An Object-based Taxonomy for Abstract Structure in

Document Models

R. FURUTA®*

Department of Computer Science, University of Maryland, College Park, MD 20742

A document preparation system is characterised not only by the features included in its implementation but also by
what is implemented. In this report, we focus on describing the document’s representation, as visible to the author — the
user of a document preparation system. The characterisation for paper-based documents subdivides the document’s
representation into a set of interacting structures — a primary structure that describes the composition of primitive
objects into higher-level objects, secondary structures that describes the relationships among objects in the document,
and auxiliary structures that represent sources or sinks of information outside of the document itself. Current document
preparation systems are examined, from the viewpoint of their representation, and extension to hypertext is considered.

Received June 1989

1. DOCUMENTS AND STRUCTURES

One’s first view of a document preparation system is
generally its implementation — for batch-oriented systems
the syntax of the language provided for describing the
document; for interactive systems the user interface that
permits document manipulation. A deeper characte-
risation of the system is one that describes the document
representation — what is represented, rather than how it is
implemented.

The goal of this article is to provide a framework for
describing the document representation. We will focus
on paper-based documents —i.e. documents that are
intended to be distributed, archived, and read on paper.
Even though the paper form is considered to be the
‘natural’ form of such documents, it is useful to recognise
that the paper form is but one representation in the
lifecycle of the document. Furthermore, it is unlikely that
a particular printed version of the document is the final
form of the document — numerous interim versions of the
document may be printed during the author’s creation
and revision of the document, different printed rep-
resentations may be required from a particular version of
a document for use in different contexts (e.g. for
publication as a journal article and also as a chapter in
a book), a new edition of a document may be created
after the document is released, and portions of a
document may be re-used in later documents.

An important class of documents not included in this
focus are those documents that are intended to exist only
in electronic form. Later in this article we will expand the
discussion to consider the characteristics of hypertexts —
one group of documents that fall into this class. In this
later discussion (see Section 5) we will be particularly
interested in identifying the similarities and differences in
representation between paper-based and hypertext
documents. v

In general, the action of electronic creation and
modification of a document is called editing.t We use the

* Supported in part by a grant from the National Science
Foundation, CCR-8810312.

t This model of the different representations that describe a
document and the terminology used to define the operations on these
representations are adopted from the model defined by Shaw.1%:4®

term author to represent the person who is carrying out
these editing functions. Specification of the document
requires specification of the content of the document and
of the structure of the document - i.e. specification of
the words and diagrams that make up the printed
document and specification of how the pieces of content
are to be fitted together into a whole. We will call this
representation of the document the abstract represen-
tation. The language that the author uses to describe the
abstract representation is called a markup language.

At some point in time, the author wishes to create a
paper version of the document. This process of converting
the abstract representation into a physical representation
of the document is called formatting. The physical
representation may be oriented to a specific output
device, or it may be described in more generic terms. For
example, the TgX document preparation system®
produces output in DVI format,'? specified in terms of a
prototypical typesetter of extremely-high resolution.
Similarly, typesetter-independent troff** produces output
for an abstract typesetter of known resolution which is
assumed to be able to handle a small collection of higher-
level text-oriented and line drawing-oriented operations.

The physical representation of the document is then
converted into a page representation — a representation in
the format expected by a specific device.f Preparation of
this representation, an operation called viewing, may
require simulation of the abstract output device defined
by the physical representation in the language of the
actual output device. .

To this point, we have presented an intuitive notion
of three distinct document representations: the abstract
representation, the physical representation, and the page
representation. The relationship between representations
has been presented as a transformation from one
representation to another. We note in passing that the
transformations are one-directional. In many cases,
techniques for definition of the general transformations
in the other direction (from page to physical and from
physical to abstract) remains an open research issue.

1 Note that this representation may itself be in a page-description
language such as PostScript.! Page description languages themselves
represent an abstraction of the actual marking device — for example
characteristics of the marking engine such as resolution may be
abstracted out by the page description language.

494 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

AN OBJECT-BASED TAXONOMY

We have not yet characterised the classes of objects
related by the abstract representation. Indeed, this differs
from representation to representation.

One important class of abstract representations is the
structured document.* Such documents are based on the
concept of ‘ generic markup’, developed in IBM’s GML,*
popularised by Scribe,*®** and more recently, incor-
porated into the ISO SGML standard.?® Intuitively, such
document representations focus on identifying the local
objects that make up the document, and not on the
physical placement of elements onto the printed page.
For example, a technical book might be described as a
sequence of chapters, each chapter consisting of a
sequence of sections, each section containing a sequence
of subsections, each subsection containing a sequence of
paragraphs, each paragraph a sequence of sentences,
each sentence a sequence of words, and each word a
sequence of characters.

1. Section 1’s title

Section 1 text.

e list element 1

o list element 2
More section 1 text.

1.1 Subsection 1.1%s title

Subsection 1.1’s text.

Figure 1. A small sample document.

As example of such a markup scheme, consider the
small document shown in Fig. 1. This figure shows a
sketchy representation of a small document as it might

appear when printed. One section of the document is’

shown, which first contains a title, then some text
associated with the section and finally a subsection. The
associated text contains an imbedded list, with list
elements denoted by bullets. The subsection itself is
titled, with some associated text.

Fig. 2 shows one generic markup representation of the
small document. In this case, the syntax is that of
[ATEX.* IATEX commands beginning with the
character ‘\’. Some of the commands in the example also
have an argument, contained within the ‘{’ and ‘}’
brackets. This document is defined to be in the class
article, thereby defining the commands that will be
available for use in the remainder of the markup and also
defining the effect that these commands will have on
the displayed output. Note that specific details of the
rendering of the commands are not specified in the
markup; details such as the amount of space left before
and after document elements, the typographic face and
point size in which elements are to be displayed, the
number associated with sectional divisions of the
document, and the character that marks the elements of
an itemised list in output (*.” in the example output).

The importance of the structured document is that
emphasising the document’s logical characteristics and
de-emphasising the physical characteristics results in a
representation with great flexibility. The specification
can be mapped to multiple physical representations,

thereby permitting easy and consistent modification to
the appearance of the document and also easing re-use of
the document’s components. The identification of the
document’s logical components can ease transformation
of the document, thereby assisting use of the document
in other contexts. For example, abstracts of technical
reports can be extracted for inclusion in a database, or
sets of articles can be transformed into listings in the
author’s vitas.*

An equally common class of abstract representations
is that based on markup describing the desired ap-
pearance of the objects comprising the document (this
is sometimes called a description of the layout structure
of the document). Such representations are particularly
found in lower-level, implementation-oriented markup
languages such as those defined by troff®* and TgX.?%t

\documentstyle{article}
\begin{document}

\section{Section 1’s title}
Section 1 text.

\begin{itemize}
\item list element 1
\item list element 2
\end{itemize}

More section 1 text.
\subection{Subsection 1.1’s title}
Subsection 1.1’s text.

\end{document}

Figure 2. Generic markup representation of the sample document.

Fig. 3 shows a markup in troff for Fig. 1’s small
document. The troff commands used in this example are
the document’s content. Command lines are marked by
the ‘.’ on the margin, which is followed by the two-letter
command name. Arguments to the command follow on
the line. The command on the first line of the markup
changes the line length to 3 inches. The next command
switches the font to ‘Bold’. After the section’s title line is
specified, the font is switched back to ‘Roman’. The
following . sp 1 command leaves a line of blank space,
and the . in 2em command changes the left margin of
the output. Information such as the numbering associated
with sectional division of the document and the character
marking itemised list elements in specified explicitly in
the markup (the \(bu in the markup specifies the ‘e’
character on output).

The ODA representation®® simultaneously applies two
abstract representations to the document’s content: a
logical structure that defines the composition of docu-
ment objects into successively larger logical components
(as in the generic coding example above) and a layout

* A recent rediscovery of the advantages of the structured document
representation can be found in Coombs, et al.'® The structured
document is described in more detail in a recent book,? which also
includes discussion of current research areas.

t Similarly, Coombs er al'® identify three forms of markup:
descriptive, corresponding to generic markup, procedural, correspond-
ing to markup oriented to describing the appearance of the displayed
objects, and presentational, corresponding to the appearance of the
printed page.

THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989 495

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

R. FURUTA

structure that defines the composition of document
objects into successively larger physical units: formatted
blocks and then into pages.

Even more general application of sets of abstract
representations has been proposed, see for example,
Hamlet’s*® proposal which applies multiple logical
structures to the document’s content. Open research
questions arise when multiple abstract representations
are associated with a document’s representation, for
example whether mechanisms can be developed to permit
simultaneous transformation of all the representations
associated with the document. An interesting sub-
question raised in recent research are the mechanisms for
transforming documents defined by grammatically con-
strained structures so that they correspond to a different
grammatically constrained structure.® A related question
is the transformation among markup representations. %3

.11 3in

.ft B

1. Section 1’s title
.ft R

.sp 1

Section 1 text.

.8p 1

.in 2em

\(bu list element 1
.br

\(bu list element 2
.in

.sp 1

More section 1 text.
.sp 1
.ft B
1.1.
.ft R
.8p 1
Subsection 1.1’s text.

Subsection 1.1°s title

Figure 3. Physical markup representation of the sample document.

2. MARKUP STRUCTURE

The taxonomy we will describe in the following section is
based on a characterisation of the structure of the
document’s markup representation. In using a document
processing system, an author specifies the content of the
document and also imbeds markup specifications that
direct the subsequent formatting transformation. Conse-
quently, the document’s markup representation is the
representation of the document that the author sees and
manipulates when specifying the document’s structure
and content. In essence, the markup representation is the
description of the document’s abstract representation
manipulated by the author.

The characterisation of interest to us is one that
focuses on the object and object relationships identified
by the markup and not one that focuses on the particular
syntax used to represent the markup. As a simple
example of the syntactic issues, consider the differences
between a markup scheme that flags commands with a
special character located at a specific position on an
input line, as in troff, and one that reserves a character to
delimit the beginning of an imbedded command, as in
Scribe and IATEX. Such syntactic issues are of great

practical importance to the author, but do not affect the
object-based representation of the document.

As noted in the preceding section, commonly found
abstract representation of the document include those
that represent the logical relationships of the document’s
objects and those that represent the physical appearance
and arrangement of those objects. Thus while the
taxonomy is object-oriented, the specific objects identified
may be either logical or physical in class.

3. TAXONOMY

The document representation is formed from a set of
interacting constituent structures.* In this section, we
will first examine the characteristics of such a constituent
structure and then consider the broader categories into
which the constituent structures that comprise the
representation of a paper-based document may be placed.

Before we turn to a more detailed description of
constituent structure characteristics and classification, it
will be useful to develop an intuitive notion of the
manner in which the component parts are combined into
the document representation. The document description
can be divided into two major parts: the definition of the
document’s content and the definition of the document’s
structure. The document’s content presents the ‘meaning’
of the document — the words, figures, and the document
elements that are read. These fragments of content are
represented as a set of atomic objects (e.g. blocks of text,
line drawings, tables, etc.). The document’s structure
specifies the form of the document, describing how the
atomic objects are composed into higher-level structures
(e.g., into sections or into pages of text), and describing
the inter-relationships between the different atomic
objects (e.g. a cross-reference, which specifies a re-
lationship from the source of the reference to the
designation of the reference).

Focussing on the document’s structure, we note that
two quite different kinds of relationships are defined on
the content: the composition relationship that specifies
the ordering of the atomic objects and how these atomic
objects are combined into higher level objects, and the
specification of interrelationships that establish a con-
nection from one part of the document to another.
Instead of describing the document’s structure as a
whole, therefore, we instead separate out the structures
that describe each of these separate relationships. We call
each of these structures a constituent structure, and define
them separately. Each constituent structure is defined
over some partitioning of the document’s content into
atomic objects. However, the partitioning appropriate
for one constituent structure (e.g. composition into
higher-level objects) may not be at the appropriate level
of granularity for use in another constituent structure
(e.g. composition into pages). Indeed, while an ap-
propriate atomic object for use in one constituent
structure might be a character string, the appropriate
atomic object in a different constituent structure might
be the individual characters of the string, or indeed sub-
parts of those characters (i.e. the strokes that comprise
the character). Describing the structure of the atomic

* The taxonomy presented in this article is a refinement of a more
informally described representation that 1 have presented in earlier
discussions.'4-18-20

496 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

AN OBJECT-BASED TAXONOMY

(1) Form of the constituent structure.

(a) Minimum addressable unit(s) — the minimum nameable unit in the structure. Is the set of minimum addressable
units static, or can new units be defined by the author?

(b) Identifiable components and structures within the minimum addressable unit.

(¢) Higher level structure(s) that associated units together. Are units ordered, unordered, or partially ordered by
the higher level structure? Are there constraints on higher level structures (e.g., grammatically specified

constraints)?

(d) Semantics associated with the constituent structure. Does the constituent structure represent composition
(containment) of units, does it define an ordering of units but not composition (syntactic relationship), or does
it symbolise a semantic relationship among the units? If it represents composition, what units are defined by

the higher level structure(s)?

(2) Mappings between constituent structure semantics and document concepts.

(3) Representations of structure in markup of the document.
(a) Representation of constituent elements in markup specification of the document.
(b) Representation of constituent structure in markup specification of the document.

(4) Representations of structure in presentation of the document.
(a) Visible presentation of constituent elements in printed document.
(b) Visible presentation of constituent structure in printed document (e.g., source and destination of structure

may be shown).

(5) R:lationships between units of this structure and units of other constituent structures (identify any shared units).

Figure 4. The characteristics of a constituent structure.

object (the minimum addressable unit of the constituent
structure) is therefore included in the description of a
constituent structure, as is the relationship between the
structure of the atomic objects of the different constituent
structures.

The constituent structures that define the composition
of document components into higher-level components
are collectively referred to as the document’s primary
structure. Each of the constituent structures describing
interrelationships among document objects is considered
to define a secondary structure. To this point, we have
only considered secondary structures whose source and
target are both within the document. In the more
complete case, either the source or the target may be to
an object that is outside of the document — for example,
the citation of a bibliographic reference within the
document may define a secondary structure whose target
is to an entry within a separately maintained bib-
liographic database. The constituent structures
describing such external objects are called auxiliary
structures. Further discussion of these classifications will
be found in Section 3.2.

3.1 Characterising the constituent structures

The description of the document’s representation is
formed by identifying the primitive objects that comprise
the document and by characterising the different con-
stituent structures that relate the primitive object to each
other. A number of interacting constituent structures
may be identified, and the primitive objects relevant to
each may represent different partitionings of the docu-
ment. In such cases, the specification of the document’s
representation will need to describe the correspondences
between the different sets of primitive objects.

Fig. 4 lists the information that characterises each
constituent structure and its relationship to the remaining
components of the document’s representation. The

characterisation is divided into four major parts, each of
which will be described in turn.

The first part of the characterisation describes the
form of the constituent structure itself, and as Fig. 4
indicates, is further subdivided to describe the
components of the structure and its semantics. The
structure is defined by the higher-level constituent
structure (item lc¢ in the characterisation) and by the
primitive document objects that are addressed by the
constituent structure (item 1 a). For example, one possible
representation of a structured document is as a con-
stituent structure of a tree in which the leaves correspond
to blocks of the content of the document (paragraphs of
text, tables, etc.). A minimum addressable unit may itself
be structured —e.g., a paragraph of text is composed of
a sequence of sentences, each composed of a sequence of
words and punctuation, and each word composed of a
sequence of characters. (Such further structuring is
described in item 1b of the characterisation.) Editing
operations that change the content of the document will
alter the components and structures contained within a
minimum addressable unit. However, the minimum
addressable units are treated as atomic entities with
respect to the overall constituent structure.

To be meaningful the specification of the constituent
structure (items 1 ¢ and 14d) must include an indication of
the constraints and semantics associated with the
structure. The legal set of combinations of elements in a
document may be constrained, for example by a
grammatical specification, as in SGML.?® A fundamental
difference in the semantics associated with the constituent
structures that define a document’s representation is
whether the structure represents composition,
sequencing, or interrelationship of elements of the
document. For example, a tree representation of a
structured document might associate a document’s
section with the root of a subtree, and a subsection with
each of the children of the root. In this case, the

THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1980 497

CPlR2

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

R. FURUTA

constituent structure represents a composition, and one
in which there is an ordering: the section is formed from
a sequence of subsections. As a second example, a
constituent structure may represent a cross-reference —
perhaps a reference in one part of a document to the
location of an element in a different part of the document.
In this case, the constituent structure does not represent
a composition, but instead specifies a relationship from
one portion of the document to another (i.e. a directed
arc from a source to a target). As a similar example,
associating a bibliographic citation with a particular
entry in a database also defines a relationship but not
composition. As a final example, consider the case as in
a programming language definition in which a recursive
grammar production is used to specify a sequence of
elements. In this case the non-leaf portions of the
corresponding parse tree are not semantically meaningful
— the ordering of the leaf portions of the tree encapsulates
the meaning of the structure.

The children of a tree node may be ordered, unordered,
or partially ordered (item 1c¢). The previous paragraph
has presented a number of examples in which the
children are ordered. Unordered children may represent
document elements that are contained in the same
portion of the document, but that do not naturally
follow one other; for example a figure and the text of the
document discussing the figure. The children may also be
partially ordered. For example, consider the partial
ordering defined by the relationship between a footnote
and its reference in a printed document — the text of the
footnote cannot appear before the reference nor after a
subsequent footnote, but there is no further ordering
between the text of the footnote and the text of the
remainder of that document.

The second part of the characterisation identifies the
correspondence (or lack of correspondence) between the
constituent structure and document constructs. In the
preceding discussion, we have, for example, informally
drawn a correspondence between sections of a document
and nodes in a tree. Identification of such corres-
pondences is an integral part of the characterisation of a
constituent structure.

An additional issue of importance here is to determine
the overall characteristics of the identified objects — i.e. if
the description is oriented to the logical structure of the
document or to a physical description of the printed
document. Lower-level description languages such as
troff present a physically-oriented representation of the
document while higher-level description languages such
as Scribe present a description more oriented to the
document’s logical structure.

The third part of the characterisation describes how
the constituent structure is represented in the markup
that is associated with the document. The focus on the
markup specification is intended to illustrate the
mechanisms that the author employs to represent the
minimum addressable units and the constituent-
structure-defined relationships. Once again, recall that
the description of these mechanisms can be separated
from the syntax that is used in their specification. In
general, there is a direct correspondence between the
constituent structure and the markup specification.
However, it is useful to distinguish those portions of the
markup specification that describe one constituent
structure from those intended to describe another.

The fourth part of the characterisation describes how
the constituent structure affects the displayed content of
the printed document —-in other words whether the
relationship defined by the structure is reflected when the
document is printed. Recall that a directed arc from the
source of a reference to the target of the reference
represents the interrelationship of two elements in the
document. Either the source, the target, or both may be
represented in the printed document. For example, when
the arc represents a cross-reference, the page number on
which the target appears may be inserted at the source.
As another example, some systems permit the conditional
inclusion or text in the printed document depending on
the value of attributes associated with the document
objects. (Hson describes such a mechanism within the
Interleaf system.2?) This is an example of a situation in
which the context in which an object is found affects the
display of its content. Such mechanisms are useful for
defining different versions of a document tailored for a
particular environment (for example, a version for each
of the different operating systems supporting a software
package).

The fifth part of the characterisation describes the
commonalities between the units defined by this con-
stituent structure and by other constituent structures.
Overlaps in the primitive structures used in each of
several constituent structures would be noted here.
Consider, for example, ODA’s®® separately defined
logical and layout structures. The two structures share
a set of content portions. In this taxonomy, the ODA
logical and layout structures would be defined separately.
The basic logical and layout objects (each consisting of
one or more content portions) could be identified as the
minimum addressable unit, and the commonality of
content portion used in each would be noted in this part
of the characterisation of each of the structures.

3.2 Structures in the document representation

A generalisation that may be applied to the constituent
structures that comprise the representation of a paper-
based document is that the structures can be classified as
belonging to one of three non-overlapping categories:

(1) primary structure

(2) secondary structures

(3) auxiliary structures.
We will consider each of these structures in turn.

Intuitively, the primary structure is the predominating
structure representing the composition of higher-level
document objects from more primitive ones. Commonly
encountered data structures corresponding to the pri-
mary structure are a linear list of document objects, a
tree of document objects, and a rooted directed acyclic
graph with document objects at the nodes. The linear list
orders the associated objects, but does not specify any
additional structuring. The tree of document objects
defines a hierarchical composition of objects, and if the
order of the children is significant defines an ordering of
the objects as well. The directed acyclic graph, like the
tree, defines a hierarchy and may define an ordering, but
unlike the tree permits the representation of shared
objects — objects that appear at multiple points within
the hierarchy.

Secondary structures represent relationships among
the document’s objects that do not directly affect the

498 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

AN OBJECT-BASED TAXONOMY

ordering of objects or the composition higher-level
objects. Aseach secondary structure represents a different
class of semantic relationship within the document, it is
expected that multiple secondary structures will be
defined. Note, however, that this does not prohibit
different secondary structures from sharing the same
underlying representation. It is the association with a
conceptual document relationship that distinguishes one
secondary structure from another. Commonly-found
secondary structures include those represented by cross
references and by references to a separate bibliographic
database. The relationship between a document and its
table of contents and the relationship between index and
document may also be viewed as represented by a
secondary structure. Note that in these example cases, it
is likely that the source of the structure corresponds to a
point in the document while the destination corresponds
to a larger document object (e.g. section, page, etc.). Itis
also likely that the source and possibly the target of the
relationship are represented within the content of the
document, i.e. that a string is generated that characterises
the target (the section number or page location, for
example) and that string is inserted into the printed
document at the point corresponding the the source.

The third category of constituent structures are the
auxiliary structures. As just noted, the target of a
secondary structure may be external to the document’s
representation (as is the case with the separate bib-
liographic database). The constituent structure of this
external target is categorised as an auxiliary structure. In
the most general form, an auxiliary structure may
represent an arbitrary externally defined computation,
with the result of that computation providing the
characterising string that is placed at the source of the
associated secondary relationship in the printed docu-
ment. In addition to this representation of the auxiliary
structure in the document, filters may be associated with
the auxiliary structure to convert the structure, or
portions of the structure, into part of the document (for
example, the selection of references entries in a bib-
liographic database to generate the reference list that is
included in the document).

4. APPLICATION OF TAXONOMY IN
DESCRIBING EXAMPLE DOMAINS

In this section, we will use the taxonomy to characterise
a number of document representations. In Section 4.1,
we will focus briefly on two abstract representations that
concentrate on the physical structure of the document. In
Section 4.2, we will consider three different representa-
tions that might appropriately be thought of as
implementations of ‘structured documents’.

4.1 Physically structured documents

An uncomplicated, physically oriented document ab-
stract structure may be found in the ‘What You See Is
What You Get’ (WYSIWYG) document preparation
systems, such as MacWrite for the Apple Macintosh.?
The primary structure in MacWrite is formed from
individual characters (the character is the minimum
addressable unit here). Characters are composed into

words, words into lines, and lines into pages. Interspersed
with the lines are rulers, which permit the modification of
line-oriented formatting characteristics, such as margins,
tab settings, line spacings, and alignments (i.e. left-
aligned lines, centred lines, right-aligned lines, and filled
and justified lines). Inserted material, for example
graphics, is inserted into the structure as if it were a line.
Character-oriented stylistic specifications, such as font
and size, can be specified for substrings. Automatically
placed headers and footers are associated with the page.
No secondary structures are defined by the MacWrite
document representation.

A somewhat more complex physical abstract structure
is troff’s®® (troff is the Unix system’s batch-oriented
document formatter). Again, there is an orientation to
the structures that will appear in the printed document in
the markup representation, with a primary structure
based on the character, composed into words, words into
lines, and lines into pages. Relevant commands specify
the font and character parameters in effect until changed,
control the length, formation, and spacing of output
lines, and describe page characteristics. The mapping of
a sequence of words to lines may be affected by word
hyphenation. Similarly, the mapping of the lines to the
page may be affected by location traps (causing execution
of a sequence of commands when that location is reached
on formation of the output page). Horizontal and
vertical location at which output is to be placed can also
be adjusted.

Interestingly, a higher-level structure that is defined is
the environment. Environments are independent from
one another, i.e., they are not nested within one another,
and retain settings for some of the appearance-related
parameters. Switching environments restores those
parameters to the values associated with the selected
environment.

Conditional operators permit the context in which the
objects are contained to affect the content of the displayed
document (i.e. this is a reflection of a case in which the
structure is represented in the presentation of the
document). A macro facility permits definition of new
commands based on the facilities provided by the
primitively defined commands. It is worth noting that,
within the framework of the taxonomy, this permits the
implementation of a document representation with
different characteristics — indeed the implementation of
troff’s -ms and -me macros more closely fits within the
classification of logically-structured documents rather
than physically structured documents. (Similar
relationships can be found between LATEX."
implemented in TgX® and GML,*"-'* implemented in
Script.?*) It is also appropriate to note that preprocessors
such as the table-oriented tbl,®® the mathematically-
oriented eqn,® the picture-oriented pic,***® and the
bibliography-oriented REFER,*® use the troff language as
their target in their implementation of additional
document objects.

A number of secondary relationships are defined in
troff. Values can be placed and retrieved from registers,
in essence defining a relationship with its source at the
point of insertion and its target at the point of retrieval.
Values associated with predefined registers can also be
obtained, a secondary relationship with its source outside
of the document but with its target at a point within the
document.

THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989 499

17-2

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

R. FURUTA

4.2 Logically structured documents

In this section, we will focus on three different document
processing systems that might reasonably be said to
provide implementations of the ‘structured document’.
The three systems are Interleaf’s Technical Publishing
Software, 2844 referred to as ‘Interleaf”’ in the discussion.
Brian Reid’s pioneering Scribe system,->* and Xerox’s
Tioga.?'-*2 We will also consider issues raised by SGML.?*
Of these four systems, Interleaf and Tioga are interactive
document-preparation systems while Scribe and SGML
are batch-oriented document formatters.*

In inspecting the document representations of these
systems, one immediate observation is that in all cases
the minimum addressable unit associated with the
primary structure is similar in the textual case: strings of
text that correspond roughly to the paragraphs of the
document. What distinguishes the representations from
one another are the higher-level structures that tie the
components together.

Consider once again the small sample document
presented earlier in Fig. 1. Fig. 5 shows an abstraction
of the primary representation associated with the
Interleaf system. This markup representation encodes
the document as a linear list of objects. Each object is
tagged with the name specifying the class to which the
object belongs. In implementation, the classification of
an object controls the manner in which it is displayed
(this named specification of the manner in which the
object is to be displayed is called a /look).t The
representation is called ‘pseudo-hierarchical’ because
the adjacency of two similarly named objects implies that
they are related — indeed it suggests that they should be

* There have been interactive systems that incorporate the same
model as Scribe, however. Most notably are MIT’s Etude?®2® and
IBM’s Janus.”8

+ Looks were originated in Xerox’s Bravo system,3® although this
variety of look was unnamed.

Section 1’s title

Section 1 text.

More section 1 text.

Subsection 1.1’s title

Subsection 1.1°s text.

Section 1’s title

Section title

Section 1 text.

Paragraph

list element 1

List item

list element 2

List item

More section 1 text.

Paragraph

Subsection 1.1°s title

Subsection title

\

Subsection 1.1°s text.

Paragraph

Figure 5. Linear, pseudo-hierarchical document representation.

viewed as composed into a higher-level object. Such
higher-level composition, however, is not reflected in the

representation.

Inclusion of a limited amount of such composition
results in a primary representation that corresponds to
Scribe’s, as illustrated in Fig. 6. Notice that the list
elements have been composed into a higher-level object
called ‘list’, thereby forming an environment. (In Scribe,
most environments also can be nested within other

Section title

Paragraph

list element 1

- list element 2

Paragraph

Subsection title

Paragraph

Figure 6. Limited environmental document representation.

500 THE COMPUTER JOURNAL, VOL. 32, NO. 6,

1989

List item

List item

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

AN OBJECT-BASED TAXONOMY

Section 1’s title

Section 1 text.

Section title

Paragraph
List item
list element 1
-
¥ o
. List item
- - list element 2
Paragraph
. . Subsection
_ _ -] Subsection 1.1’s title title
. Paragraph
~al Subsection 1.1°s text .

Figure 7. Hierarchical, unconstrained document representation.

environments.) However, the section is still represented
as a linear sequence of title followed by content and the
subsection is not nested within the section (indeed, there
is no environment corresponding to the section).

Fig. 7 shows a representation of the sample document
as a tree of objects, as found in Tioga. In the Tioga
representation, the relationships between parts of the
tree are unconstrained. The document’s data is contained
entirely at the leaves of the tree, and the internal nodes
of the tree are not distinguished from each other. The
Tioga implementation associates the name of a look with
each of the characters in the text, specifying charac-
teristics such as font and size, and associates the name of
a format with each of the tree’s leaf nodes, controlling
elements such as horizontal and vertical spacing (format
names are not shown in the figure). The looks and
formats can be collected together into a style, which may
be shared between documents. Modifying a definition
within the style alters the appearance in all associated
documents.

A distinguishing feature of a representation such as
SGML’s is that the object relationships are specified and
constrained, for example by an associated grammar (the
SGML DTD, in this example). When the constraints are
satisfied, the representation of the sample document
would resemble that of Fig. 7.

The document preparation systems discussed in this
section also define a rich collection of secondary
structures. Scribe’s collection is representative. We have
already mentioned cross references, in which the display
of the source of the structure is based on some attribute
of the target, for example a section number, the page
number in the printed document on which the target
appears, a figure number, the number associated with an
element in an enumerated list, the number associated
with an equation, the citation tag associated with a
bibliographic reference, etc. In interactive systems such
as Symbolics’ Concordia,®® the cross reference link may
also be used as a traversal mechanism — the link may be

followed from source to target, refocusing the display on
the destination.

An interesting secondary structure is provided by
Interleaf’s autonumber streams. The autonumber stream
represents a sequence of numbered entities. Autonumber
tokens are associated with the stream, and are placed at
points in the document. A token in the document is
printed as the number associated with the stream
(incrementing the number). Multiple autonumber
streams can be active at a given point in time -
interestingly this means that a stream’s numbered objects
(i.e. the objects containing autonumber tokens) do not
have to be located contiguously, as is seen in environ-
mentally-based schemes such as Scribe’s and LATEX’s.
Interleaf references can be created to specific tokens,
permitting use of the number and the page number it
appears on in other portions of the document.

Inspecting the primary structure associated with
different document representations helps us to better
understand the reasons for the design and capabilities of
the associated document preparation systems. As a
broad generalization, the document representations that
are associated with interactive document preparation
systems are not as structured nor as constrained as those
associated with batch-oriented systems. For example,
Interleaf’s primary representation shows very little
additional structuring. Tioga’s is structured, but the
object relationships are not constrained, hence an
indented representation of the document (with higher
levels of indentation reflecting deeper levels of nesting)
provides sufficient information about the higher-level
structure of the document. Several interactive systems
have been built using the Scribe model, but each
incorporates special mechanisms to display the po-
tentially nested environmental structure. One such
system, MIT’s Etude,?®® placed a separate window
showing the nesting of the environments and their names
to the side of the window displaying the formatted
document. IBM’s Janus™* incorporated two completely

THE COMPUTER JOURNAL, VOL. 32, NO. 6. 1989 501

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

R. FURUTA

separate windows, one showing the formatted document
and the other showing the representation of the document
in the GML markup language. Only the GML rep-
resentation could be modified in the Janus implemen-
tation. Symbolics’ Concordia, a more recent system than
either Etude or Janus, imbedded a graphical represen-
tation of the environment’s boundaries into the display,
using indentation to further set off the body of the
environment. Consequently, the representation shown to
a Concordia author is a direct analogue to a Scribe-like
markup file.

The reasons why a simpler representation is preferable
in an interactive document preparation system are
perhaps self-evident. The representation is more complex
when there are numerous available objects, when the
object interrelationships are strictly constrained or when
the hierarchy relating objects is deep. Such effects must
be presented to the author using the document prep-
aration system, as the markup in the document prepared
by the author reflects the document’s representation.

However, there are also clear reasons for preferring
a more complex document representation. A highly-
constrained document representation permits speci-
fication of what elements are to appear in the
document and what their ordering is to be. The
constraints guarantee that any document created from
the specification will not vary from the permissible
format. This is a valuable property when the form of the
document is specified by external sources — for example,
documents that must meet requirements established by
governmental agencies. A document template in an
unconstrained system can establish these relationships
but there is no way to prevent an individual author from
modifying the template.

Highly constrained documents may not be as re-usable
as less constrained documents. Consider the case when
the object relationships are defined by a context-free
grammer specification. Through use, a large body of
document instances may accumulate based on a par-
ticular specification. If the specification changes, perhaps
because of a change in the externally-established
requirements or perhaps to correct an error in the
specification, then one problem is how the instances
corresponding to the older version of the specification
are to be brought into compliance with the current
version of the specification. Certainly a solution that
simply detected the erroneous constructs would be
insufficient, as the established base of document instances
may be quite large. This problem is the focus of current
research.'®

5. HYPERTEXT

Hypertext systems define an interesting class of
documents — documents that are intended to exist pri-
marily in electronic form and are intended to be read
through assistance from interactive computer software.
The electronic form is the primary presentation of the
hypertext document, not a statically defined paper form
as in the documents discussed in the other parts of this
article. Indeed the question of how a paper representation
of a hypertext document can be generated is a current
focus of research (the problem of exporting a hypertext
document into paper form).

Hypertext is not a new idea. Vannevar Bush® in his

1945 article is generally credited for first expressing the
principles on which current systems are based. As with
document preparation systems in general, hypertext
systems were an early application of computers. Two
early systems from the late 1960’s are HES®®* and
NLS'12,13

Hypertext has gained much attention recently, par-
ticularly with the availability of PC-based systems.
Recent surveys of the area include ones by Conklin® and
Brown.*

In our analysis of Hypertext, we will focus on
Hyperties,**-*® which runs on the IBM PC. However, the
analysis is not specific to Hyperties but is more generally
applicable to currently-available hypertext systems.

A Hyperties hypertext is modeled by a directed graph.
The content of the hypertext, called an article in
Hyperties’ terminology, is associated with the nodes of
the directed graph. A link from one article to another is
represented by a directed arc between the corresponding
nodes in the directed graph. In Hyperties, the source of
the link is represented by a highlighted string within the
displayed content of the article. User selection of the
string causes the link to be traversed. In the implemented
user interface, the link traversal is a two step process: in
the first step, the user sees a short summary description
of the target. Confirming the selection causes a display of
the destination article to replace that of the source.

A fixed set of buttons accompanies every display.
‘Next page’ and ‘back page’ buttons are used to turn the
page of the currently displayed article. Also present is a
button that permits return to the previously read article
and one, named ‘extra’, that switches the display to
permit use of an index, showing all articles defined in the
database, a history list, permitting revisiting of a
previously-seen article, and a string search mechanism,
permitting selection of articles containing a reader-
specified string.

Each article is further subdivided into three parts: a
title, a brief description, and the body of the article. The
body is described in a simple, physically-oriented markup
language, and the link specifications are imbedded into
this representation.

Applying the taxonomy to the Hyperties represen-
tation, we see that the article is an obvious choice for
minimum addressable unit. The subdivisions of the
article represent the identifiable components of the
minimum addressable unit. Interestingly in comparison
with paper-based documents, there is no structure
defining object composition in Hyperties, and conse-
quently the individual articles are isolated from one
another when considering composition (i.e. the primary
structure is a set of disconnected nodes).

The inter-article link structures fall within the
definition of a secondary structure in which the source
corresponds to the highlighted string at the point of
reference and the target corresponds to a node. The
index can be viewed as an additional secondary structure
that contains references to each article in the database (it
is not itself an article). The title of the article comprises
the visible representation of the source of the link in the
content of the index. Similar structures describe the
history list and the string search list.

Our own investigation of hypertext structure has pro-
duced Trellis, a Petri-net-based model for hyper-
text.*”-*® This model augments the specification of the

502 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

AN OBJECT-BASED TAXONOMY

hypertext’s structure and content with a specification
of its browsing semantics. Browsing semantics are defined
to be the manner in which the information in the
hypertext is to be visited and presented. Such specification
is often encoded in the implementation of the hypertext
browsing (or reading) interface — i.e. in the behaviour of
the software that implements the browser. Through use
of the Petri net base, the Trellis model permits the author
to specify the browsing semantics as part of the document
in addition to the document’s structure and content.

It is perhaps not surprising that specification of a
document that is specialized for interactive manipulation
should include details of how that manipulation may be
carried out. Indeed, the notion of retaining reader-
specified traversal paths as part of a hypertext is found
throughout the history of hypertext: from Bush’s original
paper through more recent work such as Delisle and
Schwartz’s Contexts,!* Zellweger’s active paths,® and
Trigg’s guided tours.®®* While the document taxonomy
describes the content and form of such interactively
based documents, a complete description also requires
specification of the semantics of that interaction.

6. CONCLUSION

Understanding the capabilities of a document prep-
aration system requires more than identifying the features
of the system’s implementation details. It is also
important to characterise the document representation

REFERENCES

1. Adobe Systems Inc., PostScript Language: Reference
Manual. Addison Wesley, New York (1985).

2. J. André, R. Furuta and V. Quint, editors, Structured
Documents. Cambridge University Press (1989).

3. MacWrite. Apple Computer, Inc. (1984).

4. P. J. Brown, Hypertext: The way forward. In Document
Manipulation and Typography, edited J. C. van Vliet, pp.
183-191. Cambridge University Press (1988). (Proceedings
of the International Conference on Electronic Publishing,
Document Manipulation, and Typography, Nice (France),
April 20-22, 1988.)

5. V. Bush, As we may think. The Atlantic Monthly 176 (1),
101-108 (1945).

6. S. Carmody, W. Gross, T. E. Nelson, D. Rice and A. van
Dam, A hypertext editing system for the [360. Technical
Report, Center for Computer and Information Sciences,
Brown University, Providence, R.1. (1969). Also contained
in Pertinent Concepts in Computer Graphics, edited M.
Faiman and J. Nievergelt, pp. 291-330. University of
Illinois, Urbana, Ill. (1969).

7. D. C. Chamberlin, J. C. King, D. R. Slutz, S.J. P. Todd,
and B. W. Wade, JANUS: An interactive system for
document composition. Proceedings of the ACM SIGPLAN
SIGOA Symposium on Text Manipulation, SIGPLAN
Notices 16 (6), 82-91 (1981). (The proceedings of the
conference containing this paper are also available as
SIGOA Newsletter 2 (1&2) (1981). This report was also
issued as IBM Computer Science Research Report Number
RJ3006 (37371), IBM Research Laboratory, San Jose,
Calif., December 1980.)

8. D. C. Chamberlin, J. C. King, D. R. Slutz, S.J. P. Todd
and B.W.Wade, JANUS: An Interactive Document
Formatter Based on Declarative Tags. IBM Computer
Science Research Report RJ3366 (40402) (1982).

9. J. Conklin, Hypertext: an introduction and survey. Com-
puter 20 (9), 1741 (1987).

used by that system. Selection of the document’s rep-
resentation involves tradeoffs—a physically struc-
tured representation may aid in the development of
a system intended to produce one-shot, graphically
complex brochures, but at the expense of making it hard
to re-use parts of the document in subsequent brochurés.
A grammatically-constrained logical representation may
enforce stylistic consistency and aid in specifying
mechanisms to identify and transform document objects
for other uses (such as databases). However, it may be
hard to implement an interactive system that incorporates
the grammatically based representation. (I discuss some
of these points further in an earlier paper.?)

Finally, we suggest that the structures and classification
schemes developed for paper-based documents are also
applicable to documents that exist only in electronic
form, particularly hypertext. However, a complete
characterisation of hypertext requires not only speci-
fication of what the document contains and how it is
structured, but also specification of how it is to be read
— the browsing semantics associated with the hypertext.

Acknowledgement

I would like to thank the National Institute of Standards
and Technology’s Electronic Publishing Laboratory for
assistance in obtaining documentation for some of the
systems discussed.

10. J. H. Commbs, A. H. Renear and S. J. DeRose, Markup
systems and the future of scholarly text processing.
Communications of the ACM 30 (11), 933-947 (1987).

11. N. M. Delisle and M. D. Schwartz, Contexts — a partition-
ing concept for hypertext. ACM Transactions on Office
Information Systems S (2), 168—-186 (1987).

12. D. C. Engelbart and W. K. English, A research center for
augmenting human intellect. Proceedings, AFIPS Fall Joint
Computer Conference 33, 395-410 (1968).

13. D. C. Engelbart, R. W.Watson and C. Norton, The
augmented knowledge workshop. ARC Journal Accession
Number 14724, Dtanford Research Center, Menlo Park,
Calif. (1973). (Paper presented at the National Computer
Conference, June 1973).

14. R. Furuta, V. Quint and J. André. Interactively editing
structured documents. Electronic Publishing: Origination,
Dissemination, and Design 1 (1), 19-44 (1988).

15. R. Furuta and P. D. Stotts, Specifying structured docu-
ment transformations. In Document Manipulation and
Typography, edited J. C. van Vliet, pp. 109-120. Cambridge
University Press (1988). (Proceedings of the International
Conference on Electronic Publishing, Document Manipu-
lation, and Typography, Nice (France), April 20-22,
1988.)

16. R. Furuta, J. Scofield and A. Shaw, Document formatting
systems: Survey, concepts, and issues. ACM Computing
Surveys 14 (3), 417472 (1982).

17. D. Fuchs. The format of TgX’s DVI files. TUGboar 3 (2),
14-19 (1982).

18. R. Furuta, Structured document models and representa-
tions. In Issues in Generalized Text Processing: Lecture
notes of a Short Course held in association with PROTEXT
IV, the Fourth International Conference on Text Processing
Systems, edited J. J. H. Miller, pp. 1-14. Boole Press (1987).

19. R. Furuta, Complexity in structure documents: User
interface issues. In PROTEXT IV: Proceedings of the

THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989 503

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.
36.

37.

38.

39

R. FURUTA

Fourth International Conference on Text Processing
Systems, edited J. J. H. Miller, pp. 7-22. Boole Press (1987).
R. Furuta, Concepts and models for structured documents.
In Structured Documents, edited J. André, R. Furuta and
V. Quint, pp. 7-38. Cambridge University Press (1989).
C. F. Goldfarb, A generalized approach to document
markup. Proceedings of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation, SIGPLAN Notices 16
(6), 68-73 (1981). (The proceedings of the conference
containing this paper are also available as SI/GOA
Newsletter 2 (1&2) (1981).)

R. Hamlet, A disciplined text environment. In Tex:
Processing and Document Manipulation, edited J. C. van
Vliet, pp. 78-89. Cambridge University Press (1986).
(Proceedings of the international conference, University of
Nottingham, 14-16 April 1986.)

M. Hammer, R.lIlson, T. Anderson, E.J. Gilbert, M.
Good, B. Niamir, L. Rosenstein and S. Schoichet, Etude:
An integrated document processing system. Office Auto-
mation Group Memo OAM-028, M.I.T. Laboratory for
Computer Science, Cambridge, Mass., February (1981).
(Presented at the 1981 Office Automation Conference,
23-25 March 1981))

Document Composition Facility: User's Guide. IBM Cor-
poration (1980). Order number SH20-9161-1.

Document Composition Facility Generalized Markup
Language: Starter set reference. IBM Corporation (1980).
Order number SH20-9187-0.

R. llson. An integrated approach to formatted document
production. Technical Report MIT/LCS/TR-253, M.L.T.
Laboratory for Computer Science, Cambridge, Mass.
(1980). (M.S. thesis.)

R. Ilson. Interactive effectivity control: Design and
applications. In Proceedings of ACM Conference on Docu-
ment Processing Systems, Santa Fe, New Mexico, December
5-9, 1988), pp. 85-91. ACM, New York. December
(1988).

Technical Publishing Software: Reference Manual. Release
3.0, Apollo version, vols 1 and 2. Interleaf (1987).

Text and Office Systems — Standard Generalized Markup

Language. 1SO (1986). Document Number: ISO
8879-1986(E).
Office Document Architecture. International Standard

Organisation (1986). Draft International Standard 8813.
W. Kernighan and L. L. Cherry, A system for typesetting
mathematics. Communications of the ACM 18 (3), 151-157
(1975). Also available as Computing Science Technical
Report No. 17, Bell Laboratories, Murray Hill, N.J.
(revised 1977).

B. W._Kernighan. PIC- A language for typesetting
graphics. Proceedings of the ACM SIGPLAN SIGOA
Symposium on Text Manipulation, SIGPLAN Notices 16
(6), 92-98 (1981). (The proceedings of the conference
containing this paper are also available as SIGOA
Newsletter 2 (1&2) (1981).)

B. W. Kernighan, A4 typesetter-independent TROFF. Com-
puting Science Technical Report 97, Bell Laboratories,
Murray Hill, N.J. (1981).

B. W. Kernighan, PIC- A language for typesetting
graphics. Software — Practice and Experience 12 (1), 1-21
(1982).

D. E. Knuth, The TgXbook. Addison-Wesley (1984).

B. W. Lampson, Bravo manual. In Alro User’s Handbook,
edited B. W. Lampson and E. A. Taft. Computer Science
Laboratory, Xerox Palo Alto Research Center, (1978).
L. Lamport, LATEX: A4 Document Preparation system.
Addison-Wesley (1985).

M. E. Lesk, Thl — A Program to Format Tables. Computing
Science Technical Report 49, Bell Laboratories, Murray
Hill, N.J. (1976).

M. E. Lesk, Some Applications of Inverted Indexes on the

40.

41.

42,

43.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.
55.
56.
57.

504 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

UNIX System. Computing Science Technical Report 69,
Bell Laboratories, Murray Hill, N.J. (1978).

S. A. Mamrak, J. Barnes, J. Bushek, and C. K. Nicholas,
Translation Between Content Oriented Text Formatters:
Scribe, LA TgX, and Troff. Technical Research Report
OSU-CISRC-8/88-TR23, Computer and Information
Science Research Center, the Ohio State University (1988).
S.A.Mamrak and C.L.Joseph, Translation for
WYSIWYG Word Processors in Chameleon. Technical
Research Report OSU-CISRC-11/87-TR43, Computer
and Information Science Research Center, the Ohio State
University (1987).

S. A. Mamrak, M. J. Kaelbling, C. K. Nicholas and M.
Share, A software architecture for supporting the exchange
of electronic manuscripts. Communications of the ACM, 30
(5), 408414 (1987).

S. A. Mamrak, M. J. Kaelbling, C. K. Nicholas, and M.
Share, Chameleon: A System for Solving the Data Trans-
lation Problem. Technical Research Report OSU-CISRC-
8/88-TR24, Computer and Information Science Research
Center, the Ohio State University (1988).

- R.A. Morris, Is what you see enough to get? A description

of the Interleaf publishing system. In PROTEXT II:
Proceedings of the Second International Conference on Text
Processing Systems, edited J. J. H. Muller, pp. 56-81. Boole
Press (1985).

G. Marchionini and B. Shneiderman, Finding facts vs.
browsing knowledge in hypertext systems. Computer 21
(1), 70-80 (1988).

B. K. Reid. Scribe: A Document Specification Language
and its Compiler. Ph.D. dissertation, Carnegie-Mellon
University Computer Science Department, Pittsburg, PA
(1980). Also issued as Technical Report CMU-CS-81-100.
P. D. Stotts and R. Furuta, Adding browsing semantics to
the hypertext model. In Proceedings of ACM Conference on
Document Processing Systems (Santa Fe, New Mexico,
December 5-9, 1988), pp. 43-50. ACM, New York (1988).
(An earlier version of this paper is available as University
of Maryland Department of Computer Science and
Institute for Advanced Computer Studies Technical Report
CS-TR-2046 and UMIACS-TR-88-43.)

P.D. Scotts and R. Furuta. Petri net based hypertext:
document structure with browsing semantics. ACM
Transactions on Information Systems (1989). To appear.
A. C. Shaw. 4 Model for Document Preparation Systems.
Technical Report 80-04-02, University of Washington,
Department of Computer Science, Seattle, WA (1980).

B. Shneiderman. User interface design for the Hyperties
electronic encyclopedia. In Proceedings of Hypertext 87,
pp. 199-204 (1987).

W. Teitelman. A tour through Cedar. JEEE Software 1 (2),
44-73 (1984).

W. Teitelman. A tour through Cedar. IEEE Transactions
on Software Engineering SE-11 (3), 285-302 (1985).

R. H. Trigg. Guided tours and tabletops: Tools for
communicating in a hypertext environment. In Proceedings
of Conference on Computer-Supported Cooperative Work
(Portland, Oregon, September 26-29, 1988), pp. 216-226
(1988).

Unilogic, Ltd. Scribe Introductory User’'s Manual. Unilogic,
Ltd, Pittsburgh, fourth edition, April 1984.

A. van Dam, Hypertext '87 keynote address. Communic-
ations of the ACM, 31 (7): 887-895, July 1988.

J. H. Walker, Supporting document development with
Concordia. Computer, 21 (1), 48-59 (1988).

P. T.Zellweger. Active paths through multimedia
documents. In Document Manipulation and Typography,
edited J. C. van Vliet, pp. 19-34. Cambridge University
Press (1988). (Proceedings of the International Conference
on Electronic Publishing, Document Manipulation, and
Typography, Nice (France), April 20-22, 1988.)

$20z I4dy 0} uo1senb Aq LG9L¥E/v61/9/ZE/e101Me/|ulod/wo0 dno olwepeoe//:sdiy wolj papeojumoq

