

Let us prove (6.5.2). We shall prove that if

(P,q")eg(r),

then for all k, (p"|r')\4 ~ . (p’ | ¥,)\A.

This is certainly true for £ =0, by 2.7(a). Let us
assume it for k and prove it for k+1.

Suppose that (p’|r')\A —*(p”|r")\A, then by (6.5.1)
P Iri\A->"(p"|ri.)\A. There are two cases to con-
sider.

The first case is A = 7. If we define ¢” = ¢/, then in
this case, by S5.1(a)(i) (p’,q,r)=>"(p",q",r") and so
(»",q")e(r").

In the second case 4 & . Now, by assumption

(P, q")ed(r)

and so by 5.5 and 5.4(1), (p’'| X)\4 = ¢’ is an interface
equation with solution " and in particular ¢’ is weakly
determinate. Thus, (p'|F)\A~¢q, (p'|r)\4-"
(p"|r\4 and q’ is weakly determinate and so by 3 3
there exists ¢” such that ¢’ =*¢” and (P1INA ~
Thus there exist m,n > 0 such that q =" q,>"q, =" q
Thus, by 5.1,

(P d s)V (P, g1, 7) > (4o 7)= (P74 1),
(6.5.3)

Since (p’,q")e¢(r’) it follows that (p’,q¢’,r')eR(p,q,r),
and this, together with (6.5.3) and 5.4(2) entails that
(p",4",r")eR(p,q,r). Thus, by 5.5, (p”,q") € $(r").

Thus in both cases, (p”,q")ed(r”) and so we may
apply the induction hypothesis and conclude that
(P IPN\A ~ (p" [Fe)\A.)

From the above and (6.5.1) we may deduce that if
(p',q')ep(r’) then if (p'[r)\A->"(p"|r")\A then
(P | rie)\A =" (p" | rip)\ A With (p" | F"N\A ~ . (p" | r{)\A.

It remains to show that if (p’,q")ed(r’) then if
P re\A—>"(p" | rie)\ A then (p"|r)N\A->*(p"|r")\4
with (p”|r")\A4 ~ . (p" |r..)\4. Then, by 2.7,

P IPNA ~ ey (P [Fie)\ 4,

completing the induction step.
But by (6.5.1), we already know that if (p’,q")ed(r’)
and (p'|ri)\A~*(p"|r{;)\4 then

(P IPN\A=*(p" | ")\ A.

And we have shown that if (p’,¢")eé(r’) and
(P IrN\A="(p"|r")\4

then (p”[r"\A ~ . (p” | ri)\A4.

We have shown that r, . is a solution. It remains to
show that it is irredundant. We first show that

(».q',r')eR(p,q,n iff(p',q',ri) ER(P, g, 1y,).
(6.5.9)
We argue by induction that if se A* and /nth(s) = nt
then (p,q,r)="(p',q',) iff (p,q, 1) = (P, 4, 1)
This is clearly true when n = 0. Suppose that s’ = is,
where Inth(s) = n. We shall show that if (p,q,r)="
(7', q',r) then (p,q,ry)= (P, 4, riy)-
By 5.1(d), (p,q,r)~"(p",q",r")>*(p’, ¢', 1) for some
(p”,q",r"). We shall show that

(p.q.r)>*(p".q",r") implies (p,q,r.,) ~* (p", q", 111,
(6.5.5)
and since (p”,q",r")=°(p’, q’,r') with s of length n, then
we may invoke the induction hypothesis to deduce

that
P q" ri) = (P, 4 riry) (6.5.6)

(6.5.5) and (6.5.6), together with 5.1(d) entails that
(P.q:riee) =" (P, q', 71,,) as required.

In exactly the same manner, in order to prove that if
(P q,riee) =" (P, q', 1) then (p, g,)" (p',q',1r') we
need to show the converse of (6.5.5), namely that

(p’ q’ rirr) _>A (p”’ q”’ r:’l‘l“) lmplies (p’ q’ r) _)/. (p”’ q”’ r”)'
6.5.7)
But in view of 5.1(a) and (b), (6.5.5) and (6.5.7) are
easy consequences of (6.5.1) and so (6.5.4) holds.
Finally, suppose r{,eR, (r,,) and suppose r;, —"r;.
with ge 4. We must show that there exists

such that p’ —*. (P, 4") e d(riy)

By definition, (u,r")er’® and so r' —*r" and for
some (p',q')e¢(r'),p’>*. But by (6.5.4) and 5.5,
#(r') = ¢(r;,,) and so we are done.

We may now state and prove the analogue of
lemma 6.3.

” //

T

t Inth(s) = n denotes the length of the string s.

406 THE COMPUTER JOURNAL, VOL. 32, NO. §, 1989

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION

6.6. Lemma

Suppose r is a solution which is irredundant w.r.t. p and
g. Let r'eR, (r) and suppose ueA and u =+t then
r'=#r” implies ¢(r') —=* < ¢(r").

Proof

Since r'—>#r", pe A and r is irredundant, there exists
(p’,q')ed(r') such that p->#p”, by 64. By 6.3,
»,q9)->"(p".q).
To complete the proof, we show that for every
(P, q')ed(r'), if (p',q') " (p",q') then (p”,q") € (r").
Indeed, since r—*r" and p—"p” then by 2.2(d)
(P)\A-*(p”|(r")\4, and so by 5.1(a)

q,r)=>"(p",q',1r"). (6.6.1)
Since (p’, ¢") e ¢(r'), it follows from 5.5 that
(P.q,r)eR(p,q,r). (6.6.2)

From (6.6.1), (6.6.2) and 5.4(1), we obtain

(»",4',r")eR(p, g, 7).
Thus, by 5.5, (p”,q")e ¢(r") as required.

t-derivations

Finally, we look at the third type of r derivation, that
involving 7 actions. The definition and corresponding
lemma are straightforward enough to require no gloss.

6.7. Definition
If K, K" e€¥(p, q), then define K~'K if K< K'.

6.8. Lemma

Suppose r is a solution and suppose r'eR, (r) then
r’=7r” implies ¢(r') " ¢(r").

Proof
Suppose (p’, q") € #(r'). We shall show that (p’, ¢’) e ¢(r").
First note that since r'—>*r" we have, by 2.2(d)
and (e)
(P IPN\A->"(p' |)\4
and so by 5.1(a)(i)
#,q,r)=>"(p',q,r"). (6.8.1)
Since (p’,q")e¢(r’), by 5.5 we have
(»'.q,r')eR(p, q,r).
From this, 5.3 and (6.8.1) it follows that
(»'.q',r")eR(p,q,r).

Thus, by 5.5 (p’,q')e ¢(r").

Since we are dealing with = rather than — derivations
in some of our work, we will find it useful to construct
analogues of the results of this section.

6.9. Definition

Let K, K’ e ¥(p, q), pe A— {1} and let X denote either C or
O. Then K=** K’ iff there exists

K,...K,K,.. K,e¥(p,qg),

with m,n > 0 such that K = K,, K’ = K/, and
KK, ,,i<m
K,~**K;

K, ~'K,,,,i<n.

6.10. Proposition

(1) Suppose r is a solution and let reR, «(r). Suppose
ueA(@)—A(p) and u=+1t, then r =Hp" implies
P(r') =" ¢(r").

(2) Suppose ris an irredundant solution w.r.t. pandgq.
Let reR, (r) and suppose ue A, then r =+p” implies

P(r') =< 4(r").

Proof
(1) is by 6.2 and 6.8 and (2) is by 6.6 and 6.8.

7. NECESSARY CONDITIONS FOR
SOLVABILITY

Q
We have now shown that if a solution r exist, then i
determines a (p, q)-system #(R,, () which we may equipe:
with a derivation structure designed to reflect that of re
We shall see in Section 8 that from such a system and®
derivation structure, we may construct CCS equations3
Not all systems determine equations which solve they
interface equation, however and so in this section, weg.
isolate properties that r must possess in order to be ay
solution and translate these properties into properties of5
#(R, (r)). This gives us necessary conditions for theX
existence of solutions. In Section 8 we shall show them3
to be sufficient. The two properties are those of I- andy
O-completeness, defined in 7.1 and 7.3 and shown to©
hold in lemmas 7.2 and 7.4.

oe//:sdyy Wwouy papeojumo(

14

7.1. Definition

Let S be a (p, g)-system and suppose KeS. K will be said2
to be I-complete iff for all (p’,q’) €K, if p’ >* and ugA>
and u # 7 then g’ =+

anb Aq L1110

7.2. Lemma

¥20z Iudy 0| uo

Let r be a solution and suppose Ke #(R,, ,(r), then K is
I-complete.

Proof

Let Keg(R,, ,(r)), then K = ¢(r') for some r'eR, (r).
Let (p’,q')e K, then by 5.6, (p|r')\A4 ~ ¢’ with q’ weakly
determinate.

Since p’ —#, it follows from 4.1(3) that u¢ 4. Since, by
hypothesis u¢ A, we must have u¢ A U A. Since p’—>#
and u¢ AU A it follows from 2.2(d) and 2.2(e) that
(P |rN\A->"

But, we now have shown that (p’| r')\A—-* and
(P'Ir)\A ~ q" and ¢’ is weakly determinate and so we
may use 3.3 to infer that g’ =*.

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 407

M. W. SHIELDS

7.3. Definition

Let S be a (p, ¢)-system and suppose KeS. K will be said
to be O-complete w.r.t. S iff for all (p’,q)eK, if u+1
and g’ —~"q" then there exists n > 0, p,,..., 4, € A4, p,,...,
PP €R(p) and K,,...,K,, K" €S, such that
(1) p'=py=>trp, =t .., =hn-1p =stap
(2) K=K, =" K, =/C =hrCK =mCK
(3) Either
(@) p,~*p” and K = K” and (p”,q")e K" or
(b) p, =p” and K, >*°K” and (p”,q")eK".

7.4. Lemma

Let r be an irredundant solution and suppose
Ked(R, (r) then K is O-complete w.r.t. dR, ().

Proof

Since Keg¢(R,, (r)), there exists r'eR, (r) such that
K =¢(r'). Let (p',q')eK, then by 5.6, (p'|F)\A = ¢’
with ¢” weakly determinate. By 3.6, (p’|r')\4 is weakly
determinate.

Now, suppose ¢’ >*¢” with u + 7. Since we also have
q" =~ (p’'|r')\A and (p’|r')\A is weakly determinate, then
by 3.3, (p' |)\A ="(p|F)\A4, some p, F.

Now (p’|r')\Ad =*(p|F)\A4 and so by 2.2(d), 2.2(e)
and 2.4 there exists n>0 and u,,...,u, €A4,p,,...,
P.1€R(p) and r,...,r,, €S, such that

(1) p' = py=tap, =, =tnip, =kip . giving (1)
of 7.3.

Q) r=ry=fr =t =hr

(3) (Pl FINA > (Poyy 7, N A

(4) pn+1 =>Qp‘ and rn+1 :Q f‘

Define K” = ¢(r”) and define K, = ¢(r,) for

i=0,...,n+1.

A
=>7lrn

By 6.10(2)
€A, by 4.1(2) and 4.1(3) and so by 6.10(2)
K=K,=" K =C =hCK =MCK (74.1)
Furthermore, K = ¢(r') = ¢(r,) = K,, so we have (2) of
7.3.

Let us now consider (3). Since u # t by hypothesis, by
2.2(d) there are two cases to consider.

Case 1. p,>*p,.,andr,=r,,,. Let p” = p,,, and let
K" = ¢(r,). By (1) and (2),

(P IPNA=(p, |r,)\A. (7.4.2)
Since ¢’ >*, we have pue A(q) and hence u¢A U A, by
4.1(4). Since p,—~>*p,.,=p" and u¢ A U A, then by
2.2(d) and 2.2(e),
(Dal P NA=H (" [r)\A.
From (7.4.2) and (7.4.3), it follows that
@' IrN\A="(p"|r,)\4.
Since ¢’ >*¢” by hypothesis, it follows from 5.16 that
(»",q")ed(r,) = K"
Thus p, —~*p” and K" = ¢(r,) = K, and
(»",q9")ed(r,) = K".
This gives (3)(a) of 7.3.
Case2.p, =p,,,and r,>*r,,,. Again, since ¢ >*¢’, it

(1.4.3)

follows that ue A(g). Since also r, >*r,,, it follows that
peA(r). Since, by 4.2(2), A(p) N A(r) < {r} and u + 7 by
hypothesis, it follows that ue A(g) — A(p). We may now
appeal to lemma 6.2 to conclude that K, >*°K, .. Thus,
if we define K” = K, and p” = p,, then we have p” = p,
and K, >"° K"

Thus, p, = p” and K, >*°K". Again, since ueA(qg),
we have from 4.4(4) that u¢ 4 U A and hence, from
2.2(d) and 2.2(e) and the fact that r,—>*r,,, =r", we

infer that
(Dol P \NA—(p, [\A.
From (7.4.2) and (7.4.4), it follows that

(P[P N\A="(p,|r")\A.
Since ¢’ —~*q” by hypothesis, it follows from 5.16 that
(»",9") = (o, r")€S(r") = K.
We have established that p” =p, , K, >*°K” and
(r”,q")e K”. This gives (3)(b) of 7.3.
The two lemmas inspire the following definition,
which plays a crucial part in our analysis.

7.5. Definition

Let S<¥(p,q) and let KeS. We will say that K
compromises S iff either K is not I-complete or X is not
O-complete w.r.t. S.

(7.4.4)

7.6. Lemma
Suppose r is an irredundant solution and let

S = ¢(R,, (1),

then S is a (p, g)-system and for all 7' € R, (r),8(r") does
not compromise S. Furthermore, there exists Ke R, ()
such that (p,q)e K.

Proof

S is a (p,q)-system by 5.14. From 7.2 and 7.4, for all
r'eR, (r), ¢(r') is both I-complete and O-complete
w.r.t. S and hence does not compromise S. If we take
K = ¢(r), then (p,q)eK.

Let us give a name to the sort of systems unearthed in
7.6.

7.7. Definition

S < ¥(p, q) is uncompromised iff
(1) No KeS compromises S.
(2) For some KeS: (p,q)eK.
The following is an easy consequence of 7.6.

7.8. Theorem

Suppose a solution exists, then ¥(p,q) contains an
uncompromised system.

Proof

By 6.5, there exists an irredundant solution r. Let
S = ¢(R, ,(r) and apply lemma 7.6.

8. SUFFICIENT CONDITIONS FOR
SOLVABILITY

In Section 5, we associated ‘states’ of r with subsets of
R(p) x R(g). A derivation structure, imposed on such sets

408 THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION

of subsets turned out to mimic that of r. We may use this
idea to associate to each system S a set of equations as
follows.

8.1. Definition

Let S < ¥Y(p, q).

Let K° be the set of all pairs (u, K’), where K-** K,
Xe{C,0} and K €eS.

Now define, for each K'eS

r(K)<= Z p.ryK).
(u, K" eK®
Note that rg(K) is rigid, that is, there are no 7
derivations. This is because, by 6.1 and 6.3, x4, O and
u, C derivations are only defined when u #+ 7.
We show that uncompromised systems give rise to
solutions. The key idea is that

if(p’,q')eKeS then (p’ | rs(K))\4 =~ ¢q'.

To prove this, we assume as an induction hypothesis that
if (p’,q')eKeS, then (p'|rs(K))\A4 =~ , ¢’, and show that
the implication holds for n+1.

To do this, it suffices to show that

@M if (p'|rg(K)\A =°(p” | rs(K'))\ A then there exists
q” such that ¢'=°q” and (p”,q")eK (for then,
(p"|r(K')\A ~ 4", by induction);

D) if ¢'=°q” then there exists p” such that
(P | rs(K)\A =*(p" | rs(K'))\A. and (p”,q")e K.

These two facts are proved in propositions 8.5 and 8.6
below. The intervening results establish similar properties
in the case of a derivation involving a single action.
Proposition 8.2 deals with 7 actions and propositions 8.3
and 8.4 deal with non-7 actions.

8.2. Proposition

Suppose S < ¥(p, q) and suppose KeS and (p’,q")eK,
then
(1) If (p"| rg(K)\A " (p”| rs(K'))\4 then (p”,q")e K.
(2) If ¢ >"q", then (p’,q")e K.

Proof of (1)

By 2.2(d), we have three cases to consider.
Case (a): p’>"p” and K’ = K. By 5.7(b),
#,qa)->="(p".q).
Thus, by 5.11, (p’,q")—,.(p",q"). Since Ke®d(p,q) and
(p,q')eK and (p',q')—>,.(p",q’) it follows by 5.11 and
5.13 that (p”,q")eK =K.

Case (b): p’ = p” and rg(K) >"rg(K’). This is imposs-
ible, since 8.1 entails that rg(K) is rigid.

Case (c): For some u =+ 7, p’>*p” and rg(K) >*rg(K").
By 8.1, either K—~*¢ K" or K—*° K. Since ue A(p), we
cannot have zie A(q) by 4.1(2) and thus we cannot have
K—->#°K'. Thus, K—~*€K'. In particular, ue 4, by 6.3.

From p’—*p” and ue A, we get (p’,q’)->*(p”,q’) by
6.3, and since we also have (p’,q')eK and K-*° K, it
follows from 6.3(ii) that (p”,q’)e K’, as required.

Proof of (2)

By 5.7(c), (p’.q')>"%(p’,q"). Thus, by 5.11,
.q9)=>..(P.q").

Since Ke¥(p,q) and (p’,q')eK and (p',q') =,.(P",4"),
it follows by 5.11 and 5.13 that (p’,q")e K = K.

8.3. Proposition

Suppose S = ¥(p,q) is uncompromised and suppose
KeS and (p',q')eK. If ue A—{z} and

(P | rs(K)N\A > (p” | rs(K')\ A4
then there exists ¢” such that ¢’ =#¢” with (p”,q")eK’.

Proof

By 2.2(d), there are two cases to consider

(1) p>*p” and K= K'. Since (p’,q')eK and KeS
with S uncompromised, it follows from 7.4(1), that
g ="q". Thus (p',) >, (p",q") and so (p",¢")eK’. &

(2) p’ = p” and rg(K) >*rg(K’). By 8.1, we have either§
K"K or K-*°K'. But if K—>"CK’ then by 6.3,8 8
1€ A and if this were the case, then by 2.2(d) and 2. 2(e),Q
we could not have (p’|rs(K))\A4 —*(p”|rs(K'))\A. Thusz
K—-*°K'.

It follows from 6.1 that there exists (p”, q”)eK’ such—~
that (p q)->"°(p",q") and in particular that p’ = p’”‘”
and ¢'="q". Thus, ¢'="q" with (p",q") = (p’.q") =
(r",q4")eK.

Yy wo.

8.4. Proposition

Suppose S < ¥(p,q) is uncompromised and suppose
KeS and (p',q')eK. Let ueA—{z} then if ¢ >*q”
then (p"|rs(K)\A =" (p" | rs(K'))\A with (p”,q")eK".

Proof

Since S = W(p, q) is uncompromised, it follows that K is
O-complete w.r.t. S, by 7.5. Thus, by 7.3, there exists
n=0, uy,...,u, €A, py,....,p,,p"€R(p) and K,,...,K,,
K” €S, such that
(1) p' =py=>"rp =t .=tmap, =lp,
(2) K= Ko =M K, =€ =Fn-rC K, = ¢ K,.
(3) Either
(a) p,~*p” and K, = K” and (p”,q")e K" or
() p,=p” and K, >"°K” and (p”,q")eK".
From (2) and 8.1, we have.

rs(K) = rg(K,) =" rg(K,) =" ... =/ rg(K,)
=/ry(K,). (8.4. l)—
From (1) and (8.4.1), using 2.2(d) and 2.2(e), we may N
see that
@' 1 rs(K)D\A = (po | rs(K)\A = (p,, | rs(K,)\A. (8.4.2)

Now, let us consider the two cases (3)(a) and (3)(b)
above.

In case (3)(a), p,~>*p” and K, = K” and (p”,q")eK".
Since ¢’ ~*, we have u¢ A U A4, by 4.1(4). Thus, p, >*p”
and u¢ A U 4 and so from 2.2(d), we obtain

(P r(KI\A (D, | F(K)NA = (p” | r(K”))\ A (8.4.3)
with'(p”, q")e K”. Therefore, by (8.4.2) and (8.4.3) we
obIaIN | (KON =#(p" | rg(K' I\ (8.4.4)

with (p”,q")eK".
In case (3)(b), p, = p”and K, >*° K" and (p”,q")eK".
By 8.1, rg(K,) >*rg(K”). From this, together, with 2.2(d)

Z ludy 01 uosenb Aq | LvL017/668/9/2€/e|0!u19/|U[wOO/wOO'dHO'O!wepeoe

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 409

M. W. SHIELDS

and 2.2(e) and the fact established above that u¢ A U 4,
we obtain

(Pl (K ONA > (p, | (K INA = (p” | r(K)\A (8.4.5)
with.(p”, q")e K’. Therefore, from (8.4.2) and (8.4.3) we
obtain L KNA=H(p" [r(KONA (8.4.6)

with (p”,q")eK".

Thus, in both cases, (p’|rs(K)\A =*(p"|rs(K")N\A
with (p”,q”)e K”. This completes the proof.

We may now establish the two facts (I) and (II) that we
met at the beginning of this section.

8.5. Proposition

Suppose S < ¥(p,q) is uncompromised and suppose
KeS and (p’,q’) € K. Suppose,

(P’ | rs(K)N\A =" (p" | rs(K')\4
then there exists ¢” such that ¢’ =°¢” with (p”,q")eK’.

Proof
By 2.4, it suffices to show that if

(P’ [rs(K)O\A =* (p” [rs(K'))\ A4

then there exists 5" and ¢” such that ¢’ =% ¢” with s’ = s|,
and (p”,q")e K. We argue by induction on Inth(s).

If Inth(s) = 0 then s =Q and we have p’ = p” and
K = K'. We may take s’ = Q and ¢” = ¢q’. Accordingly,
(r",4")=(p',9)eK=K.

Now suppose the proposition is true when /nth(s) = n
and suppose (p'|rs(K)\A=*(p”|rs(K'))\A where
Inth(s) = n+1. There exists e A* and A€ A such that
s = AS. Thus Inth(s) = n.

By 2.4, there exists p, K such that

(P’ | r(KO\A (B rs(K)\A =¥ (p” [rs(KION\A.

If =1, then by 8.2(1), (p, q)eK We have (p|rg
(K))\A =S (p” | rs(K'))\A4 and (p,q)eK and lnth(s') =n
and so by 1nduct10n there exists ¢” and s” such that
5" =§|. and ¢'="¢" and (p”,q")e K. Take s = s” then
q ="q" with s =s|, and (p",q")eK.

If 1 # 7, then by 8.3, there exists § such that q =* q
and (p, §) € K. Again, by induction, there exists ¢” and s”
such that s” =§|, and §=""¢” and (p”,q")eK’. Let
s’ = As”, then ¢’ = ¢” with s|, = A§|, = (A],).(§|,) = As”
=s"and (p",q")eK.

8.6. Proposition

Suppose S < ¥(p,q) is uncompromised and suppose
KeS and (p',q')eK. If ¢ =°q” then there exists
p”, K such that (p'|rg(K))\A=°(p"|rs(K'))\A and
(»".q")eK".

Proof

By 2.4, it suffices to show that if ¢’ =° ¢” then there exists
s and p” and K’ such that (p’| rS(K I\A = (p”|rs
(K')\A4, s’ = s|,and (p”,q")e K'. We argue by induction
on Inth(s).

If Inth(s) = 0 then s = Q and we have ¢” = q’. We may
take s = Q, p’ = p” and K = K'. Then,

(r".q")=(,q)eK=K.

s //

Now suppose the proposition is true when lnth(s) = n
and suppose ¢’ =°q” where Inth(s) = n+1. There exists
SeA* and AeA such that s = A§. Thus Inth(s) = n.

By 2.4, there exists ¢ such that ¢’ — qb“q”

If 2 = 7, then by 8.2(2), (p’,§)e K. Since §=*q” and
(p’,§)€ K and Inth(s) = n, then by induction there exists

p” and K’ and s’ such that
(P | rs(K)O\A =7 (p" | rs(K')\ A

and 5" = s|, and (p”,q")eKX".

If 1 % 7, then by 8.4, there exists p and_ K such that
(P rs(K)\A =*l(plrs(K))\A and (p,§)eK. Again, by
induction, there exists p”, K’ and s” such that s" = §|,,
(plrs(K))\A ="(p"|rs(K')\A and (p”,q")eK’. Let
s’ =A$, then (p’ |rS(K))\A ="(p"|r(K'))\A with
sl,=(@41,).6l,) =4s"=s"and (p",q")eK.

8.7. Theorem

Suppose S = ¥(p,q) is uncompromised and suppose
K, €S is such that (p, g) € K, then

(plrs(K,\A = g.
Proof
Define E(n) to be the following predicate:
If(p’,q')e KeS then(p’ | rs(K)\4 =, q'.

Certainly E(0) is true, by 2.5(a). Suppose E(n) and
suppose (p’,q')e KeS, then

Ifg’=*q", then by 8.6, (p’| rs(K)\ A4 =*(p"| rs(K"))\4
with (p .q’)eK By E(n):(p”|rs(K')\A4 ~, q".

Thus if ¢’ =*g", then (p'|r(K)\A =* (p” | rs(K')\4
with (p”| ro(K’ WA ="

Similarly, if (p’|rg(K))\4 =°(p"|rs(K'))\A then we
may use 8.5 and E(n) to deduce that ¢'=°¢” with
(P Ir(KN\A ~,,q".

But by 2.5(a) these two statements imply that
(P | (KA % 1 4"

Thus, given E(n), we have shown that if (p’,q") e K€S,
then (p”|rs(K')\A4 = .. 4" In other words, E(n) implies
E(n+1).

By induction, E(n) holds for all » and so by 2.5,

If(p’,q')e KeS then(p'|rs(K)\4 = q'.

In particular, (p|ry(K,))\4 = g as required.
We may now state our main theorem.

8.8. Theorem

There exists r solving (p| X)\4 =~ q iff ¥(p, q) contains
an uncompromised system S.

If S is an uncompromised system and (p,q)e K, €S,
then ryg(K,) is a solution. Furthermore, ry(X,) is rigid.

Proof

If r solves (p|X)\A =~ ¢ then there exists an uncom-
promised S, by 7.8.

Conversely, if S is uncompromised, then there exists
K, €S such that (p,q)e K. By 8.7, (p|rs(K,))\4 = q and
so rg(K,) is a solution.

8.9. Corollary

An interface equation (p| X)\4 = ¢ has a solution iff it
has a rigid solution.

410 THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

IMPLICIT SYSTEM SPECIFICATION AND THE INTERFACE EQUATION

Proof

Certainly if the equation has a rigid solution, then it has
a solution.

Conversely, if it has a solution, then ¥(p, g) contains
an uncompromised system S, by 8.8. Also by 8.8, if
(p.9) €K, for K €S, then rg(K,) is a rigid solution.

9. SOLVING INTERFACE EQUATIONS

We now sketch an algorithm for solving interface
equations.

9.1. Step 1

Let S, = I(p, q).

Repeat the following. Beginning with B, (p, q), exam-
ine each B,(p’,q’) and remove it from S, if it is not
I-complete. Continue to do this until either

(a) B,(p,q)¢S, and in this case let S = ¢ and go to
step 4, or

(b) Allofthe B, (p’, ¢") remaining in S, are I-complete.

The rationale behind this step is the following fact. If
B,(p’,q") < Kand B,(p’,q") = Kis not I-complete, then
neither is K and hence K cannot belong to an
uncompromised (p, g) system.

Let S, —-{U BlX<=S,}.

By constructlon any S S, will be I-complete.

9.2. Step 2

Let S denote the set of all KeS, such that B, (p,q) < K.

If KeS and K'eS, —S with K—** K’ some x and X,
then let S=S U {K’}. Repeat this step until no more
such K’ may be found.

The point behind this is that we need not consider
agents which are not reachable from any possible
‘starting state’.

By construction S will contain all /-complete sets K
such that for some K,€S, (p,q)eK, and for some
se(A—{t})*, es(K,) =°rg(K).

9.3. Step 3

If KeS is not O-complete w.r.t. S, then let S = S—{K}.
Repeat this step until no more such K may be found or
no remaining K contains (p,q). In this latter case, let
S = & and go to step 4.

Note that I-completeness is a local property, a property
of K which does not depend on the rest of S. It follows
that on termination of step 3, the resulting system will
either be empty or no remaining K contains (p, g) or will
be both I- and O-complete and some K contains (p, q).

9.4. Step 4

If S = &, then report failure. Otherwise select K€ S such
that (p, g) € K. rg(K) is a solution of the interface equation.

REFERENCES

1. M. W. Shields, Solving the Interface Equation. Technical
Report SE/079/2, Electronic Engineering Laboratories,
University of Kent at Canterbury (July 1986).

10. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented some preliminary results
concerning the solution of context equations. We would
like to stress two things:

(1) The work has a strong flavour of traditional
applied mathematics about it in the sense that it attempts
to provide a mechanism by which a practical problem
may be transformed into a mathematical problem and
solved with the aid of mathematical theory.

(2) The solution technique described here is likely to
be somewhat expensive in general. Our main point is that
the equations considered here are solvable in principle.

This is not unusual in applied mathematics. Consider
the case of differential equations. Firstly, there is no
solution technique which applies to all of them. However,
there are a number of subclasses which have great

practical importance and for which solution techniques 5

do exist and which are capable of being applied by 35
persons who are not themselves mathematicians.

This suggests a number of possible extensions, all of

which are under investigation.
(1) There are almost certain to be other problems 3

@)

Wiol) papeojum

which are capable of being formulated in the fashion of = Z

the interface equation. We seek input from workers in
the field so that we may broaden the scope of application
of a developing theory. With this in mind, we have
presented an informal overview of our approach.’

(2) Wemust certainly attempt to improve the efficiency
of our solution method.

(3) We must also look to practical application to
identify practically useful classes of interface equation,
for which solutins may be simpler. This problem may be
approached from two ends; by seeking out ‘easy’
subclasses from a purely theoretical point of view and by
identifying classes of system to which the method might
be applied.

(4) From purely theoretical considerations, we would
like to be able to tackle a larger class of context
equations. Some initial work in this area has been
reported.’®

(5) Finally, the work must be made useful to —and
usable by — the non-theoretician. This is the case with the
‘useful’ parts of the calculus, which has over the centuries
acquired a notation and body of technique which make
it accessible to scientists and engineers. We are investi-
gating the possibility of developing software tools based
on theory of this kind.

Acknowledgements

The author would like to thank Lalith Ranatunga, Gino
Martin and Keith Lines for pointing out bugs in early
drafts of this paper.

The work reported in this document is supported by
SERC under the Alvey scheme, to whom the author
wishes to express his thanks. He would also like to thank
British Telecom for their sponsorship and particularly
Dr Mark Norris for many stimulating discussions.

2. M. W. Shields, 4 Note on the Interface Equation. Technical
Report SE/079/1, Electronic Engineering Laboratories,
University of Kent at Canterbury (June 1986).

THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989 411

(IJ

20z 1udy 0| uo 1senb AqQ | L1 0t/66E/G/2E/8191Me/|ulwod/woo dno-olwepeoe)/:

M. W. SHIELDS

3. R. Milner, A Calculus of Communicating Systems. Lecture
Notes in Computer Studies, vol. 92, Springer (1980).

4. M. W. Shields, Extending the Interface Equation. Technical
Report SE/079/3, Electronic Engineering Laboratories,
University of Kent at Canterbury (Aug. 1986).

5. L. P. Ranatunga, and M. W. Shields, Linear Context
Equations. Technical Report SE/079/4, Electronic
Engineering Laboratories, University of Kent at

6. L. P. Ranatunga and M. W. Shields, Towards the Solution

of General Context Equations. Technical Report SE/079/5,
Electronic Engineering Laboratories, University of Kent at
Canterbury (April 1987).

. M. Norris, M. W. Shields and J. A. Ganeri, A Theory for

Building Systems. British Telecom Technology Journal
(April 1987).

Canterbury (Dec. 1986).

Announcements

4-8 DECEMBER 1989

Toulouse ’89, Second International Workshop
on Software Engineering and its Applications

The success of the First Toulouse International
Workshop on Software Engineering and its
Applications in December 1988 was such that
the workshop could not be allowed to be a
one-off event. Thus, Toulouse 89 will bear
witness to the emergence of software en-
gineering as a major activity in the field of
software development.

The extent to which software engineering is
being integrated into the professional world
may be gauged by the increasing number of
companies, from whatever domain, that make
use of its techniques, together with the
availability of software engineering tools in
the marketplace. It was already apparent at
Toulouse ’88 that a new technology was taking
its first steps, and it is in this perspective that
Toulouse ’89 should confirm the inevitable
evolution of this development.

The power of new generations of computers
and workstations is both boosting traditional
approaches and allowing the new technologies,
resulting from a decade of research, to become
operational.

The tools of a profession

Whatever the application domain, be it man-
agement, scientific or industrial, software
engineering technology is based on the union
of three broad categories: software tools,
necessary to improve production process effi-
ciency, methods, providing an indication of
consistency, and discipline in software develop-
ment and organization which from human
factors to management of the technology,
ensures both technical and economic success.

Toulouse 89 confirms its role as a major
event dedicated to software engineering and
its applications in the three fields of manage-
ment, industry and science. Maintaining the
choice of Toulouse, the birthplace of the
Airbus and Hermes, as the host town rein-
forces the international nature of the work-
shop.

Three complementary approaches will allow
participants to evaluate all aspects of the latest
software engineering products and techniques:

@ atechnical conference presenting the papers
selected by the International Program
Committee

@ aseries of tutorials on software engineering
techniques

@ an exhibition of commercially available
products

TUTORIALS AND PANEL
SESSIONS

The technical conferences will be comple-
mented by tutorials and panel sessions. Given
by internationally renowned experts and held
on 4 and 5 December 1989, these tutorials will
provide an introduction to the different tools
and techniques used in software engineering,
in-depth coverage of specific techniques, or
the state of the art in particular fields of
application.

EXHIBITION

From 6 to 8 December 1989 an exhibition
covering several thousand square metres will
be held to present commercially available
products relating to the topics covered at the
workshop. In addition to this, there will be
demonstrations of advanced prototypes.

GENERAL INFORMATION

Date
Tutorials: 4 and S December 1989
Conference and Exhibition: 6, 7 and

8 December 1989

Location

Palais des Congres, Parc des Expositions,
Rond-Point Michel Benech, 31000 Toulouse —
France. Tel: (33) 61 25 21 77

Registration Fee (VAT incl.)

Regular fee FF 4500
University fee FF 2700
Student fee FF 500

Tutorials
2 days FF 3300
11 day FF 2600
1 day FF 1700
i day FF 950

412 THE COMPUTER JOURNAL, VOL. 32, NO. 5, 1989

Languages

English and French will be the official working
languages. Simultaneous translation will be
provided.

Accommodation

Hotel reservations should be made directly by
each participant with the local agency below.
All requests should be addressed to:

Promo Toulouse, Donjon du Capitole, 31000
Toulouse — France. Tel: (33) 61 21 92 32.
Telex: 531 508.

Workshop Chairman
Jean-Claude Rault, EC2, Nanterre

International Program Committee Chairman
Michel Galinier, IGL Technology, Paris

The complete list of the International
Program Committee will be published later

Organised by :

EC2, 269-287, rue de la Garenne, 92000
Nanterre, France. Tel: (33.1) 47 80 70 00.
Telex: 612 469 F. Fax: (33.1) 47 80 66 29.

17-20 SEPTEMBER 1990

Information 90, Third International Confer-
ence, Bournemouth International Centre

Information 90, a major international con-
ference, sponsored by Aslib (the Association
for Information Management), COPOL (the
Council of Polytechnic Librarians), the In-
stitute of Information Scientists, the Library
Association and the Society of Archivists, will
be held at the Bournemouth International
Centre from 17 to 20 September 1990.

The conference will bring together world
experts in the library and information field to
ensure that Information 90 will be the biggest
and best event of its kind ever staged.

Further information from:

Concorde Services Ltd, 10 Wendell Road,
London W12 9RT. Tel: 01 743 3106, Fax: 01
743 1010.

¥20Z I4dy 01 uo 1senb Aq | 1L 0Y/66€/G/2E/2101 e/ |ulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq

