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Data compaction, or making better use of existing data storage and transmission, is one of the most important matters
in computer and TV graphics. It has been suggested that different scanning techniques would improve data compaction
for 2-D television images.

We prove that there is no difference in the number of run lengths found for any scanning curves for completely
random pictures. Simulation is used to compare the data compaction between a discrete Peano curve and a bidirectional
scanning curve for 1000 randomly placed ellipses to determine whether spatial coherence favours one scanning curve.
The results are analysed statistically. Both the theory and the results of the simulation show that there is no difference
between the scanning curves chosen. It is important to note that the bidirectional scanning curve is a special case of a
mixed radix method.
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1. INTRODUCTION
Data compaction is one of the most important factors in
the transmission and storage of data. This is especially
true when considering the amount of data required to
reconstruct two-dimensional TV and computer graphic
images. If a picture can be transmitted using the minimum
amount of data and subsequently reproduced without
any loss of quality, transmission costs can be minimised,
either by using a lower bandwidth link or by using the
same link for a shorter period of time.

Several studies on data compaction have been made.
These may use either hardware or software techniques.
Hardware data compaction techniques are covered in
Clare.1 Software techniques may be classified as either
raster scan or tree techniques (Samet9 and Gargantini
et a/.7). Raster scanning techniques may use a variety of
scanning curves, which include linear raster scan, discrete
Peano curves (Peano, Hilbert and Sierpinski models) and
mixed radix. Witten and Neal12 and Cole3 suggest using
discrete Peano curves (the term will be defined in Section
2) instead of traditional linear raster scan. Cole456

suggests that a discrete Peano curve scanning technique
might achieve 60-80% reduction in data compaction
over the present linear raster scan system. Other data
compaction techniques use trees, for example quadtrees.
Samet9 reviewed quadtrees and their data compaction.
Samet and Tamminen10 showed that the minimum
required data storage is 2m+2 for a pointerless quadtree,
where the screen size is 2m x 2m. Perhaps this may be
one of the best quadtree techniques in view of data
compaction. It is interesting to note that some quadtrees
are a special restricted case for the Hilbert model of a
discrete Peano curve.

In this paper we investigate the amount of data
compaction that can be achieved by using scanning
curves (Hilbert model). Numerical investigation is done
by comparing the Hilbert model of the discrete Peano
curve suggested by Cole with a bidirectional linear raster
scanning system often found in printer-plotters. It is
found that there is no difference between scanning curves
when discussing data compaction.

* To whom correspondence should be addressed.

2. DATA COMPACTION FOR
COMPLETELY RANDOM PICTURES

One property of Peano curves is that they are a
continuous mapping from the real line / = {x: xe R, 0 ^
x < 1} to the unit square £2 = {(y,z):y,zeR, 0 ^ y,z ̂
1}. This function has multiple points almost everywhere
on the unit square, £2, so the inverse function does not
exist, i.e. it is a many-one function. Applying Peano
curves to the raster device, we will only use a finite set of
discrete points from the line / and a finite set of grid
points or pixels from the unit square E2. These sets are
defined by J = {x(:i ~ 1,..., n} and K = {(ypzk):j =
1,...,M,, k = l,...,n2}. In this case a finite procedure of
Peano curve is not Peano curve, so this finite procedure
of that may be defined by a discrete Peano curve. If
Hj x «2 = n and nl = n2 — 2m, we can find a discrete Peano
curve that will pass through all the pixels once and once
only. The discrete Peano curve gives a one-to-one and
onto mapping from J to K, that is, it is an isomorphism.
Note that two points on J, xt and xp corresponding to
two neighbouring pixels (yt, z() and (y,, z,) on K, may be
widely spaced on the line J, hence x( and xs may have
many points lying between them. It follows that a
coherent area will require several runs to encode it. This
characteristic is not only a peculiarity of discrete Peano
curves, but also of any scanning system.

In order to introduce the theorem, we define the word
'scanning curve'. The scanning curve through all the
points in K (all the grid points or pixels) must pass
through any pixel once and once only. This is a one-to-
one and onto mapping from set J to set K. These
scanning curves include all existing scanning systems in
use such as linear raster scan and bidirectional scanning
systems as well as discrete Peano curves (Peano model,
Hilbert model and Sierpinski model) and mixed radix
systems.

Consider two different scanning curves whose cor-
responding functions are/and g.

f-.J^K

These are one-to-one and onto mappings, i.e. iso-
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morphisms. So the inverse function/ ' and g 1 exists and
the composite function

also exists. Hence/"1 g is a one-to-one and onto mapping
from / to J.

We now restrict our discussion to monochrome raster
displays. Each grid point or pixel on the display can have
the value 0 or 1. Any picture is composed of O's and l's
at the grid points corresponding to each pixel.

Because/ g and f~lg are isomorphisms, each possible
pattern of O's and l's on A" can be mapped to a unique
pattern on J, and all possible patterns on K are mapped
to all possible patterns on J. It follows that the expected
number of runs is the same for a completely random
picture whatever the scanning curve chosen. In other
words, there is no difference between scanning methods
used in terms of data compaction. Therefore we have the
following theorem.

Theorem

The probability distribution of run length in a completely
random picture is independent of the scanning method
chosen. Also the probability distribution of the number
of runs in a completely random picture is independent of
the scanning method used.

This theorem is also true for colour raster displays, if
the number of colours involved is finite. In the above, all

the possible pictures or patterns of O's and 1 's on K are
considered, but some of them have no information
content for TV scan and computer graphics. Confining
our discussion to meaningful aggregated pictures, we can
consider data compaction under different scanning
curves. The theory of the number of runs corresponding
to data compaction is discussed by Wilks.11 However,
this theory is not relevant when applied to random
aggregated pictures using any scanning curves, because
these pictures form only a subset of all possible pictures.
In order to compare the number of runs for each
scanning curve, we generated random aggregated pictures
on the screen, then applied selected scanning curves.

3. DATA COMPACTION FOR
AGGREGATED PICTURES

It is impractical to check data compaction for all possible
aggregated pictures on the set of points K, because of the
limitations imposed by practical computer systems. We
restricted ourselves to pictures constructed from a single
random ellipse. The size of each ellipse and its position
on the display surface were determined using uniform
pseudo-random numbers. Each pixel or grid point in K
lying inside or on the boundary of an ellipse is assigned
the value 1, otherwise it is given the value 0. The number
of runs is counted for each scanning curve used for each
simulation. In order to avoid generating ellipses which
are either too small or too large for the display surface,
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Figure 1. The dot plot for the number of runs for the same 1000 simulations.
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Figure 2. The frequency distribution for the number of runs (difference between the number of runs; Hilbert model of discrete Peano
curve — bidirectional curve) for the same 1000 simulations.

the size of the ellipses is restricted to the interval 10% to
90% of the display surface, and the centre of the ellipses
is randomly placed within the screen area. Restrictions in
CPU time and memory reduced the number of simu-
lations to 1000 ellipses and the screen size to 128 x 128
pixels. The scanning curves selected were the Hilbert
model of the discrete Peano curve and the bidirectional
linear raster scan. The algorithm used to generate the
Hilbert model of the discrete Peano curve is proposed by
Cole3 and is written in S-Algol. The more universal
equivalent C algorithm is given below.

h i l b e r t ( r , u, 1, d, i )
char r , u, 1, d;
i n t i ;
{

i f ( i > 0 )
{
h i l b e r t (u, r , d, 1, i - 1 ) ;
move ( r ) ;
h i l b e r t ( r , u, 1, d, i - 1 ) ;
move (u) ;
h i l b e r t ( r , u, 1, d, i —1);
move (1) ;
h i l b e r t (d, 1, u, r , i —1);

The algorithm is invoked by the call

h i l b e r t ( ' e ' , ' n ' , ' w ' , ' s \ i ) ;

For other space-filling curves see Goldschlager.8 It has
been suggested that the Hilbert model gives good data
compaction,4"6 and is better than the linear raster scan. If
this is true, the number of runs for the bidirectional
linear raster scan, one of the simplest scanning curves,
would be expected to be large. It is interesting to note
that bidirectional linear raster scan is a special case of
mixed radix method. The procedure for simulation is as
follows.

Procedure

(1) Four pseudo uniform random numbers lying in the
range 0, 1 are generated «„ u2, w3 and M4.

(2) The centre of the ellipse is calculated from
(64 («! + «2), 64 (M3 + M4)) and the major and minor axes
X and Y are 128(0.05+0.4|w,-w2|) and 128(0.05 +
0.4|!*,-K4|).

(3) The number of runs for each scanning curve is
counted.

(4) Steps 1-3 are repeated 1000 times.
Each point in Fig. I is plotted from the number of runs

produced by both scanning curves for the same picture.
The number of runs produced by the Hilbert model of
the discrete Peano curve is plotted against the number of
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runs produced by the bidirectional linear raster scan.
This scatter diagram is almost symmetrical about the line
y = x. Data compaction is better for the linear raster
scan above the line y = x, and the Hilbert model gives
better data compaction below. Closer examination of
Fig. 1 shows that in the region bounded by x = 20-140
and y = 20-140, the points lying in the area above the
line y = x are scattered over this area, whilst the points
below the line y = x lie close to this line. It follows that
when the number of runs is relatively small the Hilbert
model is more sensitive to slightly changing pictures. The
distribution of points about the line y = x projected on
the line y = — x is given in Fig. 2. Points that lie below
the mean in Fig. 2 give better data compaction for the
Hilbert model and vice versa for points that lie above the
mean. From Fig. 2 we calculated skewness and kurtosis
and tested for normality of the distribution. The following
results were obtained. Skewness = 0.026, standard devi-
ation of skewness (sds) = 0.077, kurtosis = —0.245,
standard deviation of kurtosis (sdk) = 0.155. Skewness/
sds = 0.336 and kurtosis/sdk = —1.588, and they are
normally distributed when the observations are taken
from a normal distribution. Neither skewness nor
kurtosis results enable us to reject normality at the 10%
significance level. According to the sample mean (m) =
— 1.11, sample standard deviation (ssd) = 38.51 we
accept normal distribution and test the population mean
of Fig. 2 against 0. (V1000)m/ssd = 0.91, so we cannot
reject mean = 0 at the 10% significance level. Therefore
statistically there is no difference between the number of
runs for the Hilbert model and for the bidirectional
linear raster scan.

4. CONCLUSION

According to the theory of Section 2 the number of runs
corresponding to data compaction is independent of the
scanning curve for completely random pictures. The
Hilbert model of the discrete Peano curve and the

bidirectional raster scan were compared by generating
random ellipses. No significant difference could be found
between them for data compaction. This comparison is
not only of two scanning curves, but of over 30 different
scanning curves which were tried. The number of
simulations for the other scanning curves is small.
However, we found that almost exactly the same
conclusion as that in Section 3 was obtained. We also
have to point out the following possibility. Our simu-
lations depended on the random ellipses, and the size of
the screen was 128 x 128. If the size of the screen was
bigger and the pictures were not ellipses, but some other
coherence areas, then the numerical results would
perhaps have been changed. However, we think this
possibility is slight. So both the numerical and the
theoretical results show that there is no difference between
scanning curves for data compaction. Data compaction
has been the subject of many investigations using a range
of techniques such as binary trees, quadtrees, octrees and
scanning curves. Quantitative techniques for comparing
data compaction are necessary, and the above approach
is suggested. Simple scanning curves are recommended
because there is no theoretical or experimental difference
between scanning curves. The bidirectional or linear
raster scan is adequate.

Another possibility was suggested by Cole.5 According
to Cole, ignoring short run lengths in any scanning
method improves data compaction. Sometimes we
require immediate transmission, and high visual quality
is not of importance. In this case this method is very
important; however, this results in picture degradation.
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