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This paper defines the algebraic specification language implemented by the UMIST OBJ system. It also illustrates the
use of the language for the definition of abstract, executable specifications of the behaviour of computer programs. The
system implements an executable subset of J. A. Goguen’s OBJ language, which is based on the algebraic definition of
abstract data types. The language permits data types and operations to be defined abstractly, i.e. independently of any
particular representation. Moreover, the definitions of an OBJ specification can be treated as an abstract program, by

regarding the equations contained in a specification as a set of left-right rewrite rules which may be used to simplify
terms. This makes the language useful for formulating and exploring the consequences of abstract designs, and
developing relevant parts of the theory of the associated problem domain. The ability to exercise descriptions of the
theory of a problem domain is a powerful tool for the programmer. By providing timely feedback on the correctness of
design decisions, such use of the language encourages and reinforces the exploration of design possibilities. With these
Seatures, UMIST OBJ embodies the foundations of a framework Jor effective software engineering. It provides an
accessible basis for both mechanisable formal notations for program description and semantically motivated support

tools.
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1. INTRODUCTION

The UMIST OBJ system implements an executable sub-
set of the language OBJ developed by J. A. Goguen,? 1
over a number of years at UCLA and SRI Inter-
national, California. OBJ as described in Refs 8 and
11 is not yet fully implemented, nor is it available for
distribution. Therefore the UMIST OBJ effort has
concentrated on developing a widely available and
portable version of the language, rather than adding
functionality to the original OBJ system, the aim being to
allow early and wide experimentation of the language in
software engineering projects. Accordingly, the system
has been widely distributed (over 60 sites) both in
industry and academia, where it has been used with
considerable success. Some results are reported later in
this paper.

The principal components of an OBJ specification
correspond to equationally specified abstract data types,
or to applicative definitions of operators which compute
over existing data types. We shall proceed by presenting
the syntax of the main features of the UMIST OBJ
language, to which we shall attach an informal descrip-
tion of its intended semantics. We restrict the syntax of
operator application to the parenthesised prefix form of
standard functional notation. The syntax of UMIST
OBJ is presented in Extended Backus Naur Form
(EBNF) notation. The language description is followed
by a brief discussion of the (mathematical, proof-
theoretic and operational) semantics of UMIST OBJ
specifications. We then illustrate a possible role for OBJ
specifications in a more general software engineering
framework, via a simple, topical example. We also
discuss further non-trivial uses of the language in a
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miscellany of projects. Finally, we describe the implemen-
tation details relevant to the versions of the system
currently available and report on further work and
developments concerning the system.

2. AN INTRODUCTION TO THE
LANGUAGE

Objects

An OBJ specification exhibits a modular structure,
whose basic components are called objects. Objects are
used for the definition of abstract data types (that is, sets
of values together with operators which manipulate
those values), and for the abstract description of
algorithms.

An OBJECT is introduced by the keyword OBJ
followed by an identifier which serves to name the textual
unit denoting the OBJECT.

object):: = OBJ {object-id) [ )’{used-objects)]
[SORTS (sort-list)]
[OPS (op-declaration-list )]
[VARS (variable-declaration-list )
[EQNS <equation-list)]
JBO

The {used-objects) component of an object heading is a
list of names of objects which contain the declaration of
sorts and/or operators which are referenced within the
current object. The end of an object is marked by the
keyword JBO.

Sorts

An object may introduce a number of identifiers as
names of sorts. Each sort name denotes a set of values
called the carrier of that sort. The idea of a sort
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corresponds roughly to the notion of a type in a
programming language such as Pascal.

(sort-list):: = {sort-name) {{sort-name)}
(sort-name):: = {id)

Sort names are globally available within the object that
introduces them and within any objects which sub-
sequently gain access to that object, via the transitive
closure of the use relation.

Operator declarations

An object may introduce operators by giving for each
operator its name and functionality. Each operator is
strongly typed by defining its arity (the number and sorts
of its arguments) and (target) sort.

{op-declaration-list) :: = {op-declaration’
{<op-declaration)}

{op-declaration):: = {form-list)y ’ [{arity)] - {sort>

form-list):: = (op) {2’ {op)}

Copy:: =<id)

Larity):: = {sort-list)

An operator of null arity denotes a constant of the target
sort of the operator. The following object introduces
a primitive sort item, together with nine operators,
il. .19, which name constants of sort item.

OBJ item
SORTS item
OPS
i1,i2,i3,i4,i5,i6,i7,i8,i9 : — item
JBO

Note that the definition of item does not imply any
ordering on its elements, only that the elements exist and
are distinct.

We may define an object for the abstract data type
Sequence_of_Item as follows

OBIJ Sequence_of _Item/Item
SORTS seq
OPS
Ti—>seq
“:item seq — seq
JBO

The object Sequence_of_Item defines the sort seq with
operators ~ and ". The semantics of an OBJ object is
defined to be the initial algebra on the signature denoted
by the sort and operator declarations.'? In the case of the
object Sequence_of_Item this means that the set of values
(carrier) associated with the sort seq is isomorphic to
the set of well-formed terms generated from the
empty sequence operator, ~, and left append ", that
is {771,7),7(12,7),7(3,7),7(i1,7(i1,)),..}).

The scope of operator names is governed by the rules
given above for the use of sort identifiers.

Built-in objects

OBYJ has a built-in object TRUTH which defines the sort
BOOL with distinguished constants T (true) and F
(false). The object TRUTH is implicitly accessible from
any user-defined object.
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OBJ TRUTH
SORTS BOOL
OPS

T,F: - BOOL
JBO

In addition, UMIST OBJ provides a built-in implementa-
tion of the sort nar, with operations 0 and succ which
have their usual interpretation over the natural numbers.
The implementation corresponds to the object:

OBJ NATURAL
SORTS nat
OPS
0:— nat
succ:nat — nat

JBO

As with the TRUTH object above, access to
NATURAL is implicitly given to all user-defined objects.
The implementation allows natural numbers in canonical
form (i.e. succ(succ(. . . ... (succ(0))..)) to be written in
standard decimal notation in equations and expressions
and prints them as such in dialogues with the user.

’

Equations

When specifying the behaviour of operators, it is usually
necessary to provide definitions or axioms which con-
strain the allowable interpretations of the meaning. In an
OBJ object, equations are used to define those relation-
ships (identities) that must exist between values denoted
by the constituent expressions involving operators.

Syntactically the equations of an object follow the
keyword EQNS. The equations may involve typed (i.e.
sort-constrained) implicitly universally quantified vari-
ables. Such variables are declared in advance to assist
type checking. The variables employed in a particular
equation are assumed to be universally quantified over
the whole equation.

var-declaration-list) :: = (var-decl) {{var-decl)}
Kvar-decly:: = (var-idy {*,(var-idy} ° {sort)
var-idy :: = {id)
{equationy:: ="(’{op-exp) = {expression)

[IF {bool-exp>’)

Cexpression):: = (var-idy|<{op) ['({exp-list)’)]
|’C<{expression)’)’
| {expression) *= =" {expression)

Cexp-list):: = {expression) {,{expression)}

For example, while the usual boolean operators are
not declared in the built-in object TRUTH, they may be
simply defined as follows:

OBJ Boolean
OPS
not:BOOL - BOOL
and,or: BOOL BOOL - BOOL

VARS
a:BOOL
EQNS
(not(T) = F)
(not(F) =T)

(and (a,T) = a)
(and (a,F) = F)
(and (T,a) = a)
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(and (F,a) = F)
(or @, T)=T)
(or (a,F) =a)

(or (T,a)=T)
(or (F,a) =a)
JBO

The equations of object Boolean correspond to the usual
definition of the boolean connectives by means of truth
tables.

As a second example, the sequence data type is made
more interesting by the introduction of a sequence
append operator, app. The behaviour of app is defined by
identities on terms formed by the application of app to all
well-formed terms of sort seq, generated by the operators
“and .

OBJ Sequence_with_Append/Item

SORTS seq

OPS

]
“ritem seq — seq
app:seq seq — seq
VARS
i:item
s,8°:seq
EQNS
(app(s) = s)
(app((i,s),s) = (i,app(s,s)))
JBO

The two equations define the operator app in a manner
familiar to functional programmers. Note that OBJ’s use
of pattern matching, similar to that used in Hope,?
reduces the need for selector operators such as head and
tail, which are used heavily in languages such as Lisp.
Each equation in an object determines that for any
consistent substitution to the variables the values of the
expressions on the left-hand side and right-hand side of
the ‘=" are equal. Any two ground expressions (i.e.
expressions which do not contain variables) which are
not made equal using normal equality reasoning are
considered unequal in the intended semantics.

OBJ also permits equations to be conditioned by a
boolean expression, giving conditional equations of the
general form (/ = rIF ¢). The equation / = r holds under
any acceptable substitution of terms for variables (of the
appropriate sort) for which the boolean expression c is
true (i.e. equal to T). As an example of the use of
conditional equations, we may define a membership test
operation, isin?, on the sequence data type:

OBJ
Membership_Test/Sequence_with_Append Boolean
OPS
isin?:item seq -~ BOOL
VARS
i,j:item s:seq
EQNS
(isin?(i,”) = F)
(isin?(i,(i,5)) =T)
(isin (i, (j,8)) = isin?(i,s) IF not(i= =})))
JBO

The condition part of the third equation ensures that the
identity only holds when the first item of the sequence
differs from the item being tested. Consequently, the
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second and third equations do not ‘overlap’. That is, the
respective identities hold in mutually disjoint contexts, so
they can never be simultaneously applicable to the same
expression.

i

The Equality Operator

As each sort, s, is introduced, it is automatically equipped
with a boolean-valued equality operator, with infix
syntax:

_==_:55—>BOOL
where underscores ‘_’ act as placeholders for expression
values. For two s-sorted terms, 4, B, A = = Bis true (T)

if the equality of 4 and B follows from the equations in
the specification, and false (F) otherwise.

3. ENRICHMENTS AND HIERARCHIES OF
DATA TYPES

An operator such as app may be defined as an enrichment
of the existing sort seq, introduced in the original object
Sequence_of__Item as follows, thus avoiding the need to
redeclare existing sorts and operators:

OBJ Sequence_of_Item_2/Sequence_of_Item
OPS
app:seq seq — seq
VARS
i:item
5,8°:seq
EQNS
(app(s) = s)
(app((i,9).8") = (i,app(s,s)))
JBO

An OBJ specification constitutes an environment of
modules with a hierarchical or acyclic graph structure.
The structure is expressed and enforced by means of the
used objects list. An object 4 can reference another
object B iff B is in A’s list of used objects, or B can be
referenced by one of the objects used by 4. The objects
Membership_Test, Sequence_with_Append, Item, Boo-
lean, together with the built-in objects TRUTH and
NATURAL, form a single environment with structure
shown in Fig. 1.

The enrichment of existing data types by the addition
of new objects which use them is the principal specifi-
cation-structuring mechanism available in UMIST OBJ.

Membership_Test

/

Sequence_
with_Append
Item Boolean
NATURAL TRUTH

Figure 1.
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In general, every effort should be made to avoid the
introduction of an object which corrupts the meaning of
an existing object. Corruption of an existing sort can be
caused by the introduction of operators whose meaning
gives rise to new, previously unnameable values of the
existing sort, or the introduction of equations which
cause previously distinguishable values of the existing
sort to become identified.

4. SEMANTICS OF ALGEBRAIC
SPECIFICATIONS

4.1 Denotational semantics

The denotation of an OBJ object (resp. specification) is a
many-sorted algebra: a collection of sets of values
together with functions among them. The sorts (S) and
operators (W) declared in an object constitute its
‘signature’, X, and a specification is considered to be a
pair (X,E), where E is a set of Z-equations. The
denotation of an object is taken from the class of
Z-algebras, those many-sorted algebras having a carrier
for each sort in S, and a (total) function for each
operator in W. In general there exists a collection of
algebras that, together with appropriate interpretations
of the operator symbols, validate the set of equations in
a specification. These constitute the ‘variety’ of models
of an equational specification. The initial algebra
approach to semantics uses the unique (up to iso-
morphism) ‘most representative’ algebra which satisfies
the equations.”'* The sets of values of the initial model
are obtained by first constructing sets of abstract values
analogous to the Herbrand Universe of first-order
predicate logic.?® The equations generate a finest con-
gruence relation used to quotient this set of values. The
operations are interpreted as functions among the
resulting sets that respect the signature and equations in
the specification.

4.2 Axiomatic semantics

An axiomatic semantics can be given for UMIST OBJ by
considering it as a form of logic programming language
based on the simple and commonplace logic of (condi-
tional) equations. The well-formed formulas of equa-
tional logic are equations defined as pairs of well-formed
terms constructed from the operations declared in a
signature and a set of variable identifiers, and written
M = N. An equation M = N is provable from a set of
equations E,E|-M =N, if M= Nisin Eor M = N is
obtained from E by a finite sequence of:

(i) t=t
(i) if s=tthent=s
(iii) if r=sand s =t then r = ¢
(iv) if si=ti, 1<=i<=n then f(sl,...,sn) =
S(t1, ..., tn) for any operator, f, of suitable arity.

The set of equations provable from a set of equations E
is called the equational theory = (E). Birkhoffs
theorem®® states that an equation is valid in all models of
a set of equations, E, if and only if that equation is
provable from E.

The adoption of initial algebra semantics for an OBJ
specification causes equational logic to become in-
complete for the associated equational theory. The

restriction to ‘nameable’ models, in which any value in
the carrier of a sort must be nameable by the operators
in the specification, means that some inductive principle
must be used to establish many interesting properties of
a specification. Furthermore, the initial model uses the
finest congruence generated by the equations in a
specification, with the consequence that whenever an
identity cannot be established between two ground terms
by equational reasoning, those terms are considered
unequal in the initial model. It is this semantics for
equality which is implemented by the BOOL-valued
equality operator, = =.

4.3 Operational semantics

An operational semantics is associated with an OBJ
specification by treating each equation as an ordered
pair,

left hand side — right hand side

and used as a rule for replacing one term by another.!® A
computation using rewrite rules produces a sequence
M,M1,M2 ... of expressions by repeatedly replacing
instances of left-hand sides of rules by their corresponding
right-hand sides until N is obtained, which contains no
instance of any left-hand side. For example, the following
rules derived from the equations in Sequence_with_
Append

app(",s)—>s (i)
app((i,s),s”) = (i,app(s,s’)) (i)

can be used to rewrite the term

app(1i1,7i2,),13,7)

by first rewriting ’‘app((i1,1i2,)),3,))" to (il,app
(12,),73,7))) using (ii), next rewriting the resulting
subterm "app((i2,),7i3,7))’ using (ii) to yield (i1,"(i2,app
(573,7)))’, and finally rewriting the subterm *app(~,(i3,7))’
to "3, using (i), to give the term ’7(il,1i2,1i3,)))’,
which cannot be further rewritten using (i) and (ii).

Under certain mild constraints, called finite conver-
gence,'® term rewriting provides an effective decision
procedure for an equational theory presented by a set of
(conditional) equations. The conditions for finite conver-
gence are that:

(i) every terminating sequence of rewrites from some
expression M stops at a unique minimal form M*
(referred to as the Church—Rosser property for recursive
functions);

(ii) every sequence of rewrites from some expression
M terminates after a finite number of steps, referred to as
the finite termination property.

Under these conditions a ground equation M = N can be
proved to be a consequence of a set of equations E by
exhaustively rewriting M and N and checking that M* is
identical to N*.

In general it is undecidable whether an arbitrary set of
rewrite rules is finitely convergent. In practice, it is
relatively straightforward to ensure that a set of rewrite
rules under construction have the necessary properties.
Convergence can be achieved by strictly avoiding pairs of
equations with ‘overlapping’ left-hand sides. Where
conditional equations are involved the situation is more
complicated, since the left-hand sides of a pair of
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equations may overlap syntactically, in which case the
conditions on the two equations must be forced to
denote mutually disjoint predicates, otherwise term
rewriting with this pair of equations will result in a non-
deterministic computation. Finite termination can be
achieved by ensuring that replacing an instance of the
left-hand side of an equation by the right-hand side
results in an expression which is in some sense ‘smaller’.
It must be ensured that there is no infinite chain of
expressions, each smaller than the next (cf. well-founded
set). A very useful guide is to base all recursive definitions
on primitive recursive schemata. Discussions of such an
approach can be found in chapter 2 of Ref. 3, where it is
referred to as structural recursion, and in Ref. 1, where
it is related to the unique homomorphism property of
initial algebra semantics.

5. EXPRESSION EVALUATION - THE
RUN COMMAND

Before looking at a simple example of expression
evaluation we will introduce one more object to our
environment. This object introduces an operator which
tests a sequence for the occurrence of duplicate items:

OBJ Duplicate_Test/ Membership_Test

OPS

nodups: seq -~ BOOL
VARS

iitem s:seq
EQNS

(nodups () =T)
(nodups((i,s)) = nodups (s) IF not(isin(i,s)))
(nodups((i,s)) = F IF isin2(i,s))

JBO

The evaluation of an expression is prompted by a {run
command) which exhaustively uses a set of (conditional)
equations as (conditional) rewrite rules.

{run-command):: = RUN (expression) NUR
The result of a run command is a message of form
AS (sortname) :{expression)

which returns the canonical form of the expression
together with its sort. Thus for example:

RUN nodups ((i7,73,7i2,76,12,719,))))))) NUR
results in

AS BOOL:F
and

RUN isin?(i2,(i7,7i3,7(i2,76,7i2,79,))))))) NUR.
results in

AS BOOL:T
and

RUN app(1(i2,7i7,73,Y))), (i6,7i2,7(19,7)))) NUR
results in

AS seq:(i2,7i7,7:3,76,i2,79,))))))

The equality operator, = =, may also be used in {run-
commands

RUN app((i2,1i7,9),7(i2,)) = = (i2,17,712,))) NUR

produces
AS BOOL:T

The execution of OBJ specifications in this way
provides a means of design-time testing the behaviour
defined by abstract specifications of data types, and
abstract applicative programs modelling the computation
to be produced by some algorithm.

6. AN EXAMPLE USE OF UMIST OBJ

UMIST OBJ supports the production of formal specifi-
cations and design-time testing in the production of
imperative and functional programs. It is useful when
formulating the domain of discourse for specifications.
The construction and evaluation of OBJ specifications
can enhance our understanding of a design problem
when, as is usually the case, we do not know what would
constitute a reasonable formal requirements specifica-
tion. The system permits the user to explore the theory
underlying a design problem and its associated solutions
at a level of abstraction motivated by his/her under-
standing of the problem domain, unobscured by as yet
irrelevant detail demanded by the implementation tech-
nology. Constructing and exploring abstract executable
specifications allows the designer to gain knowledge
about the task at hand in a cheaper and more flexible
manner than experimental programming, or ‘prototyp-
ing’, in a conventional programming language. Design-
time testing, although incomplete, is a cost-effective way
of increasing confidence in the correctness of soft-
ware.? 1% In the next section, we illustrate such a use of
OBJ by a brief exploration of a topical problem. We also
present a brief description of a number of non-trivial
applications.

6.1 A simple program-component database

Consider the design of a simple database to hold Ada-
like program components, which is to be accessed and
updated by components of a development environment,
such as a structure editor and Ada compiler. A
component is named and comprises

an interface part

and
an implementation part.

The interface describes the visible part of a component,
that is the declarations which are available to the user of
the component. For example a stack component might
have interface

interface STACK is
type stack is private;
procedure init(var s:stack);
procedure pop(var s: stack; var i:item),
procedure push(i:item; var s:stack);

end of interface

The implementation contains the code for the types,
procedures and functions contained in the corresponding
interface. Thus an implementation corresponding to
stack might be
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implementation STACK is
imports sequence ;
type stack = sequence of item;
procedure init(var s:stack); begin initialise(s) end;
procedure push (i:item var s:stack); begin right-
append(s,i) end ;
procedure pop(var s: stack; var i:item),

end of implementation

Both implementations and interfaces may access other
components by listing their names in an imports
statement. Thus the above implementation of stack

imports the sequence component. In general there may

be more than one implementation for a given interface,
since usually there are many ways of implementing a

given data type. For the purposes of this simple example

we ignore this possibility.
We can formalize the ideas of interface and implemen-

tation as follows.

OBJ Name_List
SORTS name name_list
OPS

~:—name_list

":name name_list - name_list
JBO

OBJ Part_Type
SORTS part_type
OPS
interface,implin : — part_type
JBO

OBJ Part/Name_List Part_Type
SORTS part
OPS
% :name part_type name_list — part
nameof: part — name
kind: part — part_type
imports: part - name_list
VARS
comp_name : name comp_kind: part_type
imports_list : name_list
EQNS
(nameof(%(comp_name,comp_kind,imports_list)) =
comp_name)
(kind(%(comp_name,comp_kind,imports_lists)) =
comp_kind)
(imports(%(comp_name,comp_kind,imports_list)) =
imports_list)
JBO

OBJ is used to provide abstract syntax for the
semantically important notions of a part. We can use this

level of abstraction since we do not need to elaborate the

procedures and types in the interface. Similarly we are

not concerned with the actual code that constitutes the

implementation body.

We need a mechanism for storing and retrieving
program parts. The following object allows us to capture
the notion of storing and retrieving interfaces and
implementations associated with some component

name.

OBJ Database/ Part Boolean
SORTS database

OPS

@ : — database

put: part database — database

getinterface : name database — part

getimpln :name database — part

VARS
n:name p,p’:part db: database
EQNS

(getinterface(n,put(p,db)) = p IF and (nameof{ p)
= = n,kind(p) = = interface))

(getinterface(n,put( p,db)) = getinterface(n,db)  IF
or(not(nameof{ p) = = n),not(kind( p) = = inter-
Jface)))

(getimpln(n,put( p,db)) = p 1IF and(nameof(p) ==
nkind( p) = = impln))

(getimpln(n,put( p,db)) = getimpln(n,db) IF or(not-
(nameof( p) = = n),not(kind( p) = = implin)))

JBO

Thus ‘@’ corresponds to the initialised empty database
and ‘put’ inserts a part into an existing database value.
The operation getinterface (resp. getimpln) may be used
to retrieve the latest interface (resp. implementation) with
a particular name, to have been put into a database
value. Another useful database operation performs a
check on the presence of an implementation for a named
component. The requirement for such an operator can be
given informally as:

(for_all n:name, db:database).
(impln_exists 2(n,db) «
(exists p:part).(nameof(p) ==n
AND
kind(p) = = impln AND in( p,db)))

where in? is the membership test on database values.
We can construct the test impln_exists? as a BOOL-

valued operator in a number of ways. The following

definition illustrates the use of structural recursion.

OBJ Implementation_Exists/ Database
OPS
impln_exists? :name database -~ BOOL
VARS
n:name p:part db:database imports_list :name_list
EQNS
Impln_exists?(n,@) = F)
(impin_exists ? (n,put(% (n,impln,imports_list),db)) =
T)
(impln_exists ?(n,put( p,db)) = impln_exists ?(n,db)
IF or(not(nameof( p) = = n),
not(kind( p) = = impln)))
JBO

It 18 left as an unproven verification condition that the
object for impln_exists? meets its requirement.

One application for such a database would be to act as
the back end of a component compiler. Before a program
can be compiled into object code, not only must an
implementation exist for that component but also for the
transitive closure of all components that it imports. If we
assume no circularities in the imports relation then the
requirement for an operator to check whether a named
component can be compiled can be stated as:

(for_all n:name, db: database).
(can_compile ?(n,db) —
(impln_exists ?(n,db) AND
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(for_all n’ : name)
(isin 2(n’,imports(n,db)) — can_compile ? (n’,db))))

where isin? is the membership test on name_list’s.

One obvious way to construct the required behaviour
for can_compile? is given below, where the operator is
defined by mutual recursion with the test.

OBJ Can_Compile/ Implementation_Exists
OPS
can_compile? : name database - BOOL
"can_compile ? : name_list database - BOOL
VARS
n:name p:part db:database nl:name_list
EQNS
(can_compile ?(n,db) =
*can_compile ? (imports(getimpln(n,db),db)
IF impln_exists ?(n,db))
(can_compile ?(n,db) = F
IF not(impin_exists ?(n,db)))
(Ccan_compile ?(",db) = T)
(Ccan_compile!((n,nl),db) =
and(can_compile ?(n,db), *can_compile (nl,db)))
JBO

This brief example illustrates the use of OBJ to support
the specification of the behaviour of systems. The
axiomatic definitions do not rely upon any a priori notion
of flow of control. In the above example we have a
functional description of a simple database, in which
there is no notion beyond that of the mapping between
input values and results. We need richer logics to capture
detailed structural and operational properties, such as
sequential, concurrent or distributed implementations.'®

6.2 Further applications of UMIST OBJ

The UMIST OBJ system has been successfully used in a
number of non-trivial software engineering and other
problems. Below, we present a brief survey of these
applications.

Coleman et al. discuss the design of a rewrite rule
engine from algebraic specifications and also present the
associated design methodology in detail.* Both metho-
dology and software have been extensively used during
the development of the UMIST OBIJ system. Earley’s
algorithm®'7 has been specified and implemented, as well
as the Knuth-Bendix completion procedure.!® A lazy
associative-commutative pattern matcher has also been
implemented using the system.!®

Other applications include a configuration manage-
ment system implemented in Ada,* specification of
protocols,®* graphics software (GKS),® concurrent sys-
tems, programming language semantics and specification
and verification of hardware.??

7. THE UMIST OBJ IMPLEMENTATION

The UMIST OBIJ system comprises two modules, a
compiler and an interpreter, interfaced by an intermediate
environment file.

7.1 The compiler

The compiler takes its input from a file containing OBJ
source text, previously prepared using a text editor. It

performs lexical and syntactic analysis and type checking
on its input. It compiles the equations of each object to
corresponding rewrite rules encoded in an internal
format shared with the interpreter. The module structure,
and acyclic graph structure expressed through the access
relation between objects, are used to apply the scoping
rules to the use of declared sorts and operators. This
structure is not preserved in the set of rewrite rules
generated by the compiler, the latter assuming a
‘flattened’ list form.

The language subset described here is characterizable
by an LL(1) context-free grammar. Consequently, after
lexical analysis, syntactic analysis is performed using a
recursive descent parser. The syntax used for recognizing
expressions occurring in equations is liberal, since the
expression language is extended by each sort and operator
declaration. The signature information of each object,
which declares sorts and operators, is maintained in a
compile-time symbol table, and used to check the well-
formedness of expressions occurring in each equation.
This involves the strong type checking of each occurrence
of constant and variable identifiers, the number and sort
of each actual argument and the target sort of each
operator application.

In the version of the compiler described here, no
action is taken to recover from syntactic or semantic
(type consistency) errors. Such errors are reported
immediately on encounter with appropriate diagnostic
messages. On successful compilation, the compiler
generates the interface file which represents the environ-
ment in which expressions belonging to the user-defined
syntax will be evaluated.

Successful compilation causes the resulting list of
rewrite rules to be written out to an environment file,
together with a précis of the declarations to be used
for typechecking expressions in RUN commands and
formatting answers in the interpreter. The internal
format for expressions and equations, shared by the
compiler and interpreter, encodes all external identifiers
as integer values. User-defined identifiers are encoded by
the index of their occurrence in the compilers symbol
table.

7.2 The interpreter

The interpreter provides an interactive environment for
executing sets of rewrite rules to evaluate expressions.
The environment file is accessed by the interpreter to
initialise its internal state with the necessary information
to undertake expression evaluation, in response to user-
given RUN commands, using the rewrite rules. Other
commands are available to the user, to inspect the
rewrite rules currently in use, set the level of tracing and
so on. The interpreter can be directed to take its
command input from a specified file, rather than
interactively, and to send its results, trace output and so
on to a named file.

The principal component of the interpreter is an
expression evaluator in the form of a term-rewriting
engine. It provides the computation rule and pattern-
matching machinery necessary to execute the rules
compiled from a source specification against user-defined
expressions. The behaviour of the term-rewriting engine
is elaborated in Ref. 4, which also explains how OBJ
specifications were put to use during its development.
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7.3 The interpreter command language

The interpreter makes available a number of interactive
commands, in addition to the RUN command itself. The
computation rule used by the interpreter can be switched
between ‘top-down’ and ‘bottom-up’ modes of evalua-
tion. Top-down evaluation attempts to perform reduc-
tions at the outermost level of operator application in the
expression under evaluation. Only when rewriting is not
possible at that level is an attempt made to reduce the
arguments. Attention reverts to the top level once a
reduction has been noted in any argument position. In
contrast, in bottom-up mode, nested subexpressions
corresponding to the arguments of an operator appli-
cation are always exhaustively rewritten before rules
involving the operator are used at the outer level. The
choice of computation rule can generally affect the
performance of the interpreter on particular problems.
However, for finitely convergent systems of rewrite rules
it has no effect on the completeness of the term-rewriting
decision procedure.

The user can also specify whether the interpreter
should employ sharing of commonly occurring subexpres-
sions. The use of sharing of common substructures can
increase both space and time efficiency of a computation.
On the one hand, the storage requirement of the program
is obviously reduced. On the other hand, the interpreter
performs a smaller amount of copying of terms, and
multiple evaluations of the same expression are avoided.
The latter property can have a marked effect in the case
of conditional equations, where the evaluation of the
condition part and the right-hand side of the equation
involve the reduction of non-trivial common subexpres-
sions.

In summary, the following interactive commands are
available:

option meaning

run {expression) nur Evaluate {expression) using the
rewrite system loaded on inter-
preter initialisation.

Select bottom up (resp. top down)
evaluation mode (default is
bottom up).

Select sharing (resp. no sharing) of
common subexpressions during
evaluation (default is share).

Trace the evaluation of expres-
sions
level 0: no tracing (default)
level 1: trace evaluation of the

original expression only
level 2: trace evaluation includ-
ing conditions.

show all| {operator) Display all the rules in the environ-

ment, or just those defining {opera-

evaln bu| td

evaln share | noshare

tr {trace-level)

tors).
time Display the date, time and environ-
ment name.
*¥*xtext )y ** Treats {text) as comments.
help|? List information about the inter-

preter command language.

exit Leave the interpreter and termi-
nate the session.

8. CURRENT STATUS, AVAILABILITY
AND FUTURE WORK

The pre-release version of the UMIST OBJ system
described here was developed in Pascal on an ICL PERQ
running under the PNX operating system and subse-
quently on a DEC VAX 11/750 running 4.2 BSD UNIX.
The system is also available on a multitude of machines
and operating systems. This version has been widely
distributed to academia and industry in the UK
abroad.

Further work undertaken resulted in the first full
release of the system.?® Release 1.0 features:

(i) A parser based on Earley’s Algorithm®!? to allow
parsing of operators with mixfix syntax.

(i) Anenhanced term-rewriting system. In this release
operators may be given attributes to express properties
which are not conveniently defined by equations.Y
Although these properties are closely associated with the 5
syntax of a given operator, they are also in part semantic S
properties. Binary infix operators can be declared to be§
either associative or commutative or associative and 3
commutative. It is also possible to give an operator a left 3
and right identity element. For instance, set union is =
associative and commutative and has the empty set as an @
identity element:

_U_:set set > set (ASSOC COMM 1ID: phi)

The implementation of these properties requires special o
mechanisms. The ASSOC attribute is needed to enable S
the correct parsing and deparsing of unparenthesised S
terms as well as allowing the pattern matching of terms 5
with arbitrary arity. All the other attributes require
enhancements to the interpreter. For example commuta-
tivity is implemented by using both orientations of a
term during pattern matching. Release 1.0 includes a lazy
pattern matcher as well as a specialised Knuth-Bendix
completion procedure for handling identity.*

(iii) Integers are handled using the underlying Pascal
arithmetic.

This software is currently available under commercial
licence.

wapeoe//:sd

9. CONCLUSION

This concludes our introduction to the elements of OBJ
supported by the existing release of the UMIST OBJ
system. Although lacking in sophistication compared to
implementations of larger subsets of the language, the
system is powerful and robust enough to provide support
for the development of non-trivial software.

The full potential of formal notations such as OBJ will
be bestrealised inintegrated software engineering environ-
ments, comprising syntax-directed structure editors,
language processors, consistency checkers such as the
Knuth-Bendix algorithm,!® validation and verification
tools, organised around a central module database.
Finally, and perhaps most vitally, effective software
engineering based on formal specifications requires the
development of realistic methodologies derived from
models of the software design process.® 117
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