
Eight Pieces Cannot Cover a Chess Board'

A. D. ROBISON1, B. J. HAFNER1 AND S. S. SKIENA2

1 Department of Computer Science, University of Illinois, Urbana, IL 61801, USA
2 Department of Computer Science, State University of New York, Stony Brook. Stony Brook, NY 11794, USA

The problem of maximising the number of squares on a chess board which can be attacked by a configuration of the
eight main pieces was first posed in 1849. We report on a computer search which proves that at most 63 squares can be
simultaneously attacked, and we give results for other variations of the problem. Our search technique, which pruned
the space of2.27x 1011 positions to 1.03 x 10s, is of independent interest.

Received July 1988

1. INTRODUCTION
Chess is a game that has fascinated mankind for
thousands of years. In addition, it has inspired a number
of combinatorial problems of independent interest. The
combinatorial explosion was first recognised in the
legend that the inventor of chess demanded as payment
one grain of rice for the first square of the board, and
twice the amount of the rth square for the (/+l)st
square, for a total of 2fix 2' = 265 — 1 grains. In beheading
him, the wise king first established pruning as a technique
for dealing with this type of problem. The «-queenslt2

and re-entrant knight's tour3 problems have histories
dating back to the nineteenth century and today are
famous exercises in computer science illustrating back-
tracking and Hamiltonian tours. Refs 4 and 5 pose the
question of whether all 64 squares on the board can be
simultaneously threatened by an arrangement of the
eight main pieces on the chess board - the king, queen,
two knights, two rooks, and two oppositely coloured
bishops. Configurations which simultaneously threaten
63 squares have been known for a long time, but whether
this is the best possible was an open problem. The
problem was first proposed by Kling in 1849 and
configurations exist where each square can be uniquely
unthreatened.6 Some configurations which cover 63
squares are given in Fig. 1.

This paper describes the results of an exhaustive
computer search which proves that no configuration
exists which covers all squares. Also, we provide some
new results for related problems. We have recently
learned that ref. 6 asserts without comment that 63 is the
maximum number achievable. However, due to its
efficiency the pruning technique we developed to reduce
the search space is of independent interest.

2. SEARCH TECHNIQUE

We generalise the problem somewhat by waiving the
usual restriction that no two pieces can be positioned on
the same square. We reduce the problem somewhat by
taking advantage of some symmetry. First, in any
solution the board may be rotated 180° or reflected
about a diagonal to bring the queen into the lower left
quadrant. Second, the on-white bishop (the bishop
restricted to white squares) may be brought into the
lower triangle by reflection about the diagonal, while
keeping the queen in the lower left quadrant. Therefore
there are only 16 distinct positions for the queen and 16
spots for the on-white bishop, as shown in Fig. 2. There
are 32 places for the on-black bishop and 64 places
for the king. Finally, there are 2,080 distinct ways to
position a pair of rooks or knights. Thus to perform an
exhaustive search, we must test 2,268,279,603,200 distinct
positions.

We call an arrangement of chess pieces on a chess
board a board. A board b may have any number of pieces
and more than one piece on a square. The union of a set
of boards {b1,b2,...,bn} is the superposition of the
boards, and is denoted U bt.

For a given board, we* distinguish two kinds of attack
on a square: strong and weak. The notion of strong
attack corresponds to the usual notion of attack in chess.
A square is weakly attacked if the square is strongly
attacked by any subset of the board, that is, weak attack
ignores blocking effects of intervening pieces. Fig. 3
shows that all 64 squares can be weakly attacked with
eight pieces, though in general fewer squares will be
strongly attacked. (In fact Fig. 3 is an extreme case: 64
squares are weakly attacked, but only 43 squares are
strongly attacked.) We call a square safe if it is not

H

'••

A
*

'•HZ,

ft
*

A

m

H
H

I

*
#

A
m

A n
1

I fi'i

A

A
#

H

H

*

H
Figure 1. Some configurations which threaten 63 squares.

* The research of the first author was supported by a Shell Fellowship in Computer Science.

THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989 567

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/32/6/567/341699 by guest on 13 M
arch 2024

A. D. ROB1SON, B. J. HAFNER AND S. S. SKIENA

#

*

#
J.

JL
A

J.

J.
A(

A

A

A

A

A

A

A

A
••%

A

A
Figure 2. The 16 unique positions for the queen and on-white

bishop.

%

I
A A

fi

i

•fi

Figure 3. All squares can be weakly attacked by eight pieces.

attacked. The attack set A(b) of board b is the set of
squares attacked.

Our algorithm consists of two passes. The first pass
lists all boards such that every square is weakly attacked.
The second pass filters the list by considering blocking
and reports any boards with n or fewer safe squares. As
the first pass emits only 8,715 boards, high speed is not
critical for the second pass. The advantage of separating
weak and strong attack computations is that weak attack
has three nice algebraic properties. First, weak attack is
distributive over unions:

,) = \JA(bt).

Second, weak attack is monotonic:

Finally, the strong attack set is always a subset of the
weak attack set.

We view our search space as eight-dimensional, with
one axis for each piece. The coordinates along each axis
are the possible boards containing only that piece. The
king axis consists of the 64 boards with just a king. The
queen and on-white bishop axes each consist of the 16
boards with just a queen or bishop as discussed above.
The on-black bishop axis is 32 in length.

We save some searching by noting that the two rooks
and two knights are identical. Consider the two rook
axes of the search space as shown in Fig. 4. Swapping the
rooks is equivalent to reflecting the search space about
the diagonal shown. Therefore we need only report
solutions within the lower triangular region. Using this
observation to save time is a bit tricky, however, as our
search algorithm does not search individual points, but
rather rectangular regions. Regions completely outside
the lower triangular region will be rejected. (These
rejected regions are dashed in Fig. 3.) For those familiar
with computer graphics, the problem is that of clipping
a picture (the search region) against a triangular window.
Regions which partially overlap the lower triangle, if not
rejected for other reasons, will be subdivided (unfolded)
and the subdivisions outside the lower triangle rejected.

Each point of our space is a possible board with
coordinates (bl,b2,...,bs). Therefore the attack set of a
point is the union of the attack sets of its coordinates,
that is

A(b1,bt,...,bJ=UA(bt).
t-i

All together our search space contains approximately
2.27 x 1012 points. To search this space in a day would
require us to examine approximately one board every 40
nanoseconds, which is unmanageable without substantial
pruning.

T T T ?
1 1 /

1

T~T7

" T 7

/ \

\ - - * • —

Rook 2 axis I r ~

Rook 1 axis

Figure 4. Clipping transpositions in rook plane.

To speed up the search, we employ a folding operation
on the search space. To fold the search space, we split the
space in half along an axis and then take the element-
wise union of the two halves. We can view the folding
operation as doubling up a piece, that is making each
coordinate along the folded axis stand for two possible
locations of the piece. The key observation is that if a
square is (weakly) safe in the folded space, then it must
be safe in both halves of the unfolded space. Most of the
time we will be able to fold some sub-space many times
and still be able to show some square is safe.

We begin by folding the search space down to a single
point, that is we repeatedly fold until each axis is of unit
length. This is equivalent to placing all eight pieces on
each of the 64 squares. Now we unfold the space along
some axis and check the two sub-space halves. Unfolding
stops when one of three conditions hold:

(1) Some square is weakly safe, implying that the sub-
space contains no solutions.

(2) The knights or rooks are out of order, meaning
that the sub-space is entirely outside the clipping window.

(3) The sub-space is completely unfolded, meaning
the position contains no squares which are weakly safe.

Positions satisfying the third condition are output by
the first pass for further analysis.

When unfolding a subspace, we must choose which
axis to unfold, and how the axis should be unfolded. Our
first heuristic is to unfold the most-folded axis first, with
some weight factors thrown in so that preference is given
to certain axes. The weight factors were determined
empirically by measuring the time required to search a
fraction of the total space. A second heuristic is to prefer
unfolding the axis that maximises the difference between
the attack sets of the two halves of the axis. The idea is
that if we split along an axis and the two sub-axes have
the same attack sets, we haven't gained any possibilities

568 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/32/6/567/341699 by guest on 13 M
arch 2024

EIGHT PIECES CANNOT COVER A CHESS BOARD

*

•

*

*

*

*

*

•

#

#

*

*

*

•
<&
<̂ *

•
#
•

*

Figure 5. Unfolding on the king axis.

yet for pruning. A third heuristic is to try unfolding
along each of the eight axes and pick the first unfolding
we find which rejects half of the search space. This
amounts to a one-level look ahead.

We also must choose how to unfold each axis. Our
unfolding is geometrically based, with the intent to
minimise the squares attacked by a set of pieces. The king
axis folding is the simplest. The completely folded king
axis corresponds to putting 64 kings on the board, one
on each square. The first unfolding corresponds to
putting the kings on each half of the board, subsequent
unfoldings subdivide these halves as shown in Fig. 5.
This grouping of kings tends to reduce the number of
squares attacked by the group. The queen, bishops, and
rooks are treated similarly, except for the aforementioned
symmetry and colour constraints. Knights are partitioned
in a slightly different manner. The first knight unfolding
puts all knights on black squares in one half and all the
knights on on-white squares in the other half. Since
knights change colour when moving, each of these two
arrangements of 32 simultaneous knights attacks only 32
squares.

3. IMPLEMENTATION

Since the program is computationally intensive, we make
every attempt to provide efficient data structures. Weak
attack sets are represented by 64-bit vectors, each bit
corresponds to a square. The bits 0 and 1 represent safe
and attacked squares respectively. The union of two
(weak) attack sets is computed as the bitwise OR of their
vectors. Some square is safe if the word is not all l's.

For each of the eight pieces, we precompute a tree of
axis foldings. Each internal node has two children, which
are the two halves of the unfolded axis. For example, the
root of the king tree represents 64 simultaneously placed
kings, and its two subtrees represent the two 32-king sets
when the king axis is unfolded. Eventually we reach leaf
nodes, which represent boards with a single piece. Each
node also precomputes the attack set of its piece set.

A sub-space is represented as eight pointers, one for
each axis. Each pointer points to some node of its
respective axis tree. The two halves of the unfolded sub-
space are simply computed by replacing a pointer by each

Table 1. The effectiveness of our pruning strategy

Foldings Clipped Safe square

41
39
36
32
30
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
II
10
9
8
7
6
5
4
3
2
1
0

0
0
0
0
0

432
2106
3235
10381
18981
58894
71128
84498
124978
279656
495630
1171970
1204445
1280363
1300040
1363224
1226053
1030734
814020
637183
461268
324552
214378
119433
64665
42533
23080
12854
15206

1
3
12
96
576
0
0
0

1372
1447
280
457

13785
10012
4652
2282
913
797
788
1519
1528
687
377
387
498
303
184
121
109
119
30
112
1

41

of its child pointers in turn. The attack set of the sub-
space is computed as the union of the eight precomputed
attack sets of its coordinates.

4. RESULTS

As reported above, our program did not locate a single
position covering all 64 squares with the bishops on

THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989 569

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/32/6/567/341699 by guest on 13 M
arch 2024

A. D. ROBISON, B. J. HAFNER AND S. S. SKIENA

I

HI

IS

#
m

#

i m

* %

1

I

11

I

*
A

J.

I

Figure 6. The three ways 8 pieces with similar bishops can cover the board.

#

I

I

Figure 7. Superposition solution: knight/bishop pairs are shown
as white bishops.

opposite coloured squares. Our program is efficient
enough to complete the search on a Sun 3/360 in under
75 minutes. Table 1 provides statistics on the effectiveness
of our pruning strategy. The table lists the frequency of
search tree leaves, broken down by leaf type and sub-
space size. The Foldings column is the log2 of the sub-
space size, the two other columns list the number of such
sub-spaces which were classified as containing a safe
square or clipped. There were also 8,715 sub-spaces
which were completely unfolded, for which neither of the
other two classifications applied. To check our maths, we
verified that the sum of the frequencies times the size of
the sub-spaces is equal to the size of the undipped search
space (243).

All together there were approximately 1.03 x 108 search
tree nodes (boards), of which 1.25 x 10' were leaves. This
is a substantial reduction from the 2.27 x 1012 possible
boards. The average safe leaf sub-space size was
approximately 217 9 boards; the median safe leaf sub-
space size was 213. The latter is equivalent to placing at
least 26 pieces (by folding 3 axes once and 5 axes twice to
create 3 double pieces and 5 quadruple pieces) on the
board simultaneously with possible superposition of
pieces. It is remarkable that for the half of the leaves this
many pieces left at least one square weakly safe!
Furthermore, this upper 50 per cent of the leaves
swallows 99.9 per cent of the volume of the undipped
search space.

Our program was applied to related problems, with

REFERENCES
1. B. Abramson and M.M.Yung, Construction through

decomposition: a divide-and-conquer algorithm for the N-
queens problem. In Proceedings Fall Joint Computer
Conference, edited H. Stone and S. Winkler, pp. 620-628.
IEEE Computer Society Press, Washington (1986).

2. M. Gardner, The eight queens and other chessboard
diversions. In The Unexpected Hanging and Other Math-
ematical Diversions, pp. 186-197. Simon and Schuster,
New York (1969).

3. M. Gardner, Graph Theory. In Martin Gardner's Sixth

Figure 8. Seven pieces suffice with superposition, superqueen
shown in white.

interesting results. It has long been known that all 64
squares can be covered if the bishops are on similarly
coloured squares. Fig. 6 gives the complete set of three
such positions, independent of rotation and reflection. It
is interesting to note that for all of these, the queen is on
a different colour than the bishops.

Also, it is possible to cover the board with the eight
pieces if we permit superposition, for example a knight
and bishop occupy the same square (Fig. 7) or a queen
and a knight combine to form a superqueen. Fig. 8 shows
a very special position - the queen and two knights
become a superqueen, so only seven pieces with
superposition are necessary to cover the chess board.

5. CONCLUSIONS
An exercise such as this is useful to impress upon us what
can be done in combinatorial computing with the proper
search technique. The folding of the search space is a
non-obvious algorithm, but can be very useful when the
search space is sparse, since so much of the space can be
compressed.

Ref. 6 gives a survey of many other variations on this
problem, including identifying configurations which
minimise the number of attacked squares instead of
maximise them. This is a more difficult problem than
maximising the attacks, since our folding technique does
not apply. However, it should yield nicely to a branch-
and-bound search.

Book of Mathematical Games from Scientific American, pp.
91-103. W. H. Freeman, San Francisco (1971).

4. C. S. Ogilvy, Tomorrow's Math. Oxford University Press,
New York (1972).

5. M. Gardner, Eight Problems. In The Unexpected Hanging
and Other Mathematical Diversions, pp. 76-89. Simon and
Schuster, New York (1969).

6. M. Gardner, Chess Tasks. In Wheels, Life, and Other
Mathematical Amusements, pp. 183-193. W. H. Freeman,
New York (1983).

570 THE COMPUTER JOURNAL, VOL. 32, NO. 6, 1989

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/32/6/567/341699 by guest on 13 M
arch 2024

