Short Note

Generating Permutations on a VLSI Suitable
Linear Network

A parallel algorithm for generating all the k!
permutations of P, for every (1 <k <n) is
presented. The architecture consists of a linear
processor array with n elements. The kth
processor receives a permutation p of *'P,_,
from the (k — I )th processor and intercalates k
at all the k possible positions of the sequence p,
one at a time. After each intercalation it sends
the permutation obtained to the (k+ 1)th pro-
cessor and also outputs it. In this way the nth
processor outputs all the n! permutations of "P,
in (n+n!) units of time and our profit are all
the “P, (1 < k < N) which output is included in
that time. The network is VLSI implementable
and fault tolerant. It is shown how to find the
position of a given permutation and how to
obtain the permutation of a given position,
where position refers to the generation order of
the permutations by each processor. With a
simple modification in the algorithm performed
by the processors, the network is able to generate
combinations.
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1. Introduction

Generating permutations and combinations
of objects are important problems in com-
binatorics. Several algorithms have been pro-
posed in order to solve them in different ways.
Mor and Fraenkel® and Zaks'® studied how to
generate all the #! permutations of n elements
("P,). Gupta and Bhattacharjee proposed an
algorithm for finding all the "P,, the distinct
permutations of r items out of n objects.?
Semba showed how to get all k-subsets (1 < k
< n) of the set {1,2,...,n} in lexicographic
order® and Chen and Chern generated the
permutations of at most k out of n objects.!

When dealing with permutations we are
always concerned by either the amount of
time or the amount of memory space we take
to generate them. As "P, = n!, the product
A-T (where T stands for Time and A4 for
Area) gives intractable values when n grows.
Our aim in this paper is to present a
permutations generator that could answer
some of the usual requests in this area: little
memory space; very simple basic operations;
modularity; local control; fault tolerance;
VLSI suitability and no extra work.

Our processor network generates all the
permutations of *P, for every (1 < k < n). Itis
based on the fact that if we have p=b,
b,...b,_, —a*'P,_, permutation —, then we
can obtain k& permutations of *P, by inter-
calating k at all the k possible positions of the
sequence p, one at a time. So, we can generate
all the permutations of *P, from *"'P,_, by
executing the very same operation on each
element of *~'P,_,.

The processor network is composed by 7
simple processors computing the permutations
in parallel so that the kth processor is able to
output the k! distinct permutations of &
elements in (k+4!) units of time, for k=1,
2,...,n. Moreover the outputs are pipelined
since the network is synchronized by the
slowest processor behaviour. Therefore the
whole process requires (n+ n!) units of time to
generate all the Zk! permutations.

The network architecture is a linear array
composed of processors and connections be-
tween neighbours. The global behaviour is of
MIMD (Multiple Instruction Multiple Data)
type and no global synchronization is
necessary. Moreover each processor holds a
private memory and no shared storage is
available so that communicating is done by
message passing.®

The main characteristics of our solution are
that it needs no global control, the kth
processor should store only a vector of
dimension (k+1) and the basic operation
performed inside a processor is quite so simple
as transposing two adjacent elements of its
vector.

The paper organization is as follows: in
section 2 we introduce our solution and in
section 3 we discuss it regarding the seven
aims stated above. In section 4 it is shown
explicitly the relation between the permu-
tations and their order of generation, while in
section 5 we show how to use the same
network to generate combinations and present
some experimental results obtained with the
FPS T-20 4-Cube parallel computer.®

2. The problem and the proposed solution

There are several techniques for generating
permutations of a set. For instance, Mor and
Fraenkel generate them in parallel ‘by per-
forming the same transformation on previous
blocks of permutations’.® Zaks constructs
them sequentially and a new one is obtained
‘by reversing a certain suffix of its prede-
cessor’.}® Chen and Chern propose a ring of
processors controlled by a host, each one with
a stack; the operations are ‘a cyclic right shift
of the objects held in all the top elements of
the stacks’ and a subsequent test on the stack
in order to discover if a new permutation has
been generated.!

Instead of generating the permutations of k
elements we are going to generate all the Zk!
permutations of *P, for 1 <k < n, with n
processors, in O(n!) total time and linear space
per processor. We start with ! P, = 1. Each kth
processor (1 < k < n) reads a permutation p
=b,b,...b,_, from the (k—1)th processor,
intercalates k at all possible positions of the
sequence p, one at a time, and sends it to
the (k+ 1)th processor as well as it outputs the
permutation. The nth processor does the same
operations except the sendings, for it has no
right neighbour.

The network is synchronized by the data
flow. When a processor finishes its work it
sends a token (PERM[1] = 0) toward its right
neighbour. In order to well initialize and
synchronize the whole process, processor PE,
sends 'P, = {1} and then PERM[I] = 0. After
receiving the token, each processor re-
transmits it to its right neighbour and stops
computation. When k = n there are no send-
ings to the right, for the nth processor is the
last one.

The algorithm performed inside the kth pro-
cessor is as follows (written in an OCCAM-
like language):*

Algorithm | :

Receive (left, PERM]! :k])
{read a permutation from the left neighbour}
WHILE PERM[1] (> 0
{there is something to read}
SEQ
PERMlk+1): =k
SEQi=[0 FOR k]
SEQ
PERMlk—i+ 1)< PERMlk—1i]
{exchange two adjacent el's}
PAR
Send(right, PERM[1::k +1))
{send PERM to the right}
Send(bottom, PERM[1 ::k])
{output PERM}
Receive(left, PERM([1 ::k})
Send(right, PERM[1::k+ 1))
{send PERM][1] = 0 to the right neighbour}

Let the time unit be the time spent by the nth
processor in performing one transposition
operation and one 1/O operation. Reading,
sending and outputting can be performed in
parallel. However, since the communication
time depends on the length of vector PERM,
the time unit is not exactly the same for all the
processors. Let f be the time taken by the first
permutation to reach the nth processor. Then
it follows by induction that (¢f?):

Proposition 1:

The kth processor constructs all the *P,
permutations, | £ k < n.

Proposition 2.

The network generates all the Tk! permu-
tations (1 € K < n) in (f+n!) units of time.

3. Back to our aims

Each processor performs the same simple set
of instructions, so we can say that the model
of computation is a SPMD (Single Program
Multiple Data) with no global control. How-
ever, the algorithm we propose is globally
asynchronous. Local synchronization corre-
sponds to the communications between neigh-
bour processors and can hence be obtained
through a send/receive protocol: PE, can send
a message to PE, if and only if PE, and PE,
are neighbours and PE, is ready to receive
the message. Thus, no control is needed for
synchronization.

We adopted this send/receive protocol
because of the characteristics of our network.
A kth processor works k units of time with a
permutation p, read from its predecessor. At
the same time the (k— 1)th processor worked
only one unit of time with a permutation read

P, 2p,
PE, PE,

JP; D-IPn-I

PE, — e —J PE,

'P, ’p,

Py °P,

Fig. 1. The linear processor network.
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from its predecessor. When processor k& goes
reading p,,, from processor (k — 1), this one is
already ready for sending it. So we lose no
time implementing such a kind of protocol.

At the Introduction we stated seven major
goals we had when conceiving this permuta-
tions generator. We will then discuss how the
network matches them.

The kth processor needs only & + 1 memory
cells to hold vector PERM, hence a litile
memory space is required per processor.
Besides, a very simple basic operation is
performed by the processors: just one trans-
position of two adjacent elements of vector
PERM is sufficient to generate a new per-
mutation. Moreover, as permutations are
generated only once and they are not stored in
the memory to be used later, there is no extra
work done by the network.

The network needs no Master (or Host) to
indicate what processors should do step by
step. Each processor only knows its position
inside the network and controls itself. In this
way we can say that our network is modular:
for generating the permutations in "*1P, . it
suffices to append a processor numbered n+ |
as the right neighbour of processor n.

Because of its regularity and simplicity the
network can be implemented in VLSI. If so we
should develop means to ensure its tolerance
to failures. For that we have to introduce a
slight modification on the Algorithm 1 from
section 2, leading to Algorithm 2 below. Now
each processor sends its relative position along
with the permutations. After reading a per-
mutation p; into vector PERM (with a fixed
size n+1), a processor discovers its relative
position by accessing PERMT[0).

Algorithm 2:

Receive(left, PERMI0::n))
{read a permutation from the left neighbour}
WHILE PERM{1]< >0
{there is something to read}
SEQ
k: = PERMI[0]+1
1get the relative position into the network}
PERMlk+1): =k
PERMI0): = k
{save the relative position to be sent}
SEQ i=[0 FOR K]
SEQ
PERMTk —i+ 1] <> PERMTk —i]
{exchange two adjacent el's}
PAR
Send(bottom, PERM]1 : :k])
PERM}
IF
(position {) n)
Send(right, PERM[0::n))
{send PERM to the right neighbour}
Receive(left PERMI0::n})
IF
(position > n)
Send(right PERM[0::n))
{send PERM]I} = 0 to the right neigh-
bour;

output

Our fault tolerance hypothesis is that processors
can always assure communication with their
neighbours, even when their computations fail.

In a VLSI implementation PE, interacts
with the circuit. It must receive some kind of
signal from the circuit to begin computation:
when the network has to start computation
there is PERM = [0, — 1] and PERM = [0.0]
read by PE, in * Receite(left, PERM{0::n])".
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Proposition 3 :

Let fp be the number of fair processors in the
network, everyone performing Algorithm 2.
Then the network will generate *P, (1 € k <

p)-

Proof

If fp = 1, then, as communications are assured,
the vectors PERM received by PE, will be
read by the only fair processor, say PE,. So it
will generate p, = 1 and stop after reading
PERM][1] = 0. Assuming that the proposition
holds for (fp—1) fair processors, let us prove
it for fp fair processors.

The network formed by the (fp—1) first fair
processors generates *P,, (I < k < fp—1), by
the induction hypothesis.

Now, let PE, be the rightmost fair processor
in this network. The vector PERM sent by
PE,, , will be read by PE, by the fault
tolerant hypothesis. PE, will then know that
for each permutation read it has to intercalate
k =/fpin it, k times, generating /*F, .l

In other words, in our network implemented
in VLSI with »n processors and Algorithm 2,
the number of fair processors is the actual size
of the network implemented with Algorithm
1.

In this way we can append fair processors to
the right end of the network in order to
augment its length in case of failure.

4. Ranking and unranking

Let anti-position be the position of a given
element inside a permutation, from right to
left. In this way the anti-position of the element
3 in the permutation 1432 is 2 and the anti-
position of the element | in the permutation 1
is 1.

Let p be a given permutation of ™P, for
some me (1, N]. We call p,. the subpermutation
of p in “P, for ke[l.m] and i, (i,€[1.k]) the
anti-position of k in p,. Clearly p=p,,.

Now we can construct a recursive algorithm
in order to compute R(p,,), the position index
(ranking) of a permutation of ™P, generated
by the mth processor.

With the anti-position i, of k we know that
p, is the i.th permutation generated from a
Py—1 read. We also know that we have
generated (k- A) permutations before p,, where
A is the number of permutations generated by
the (k— I)th processor before generating Pio1s
ie, [Rp,_)—11.

So R(p) =i +k:[R(p,_)-1] )

Thus:

Rp,) =i, +m-[(i,_,—1)
+(m—=1)-[(i,,_,~1)
+(m—2)[(i,_,~1)
+3-[(i,—D+2-(1=-D1])...1}

E.g., what is the position index R(p) were p =

1342?

We have

And

R(p)=2+4+4[2-D+3(1-1)] =2+4[1] =6.

Let now r, be a given ranking. For
unranking, we want to find p,, such that R(p,)
= r,,. Hence we must find the anti-position i,
of every element &k in p,, (I < k <m). We do
that recursively again by computing i, from r,.

G =2,05=2i,=1
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There is only one way to write r, as
e = k'rk~1+qu (‘helh k])
and by (1)
R(p) =i, +k-[R(p,_)—1),G.€[1,k])
then
i,=q, and R(p,_)=r_,+1

As an example we will obtain p,e*P, from
R(p) = 13:
We have
Rp,)=13=4r,+1=R(p;)=4and i, =1
R(p;))=4=3r,+1=>R(p,)=2 and ij=1
R(p,)=2=2-r,+2=R(p)=1 and i,=2,

I

Then i,=2=p, =2]
iy=1=p, =213
iy=1=p, =2134

Both Ranking and Unranking algorithms can
be implemented in O(n?) time.

5. Conclusion

In this paper we have presented a linear
processor network for generating all the Zk!
permutations of *P, for (1 < k < n). The time
complexity of the proposed network is (n+n!)
units of time, where a unit of time is the time
spent by a processor to transpose two adjacent
elements and perform one 1/0 operation.

We programmed the network in the
OCCAM parallel language and we simulated
it on the FPS T-20 4-Cube parallel computer.?
For n = 10 the network takes approximately
101756 milliseconds to generate all the
4.037.913 permutations it is supposed to.

As seen at section 3 the major goals stated
in the Introduction have been achieved.
Remarkably the little space needed and the
fact that the network is regular, VLSI suitable
and fault tolerant. Moreover this network can
be seen as a way for traversing combinatoric
trees. We can think of a combination as a
succession of ones and zeroes, indicating if an
element is to be selected or not in that
combination. With a simple modification in
the program for permutations we can generate
all the combinations of k objects out of n, for
k =1, 2,...,n. This network can then be used
for solving the knapsack problem and other
related problems.?

As there is a combinatoric explosion in the
computation, a good question is how to
generate the maximum number of permuta-
tions in a given time and/or with a limited
number of processors. It is easy to see that the
first processors have a low efficiency, so we
could develop means in order to increase their
efficiency.

One way is to use the processors that
become idle as the time goes by. As an
example, processor | becomes idle immedi-
ately after sending 'P, = 1 to its right neigh-
bour, so it could share the work done by the
busiest processor, i.e., the last one. However
this strategy will destroy the network sim-
plicity.

Another way is to take advantage of the
structure of the transputer processor and
consider the physical processors of the net-
work as logical processes. If we implement one
process per processor we get our network. But
if we assign several processes per physical
processor we can deal with a limited number
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of processors and also improve the processors
efficiency.
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Announcements

28-30 MARcH 1990

1990 ACM Symposium on Personal and Small
Computers, Stouffer Concourse Hotel, Crystal
City, Arlington, VA.

Theme: Artificial Intelligence and Standards

The ACM Symposia on Small Systems pro-
vides an ongoing overview of the current state
of the art in microcomputer technology and
applications. This year’s themes will deal with
the convergence of microcomputer and arti-
ficial intelligence technologies and with the
role of standards in the small computer field.
Topics will include standards, advances in
architectures and systems software, distributed
systems, networks, parallelism and con-
currency, office automation, human factors
issues, CAD/CAM, database, software en-
gineering, artificial intelligence and expert
systems, logic and symbolic programming,
etc., as they relate to microcomputer tech-
nology and small systems.

For further information contact :

Conference Chair, Prof. Elizabeth Unger,
Department of Computer and Information
Science, Kansas State University, Manhattan,
KS 66506

or

Program Chair, Professor Hal Berghel, De-
partment of Computer Science, University of
Arkansas, Fayetteville, AR 72701

17-21 ApriL 1990

VDM '90. VDM and Z! 3rd International
VDM Europe Symposium on mathematically
based methods for systematic development of
large-scale software. Kiel, Federal Republic of
Germany. Sponsor: VDM Europe.

Contact :
Professor Hans Langmaack, Institut fir
Informatik und Praktische Mathematik,
Christian-Albrechts-Universitdt, D-2300 Kiel,
F.R.G. Tel.: 49-431-8804470/71 ; fax 49-431-
8802072.

6-8 JUuNE 1990

Eurographics Workshop on Object-Oriented
Graphics, Kénigswinter, Federal Republic of
Germany

First call for contributions

Aims and scope

Object-oriented methods are proving to be
particularly applicable to computer graphics —
in formulating new graphics standards and in
dynamic graphics and human-computer in-
teraction. Specific computer graphics prob-
lems have also resulted in a critique of the
object-oriented paradigm.

Contributions are sought which combine
the latest results in object-oriented methods
with original contributions to computer
graphics. Participants will present their work
and discuss problems and extensions with the
group. Areas of interest include the following.
@ Standardization and  object-oriented
languages for graphics
@ Complex objects (e.g. objects with a hi-
erarchy of parts)

@ Dynamic type creation (e.g. new types
created on the fly in CAD)

@ Automatic classification of dynamically
created objects

@ Issues in 3-D animation and robotics
(constraints, collision detection)

@ Alandknowledge representation in object-
oriented graphical systems

@ Direct manipulation and object-oriented
user interfaces

Full papers

The workshop will be limited to about 40
participants to encourage discussion. Selection
will take place on the basis of full papers (up
to 25 pages) reviewed by the programme
committee. Please submit 4 copies to the
address below. Papers will appear in the
workshop proceedings. Invitations to submit
revised versions for a book (in the Eurographic
Seminars Series) will depend on the quality of
the contributions.

Taking part without submitting a paper
may be possible in a few cases if you submit a

position paper with your view on current
issues in object-oriented computer graphics.
Invitations will be sent about one month
before the workshop.

Schedule
31 January 1990 Deadline for full paper

12 April 1990 Notification of acceptance
of paper

30 April 1990 Latest date for position
papers

6-8 June 1990 Workshop

13 August 1990 Deadline for final paper

(15-25 pp. camera-ready)

Venue and fee

The workshop will be held at Konigswinter
near Bonn, on the Rhine. The fee will be
around DM 700, including accommodation,
meals, evening boat excursion and reception
at Birlinghoven Castle. Student participants
without access to other funds could be
subsidised.

Organisation

The workshop is organised by the German
National Research Centre for Computer
Science (GMD) and the Duich Centre for
Mathematics and Computer Science (CWI)
and promoted by Eurographics. in cooper-
ation with the German Society for Informatics
(Gl4.1.1 Special Interest Group for Graphics
Systems. GI4.1.5 German Chapter of Euro-
graphics).

Co-chairmen

Peter WiBkirchen (GMD) and Edwin Blake
(CWI).

Information

Manuscripts and requests for information
should be sent to the workshop secretary:
Ms. Marja Hegt. O-O Graphics Workshop.
CWI, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands. Tel: +31 20 592 4058. Fax:
+31 20 592 4199. Email: muarjaw cwi.nl
(uucp).
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