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A ‘cubic’ view of database with representation by time-stamping of tuples has been largely favoured so far in the
research on modelling of time in database systems. In this paper, we propose a ‘state’ oriented view of historical
databases. The salient features of our proposal are its simplicity, closeness to and consistency with classical relational
model, and efficient implementability. We propose an algebra for historical relations which contains classical as well as
some new operators. The operators are simple to comprehend, unlike in other research proposals. We are also able to
formulate a completeness criteria for the proposed model. Finally, we extend the popular SQL query language for use
with historical databases. Again, the extensions are consistent with the simple basis of standard SQL. They are
minimal in number, yet very powerful and expressive. We illustrate algebra operators and extended SQL with many

examples.
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1. INTRODUCTION

A data model provides concepts and constructs for
modelling data processing requirements of real-world
organizations. A database management system
(DBMS) incorporates a data model and provides high-
level facilities for storage, retrieval and maintenance of
data.

Time is an important dimension in all real-world
activities. Events and actions occur continuously over
time, modifying current status and generating history.
The classical data models, such as relational, network
or entity-relationship model, do not provide explicit
concepts or support for modelling of time and accessing
history data. If databases are to model a real-world
application, a DBMS must explicitly provide concepts
and facilities for modelling of time and management of
history data. In this paper, we propose a data model for
capturing of the time dimension. We refer to a DBMS
which provides support for time and history data as a
Historical DBMS (HDBMS).

Realizing the need to support time in database
systems, a large number of research efforts have been
directed towards studying various aspects of this prob-
lem (see the bibliography in Ref. 4 and research project
summaries in Ref. 8). A ‘state-oriented’ concep-
tualization and a semantic model was proposed by Clif-
ford and Warren?. Here, a historical relation (i.e., a
relation of classical relational model extended to record
timing information) has tuples stamped with time
instants. Later, Clifford and Tansel proposed two views
of historical relational algebra where relations have
attributes stamped with time instants or periods.? Their
algebras contain a large number of operators of varying
complexity. The ‘cubic’ conceptualization of a historical
relation is proposed in Snodgrass and Ahn® and in
Ariav.' Snodgrass and Ahn also bring out very succinctly
the need for two measures of time called real-world time
and system time. They propose a few (but incomplete)
extensions to the QUEL query language. Ariav defines
the selection and projection oPerators on cubic view
which are quite ‘cumbersome’.

* Current address: Department of Computer Science & Engin-
eering, Indian Institute of Technology, Bombay 400076, India

In our earlier paper,’ we identified the main issues
which need to be answered satisfactorily before design-
ing a practical HDBMS. We outlined our approach to
HDBMS that was characterized by

(i) concept of ‘state’ for every database object
(whether entity type or relationship type); a state
prevails over a period of time.

(ii) real-world time measure, which would be gen-
erally equal to system time in on-line/real-time
systems (HDBMS would include provisions for
accepting out-of-sequence transactions).

(iii) separation of history data from current data for
efficient storage and retrieval; the separation
would be mostly transparent to database users.
A very important consequence of this decision
is that the database designer needs to model
application requirements based only on ‘current’
perspective.

(iv) selectable time granularity, and

(v) extension of established query languages such as
SQL! for definition, manipulation and control
of data.

We have applied the proposed concepts to a real-
life application in all its completeness: schema design,
storage structure decisions, retrieval queries and update
queries. This study is reported in Ref. 6. The primary
motivation for this exercise was to identify basic but
adequate HDBMS support that is both effective and
easy to implement.

In this paper, we present our model in more formal
terms. We define the concept of a historical relation and
propose an algebra for them. We endeavour to keep
the concepts simple as well as consistent with the classi-
cal relational data model. We also strive to identify a
basic set of relational operators. Finally, we present
extensions to SQL that are expressive and at high level.

The paper is organized as follows. The representation
of time in terms of instants and periods, and the basic
temporal operators are defined in Section 2. Section 3
defines historical relations and relates them with stand-
ard relations. The example in section 4 is used in the
rest of the paper for illustrative purposes. The algebra
for historical relations is presented in section 5. A basic
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set of operators, which includes the standard relational
operators (selection, projection and cartesian product)
and two new operators called ‘expand’ and ‘contract’,
is presented first, followed by some high-level operators
which are very useful for time-related querying of his-
torical databases. Section 6 contains extensions to SQL.
Finally, in section 7, we highlight salient features of our
work and contrast them in details with other research
proposals.

erl use the common terminology as per the standard
text.

2. TIME: REPRESENTATION AND
OPERATIONS

Time is measured using a clock of suitable granularity.
Every ‘tick’ of the clock represents a time instant. The
value of an instant is the number of ticks from the start
of clock. Thus, as in Ref. 3, time is isomorphic to the
natural numbers and the set Time is a linear order, i.c.,
given instants ¢, and t,, we either have ¢, equals t,, ¢, is
less than ¢,, or ¢, is less than ¢,.

The ‘current time’ refers to the latest clock tick, and
is denoted by NOW. Thus, NOW can be thought as a
‘moving’ time variable as in Ref. 2.

A period is a consecutive sequence of time instants.
It is represented as ¢,. .t,, where ¢, <1, and the period
includes all time instants starting from ¢, up to but not
including ¢,.

A null period does not include any time instant. The
period ¢;. .f; + 1 contains only one time instant. We can
now define the following operations on instants and
periods:

(i) make period (. .): given instants ¢, and ¢,,
tl .. t2
constructs a period, which is null if t;, > =1t,.
Note that ‘..’ is not commutative.
(if) Combine periods (+): given periods p, and p,,
P3=pi+pr=p,+p
null, if p, and p, have no common instants, else
={ t;. .1, such that each instant in p; is either in
piorinp,.
(iii) extract overlapping period(*): given periods p,
and p,,
P3=Dp1*p,=pr*p,
null, if p, and p, have no common instants, else
= {tl. -1, such that each instant in p; is contained
in both p, and p,.

The following operations produce boolean result:

(iv) Included (€): given instant ¢ and period p,
t € p = true if tis included in p, false otherwise.

(v) Meet (||): given periods py, py, pi| p,= true
whenp,ist¢,..t,and p,ist,. .t;; false otherwise.

(vi) Equal (=): given periods p,,p,, p, = p, = true
when both include same set of time instants.

(vii) Contains (C): given periods p,.p,, p, Cpy=
true if all instants in p, are also contained in p,.

(viii) Overlaps (U) given periods PP, prUpy=
true if there is an instant which is included in
both p, and p,.

(ix) Comparison operations on time instants: as time
instants are linearly ordered, we can use the
standard comparison operators (=, <, >,
< =, etc.) on two time instants.

(x) We will denote the set-theoretic ‘contains or
equal to’ operation as C. We will also use it for
periods with same meaning.

3. HISTORICAL RELATIONS

A relation scheme R in the conventional relational data
model is defined over a set of attributes. Semantically,
we may regard each relation scheme to be representing
some kind of database object, either of an entity type
or a relationship type. The concept of time is not (at
least, explicitly) associated with R. To take an example,
EMP(ENAME, RANK, PROJECT, SALARY) defi-
nes a relation for storing data about employees A tuple
in the relationship EMP gives employee name, rank,
project assigned and salary. ENAME (the underlined
attribute) is the key of EMP.

A historical relation scheme R is also defined over a_,
set of attributes X. R will essentially model a real- world2
entlty or relationship type. However, the concept of3
time is now explicitly included.

A tuple in R contains, besides values of the attrlbutes fl
a time period p, mdlcatmg that the attributes had (or 5
have) those values in the time period p. A tuple s>
regarded as ‘current’ if its period has the form¢;. . NOW. S
A tuple represents ‘history’ if its period is ¢;. .t, and:
t, <NOW.

A tuple in R can not have a null period (we assume
that such tuples are automatically deleted from R).

It may be noted that while a tuple in R represents ac
database object, a tuple in R represents state (as glven Q
by values of its attributes) of a database object during 3 3
certain time period. Also, R can be viewed as an 8
extended R, where the extension can be automancally—
provided by a historical database management system o
(HDBMS). In fact, R can be regarded as a conventional &
relation if we had a way to refer to its period attribute.
We would then have the advantage of using con-
ventional relational model facilities (e.g., relational =
algebra and calculus) with historical relations. HDBMS £
can provide this link in a very simple way. For example
consider,

EMP (ENAME, RANK, PROJECT, SALARY)
containing the tuple

(JOHN, programmer, LOTUS, 30000, ¢,. .t,)

which states that employee JOHN was a programmer
on project LOTUS and earning 30000 during the period
t. .t

The historical relation EMP is then equivalent to the
following conventional relation:

EMP (ENAME, RANK, PROJECT, SALARY,
PERIOD)

Moreover, a conventional relation can be viewed as a
historical relation with every tuple stamped with the
period (—..NOW).

Let r be a tuple in R; we will, then, assume the
following notational facilities (from HDBMS):

r. PERIOD gives period in r,

r. START  gives starting instant in period of r,

r. END gives ending instant in period of r.

The concept of key for a historical relation is also
defined. Logically, the attribute (group A of R is its key

O'O!wepeoe//.
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if it has unique values across all tuples at any point in
time. Specifically, if s and ¢ are any two tuples in R,
then either

s.A#t.A
or
s.A =t.A and not s. PERIOD U . PERIOD.

In fact, it should be easy to see that if A is key of R, it
is not equivalent to saying that (A, PERIOD) is key of
R, where R is the conventional counterpart of R. The
new definition of key for historical relations as given
above can be used to extend the concepts of functional
and multivalued dependencies for historical relations so
that normal forms and normalization procedures of
conventional relational data model can be appropriately
extended to historical database.

We define two ‘time’ relations that can be useful in
formulating queries.

A ‘period relation’ covering a period ¢,. .t, consists
of a single tuple (¢,..¢,) and is denoted as {(¢,. .t,)}.

An ‘instant relation’ covering a period ¢,. . t, contains
one tuple for each instant in ¢,. .#,. Specifically, it will
contain the tuples {¢,..¢; + 1), (¢, + 1..t; +2) . .. etc.
up to (t, — 1. .1,). It will be denoted by {(, . .1,)}. Note
that both of these are historical relations.

4. EXAMPLE

We give here an example of historical database. It would
be used subsequently for illustrating use of algebraic
operations and query languages.

The schema contains the following historical
relations:

EMP (ENAME, RANK, PROJECT, SALARY)
LAB (L#, LOC, MGR)
PROJ (PROJECT, L#, LEADER)

A tuple in EMP such as (JOHN, PROGRAMMER,
LOTUS, 30000, 7/85. .11/85) indicates that during the
period 7/85..11/85 (i.e., July 85 to November 89),
JOHN worked as PROGRAMMER in the LOTUS
project and earned 30000 salary. We assume ‘month’ as
the granularity level for time and that HDBMS provides
suitable mechanism to view time in the familiar ‘month/
year’ format. Other relations can be similarly under-
stood (LAB stands for laboratory, LOC for location
and MGR for manager; L# is unique identifier for
laboratories).

Let the following queries be of special interest:

QI: During 1985, what ranks were held by John and
what were the durations (in 1985) of those ranks.

Q2: List employees who worked on LOTUS project for
the whole of 1985.

Q3: List employees who worked (during 1985) on pro-
jects associated with laboratories located in NEW
YORK during 1985.

These queries are singled out to illustrate various
aspects of querying on time. Figure 1 contains a sample
database for the above schema definition.

S. HISTORICAL RELATIONAL ALGEBRA

We will use symbols XY, . .. to denote a set of attri-
butes, R|,R,, . . . for historical relations, and S,,S,, . . .
for conventional relations. R, will denote the con-
ventional counterpart of R,. Thus, if R,(X), then
R\(X,PERIOD).

By providing a simple link like this between historical
and conventional relations, we are able to use standard
algebra and calculus with historical relations. We briefly
consider the standard and basic relational operators
first. These operators are complete but primitive. More
useful and high-level operations are defined in Section
5.2.

EMP

ENAME RANK PROJECT SALARY PERIOD
JOHN PROGRAMMER LOTUS 30000 07/84..02/85
JOHN ANALYST LOTUS 40000 02/85..06/85
JOHN ANALYST LOTUS 42000 06/85..02/86
JOHN SYS-MGR ADA 45000 02/86. .NOW
JANE PROGRAMMER LOTUS 32000 11/84..04/85
JANE PROGRAMMER LOTUS 34000 08/85. .NOW
SMITH ANALYST LOTUS 40000 09/85..04/86
SMITH ANALYST ADA 42000 04/86. .NOW
LAB PROJ

L# LOC MGR PERIOD PROJECT L# LEADER PERIOD
L1 LONDON ROGER 03/84..06/85 DBMS L1 LINDA 06/84..09/85
L1 NEW YORK SAM 06/85. .NOW ADA L2 JOHN 02/86. .NOW
L2 NEW YORK NANCY 08/84..05/85 ADA L2 BROWN 03/84..02/86
L2 NEW YORK TIM 05/85. . NOW PSL L3 DAVID 02/85..08/85
L3 BOMBAY RAO 01/86. .NOW PSL L2 CHRIS 08/85. .NOW

Figure 1. Example database
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5.1 Basic algebra operations
Projection ()
S=aWR,), XCY

The result is not a historical relation as it does not
contain time periods. The projection operation on his-
torical relation can still be conceived as being performed
by scanning once each tuple in R;. We may use PERIOD
as a projection attribute as in

mR,), {X,PERIOD}C Y

Here, the result may or may not be a historical
relation, depending on whether the PERIOD attribute
is included in the projection. Also, arithmetic or other
operations may be specified on the projected attributes.

Selection (o)
Let F(Y) represent a predicate on attributes in Y.
Then, _
Ory)(R;), XCY
or ~

produce result which is a historical relation, o is also
logically performed by one scan on the period relation.

Product (x)

The cartesian product combines tuples of operand

relations. When applied to historical relations, as in
RxR,

the result is not a historical relation, even though it does

contain two period-valued attributes.

It would seem that any language supporting the basic
relational operators would also be ‘complete’ for his-
torical databases because of the simple way provided by
HDBMS for viewing historical relations as conventional
relations. However, a difficulty arises due to the rep-
resentation of state of a database object over a period
of time. We might need to answer queries about an
object at given instants or at all instants during a given
period. We will, therefore, need new operators by which
state (as given by a tuple) over a time period can be
mapped into states at each instant in that period and
vice-versa. The two operators defined below are basic
and, along with the standard relational algebra and set-
theoretic operations they can be used to define the
notation of completeness for query languages for his-
torical databases. We assert here (without giving a
proof) that the following new operators can be simu-
lated using instant relations and GROUP-BY and
COUNT (as in SQL) functions.

Expand (¢)
R, = €é(R;)
€is a unary operator whose result is a history relation.
If R, contains a tuple (x,t,. .t,), € produces one tuple in
R, for each instant in ¢,..t, and all having same x-

value. Thus, (x,t;..¢; + 1), (x,t; + 1. .t, + 2). . . will be
obtained for R,.

Contract (¢)
Rz = C_(R 1)
¢ basically performs inverse function of é. It combines
those tuples of R, which have same attribute values but

consecutive or overlapping time periods into a single
tuple with period that includes periods of combined
tuples. Thus, if s and ¢ are tuples in R, and p, and p,
are periods in s and ¢, then s and ¢ are merged provided

s.X=t.Xand (p,||p, or pyUp,)

The new tuple will be s. X, p, + p,. Note that R, and
c(é(R,) would be equivalent with respect to states of
database objects, but they may not be equal on tuple-
by-tuple basis. Also, note that ¢(é(R,) gives same result
as ¢(R;).

We now consider the example queries of Section 4 to
illustrate the use of conventional and new operators
with historical relations and to bring out the basic nature
of € and ¢ operators. To keep queries simple, we do not
explicitly indicate selection to filter out tuples with null
periods.

Q1

Let p stand for 1/85..1/86 (i.e., the year of 1985). Le
T = n,(c{(EMP))

where

A is RANK, EMP.PERIOD *p
and

Fis EMP.ENAME = ‘JOHN’ A\ EMP.PERIOD U p &

— — (]

T contains the required answer. However, T mayg_
contain tuples with same rank but consecutive timeo
periods. It is necessary to merge them before outputting®
the answer.

We need to use ¢ to achieve the merging as follows:

&T)
With respect to data in Fig. 1, T gives
PROGRAMMER 1/85..2/85

p OB//ZSduLl wiol} peﬁbowmog

2JWO

ANALYST 2/85..6/85
ANALYST 6/85..1/86
However, &(T) gives (more appropriately)
PROGRAMMER 1/85..2/85
ANALYST 2/85..1/86
Q2

With p as before, let
T1 = ngname(or(EMP))

¥20Z Iudy 01 uo1senb Aq L¥688€/1 L/L/EE/BIIE/|ulWO:

where
Fis PROJECT = ‘LOTUS’ N\ PERIOD U p.

T1 gives employees (JOHN, JANE and SMITH for
data in Fig. 1) who were on project LOTUS during
1985. We could subtract from T1 those employees who
worked on other projects during 1985. However, this
would not filter out JANE (who was laid off for a few
months in 1985) and SMITH (who was hired first-time
during 1985). The ideal way to solve the problem is to
use C to aggregate states over time and then check
whether 1985 is inclued in the period associated with
the state:

T1= 7enaME.PERIOD (OF( EMP))
result = enaME (OPERIODcp(E( T1)))
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It is possible to formulate this query using the instant
relation for 1985, and product and division operators of
relational algebra.

Q3

Although query for Q3 can be formulated as a single
algebraic expression, we will formulate it in steps for
easy understanding. We will also use natural join
(<) to simplify expressions. p, as before, represents
1/85..1/86. Intermediate results for database in Fig. 1
are also indicated.

(i) Obtain New York labs and their durations in
1985:

T,= ”L#.PERIOD*p(ULOC=‘NEWYORK'APER]ODUp LAB))

>L1 6/85..1/86
L2 1/85..5/85
L2 5/85..1/86

(ii) get projects and their labs during 1985

T, = mprosecr. L#.PERIOD*p(OPERIOD Up( PROYJ))

> DBMS L1 1/85..9/85
ADA L2 1/85..1/86
PSL L3 2/85..8/85
PSL L2 8/85..1/86

(iii) Obtain projects from T2 which were done at
labs in T, at same time

T3 = ”A(UF(TI [if Tz)

where A is PROJECT, T,.PERIOD*
T,.PERIOD and F is T,.PERIOD U
T,.PERIOD

= DBMS 6/85..9/85

ADA  1/85..5/86

ADA  5/85..1/86

PSL  8/85..1/86

(iv) in a way similar to (iii) above, obtain employees
working on projects in T at the same time.

5.2 Extended algebra operations

We now define a number of new operators which sim-
plify formulation of queries on historical databases.
A significant difference between these and standard
operators is that time values are adjusted in the results
when extended operators are applied to historical
relations. As a consequence, results of these operators
are always valid historical relations.

Project-and-widen (w)
Rz = wy(Rl), Xg Y
w is similar to 7 except that

(1) period is included in the result, and

(ii) if two tuples in result match in attribute values
and their periods are overlapping or consecutive
then the two tuples are replaced by one with a
combined period. To be more specific, let

R.% = nY,PERIOD(R_l)

Then, to obtain R, above from this R;, we carry out the
following:

ifsy€ERyands.Y =1t.Y and

(i) if s. PERIOD U r. PERIOD then replace s and ¢
by (s.Y,s.PERIOD + ¢. PERIOD)

(ii) if s. PERIOD || t. PERIOD then replace s and t by
(s.Y,s.START. .t.END)

Note that w can not be directly expressed in terms of
7, g, x and the operators defined on time in section 2.
The reason for this is that @ may combine 2 or more
tuples on the basis of consecutive/overlapping periods.
However, we can express it using € and ¢ as follows:

wy(R) = ¢(&(y perion(R)))
Time-slice ()
Rz = p(Rl)
The operator 7 is useful for obtaining status of data-

base objects during the time period p. It is defined as
follows:

17,(R,) = {(t. X, t. PERIOD#p)|t € R,}

It may be recalled that tuples with null period in the
result are discarded. 7 can also be expressed using i,
o,x (between R, and the period relation {(p)}) and the
period operation * defined in Section 2.

Concurrent product ()
R3 = Rl % RZ

The concurrent product differs from cartesian product
in that it pairs only those tuples that have overlapping
periods. The period_in the result gives the overlap.
Thus, if R(X) and R,(Y), then R, y R, ={(t. X, u.Y,

t.PERIOD * u . PERIOD)|tE R, and u€E€R,}. It is
noted again that tuples with null periods are auto-
matically discarded from the result. We can express y

in terms of standard s, o and y. It is also easy to see
that y is commutative.
c

We next reconsider the earlier queries to illustrate
the use of extended operators and to demonstrate their
effectiveness in formulating time-related queries.

(0]
To find ranks and their periods in 1985 for the employee
JOHN, we first select on JOHN, then project on ranks

and periods overlapping with 1985 and also perform
widening:

wRANKQPERIOD*p(aENAME=‘JOHN’( EMP))
where p, as before, is 1/85..1/86.

Q2

To find employees who worked on project LOTUS for
entire 1985, we first select tuples having project LOTUS
and period overlapping 1985, then project-and-widen
on ENAME, and, finally, select those employees whose
period on LOTUS contains whole of 1985:

UPERIODgp(wENAME(UPROJECT= ‘LOTUS' APERIOD Up( EMP)))
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Note that PERIOD condition in inner o can be drop-
ped in view of the period condition in outer o.

Q3

To relate_those tuples of the three relations EMP,

LAB and PROJ which were ‘concurrently current’ dur-
ing 1985, we use the concurrent product operator and
select:

or(EMP y LAB y PROJ)

where Fis LAB.L# = PROJ.L# /\

PROJ.PROJECT = ENAME .PROJECT A\
LAB.LOC = ‘NEW YORK’ N\
PERIOD U 1/85..1/86

Note that PERIOD in F refers to period in the result
of concurrent product operations (whose result is a
historical relation). We now perform projection to
obtain the required result. Thus, the complete query
for Q3 would be

wename(0r(EMP y LAB y PROJ))

Note: an optimizing query processor would perform
selections on periods and on LOC before performing
X operations. We can define algebraic properties of the

standard and extended relatlonal operators to formulate
basis for optimizations.” The requirement that result
tuples with null periods must be discarded can also be
exploited by query optimizer to perform early selec-
tions.

6. TIME-ORIENTED QUERY LANGUAGE

In this section, we propose extensions to the popular
query language SQL so that historical databases can be
effectively and conveniently queried by end-users. We
will refer to the extended SQL as TSQL.

The following objectives were set in making the exten-
sions:

(i) retain the basic framework of a SQL query: it is
easy to envisage (at least, conceptually)
execution of a SQL query as a projection (on
attributes given in SELECT) on those tuples
of the cartesian product of relations (given in
FROM) which satisfy a condition (given in
WHERE). We wish to retain this conceptual
simplicity because the historical relations, at the
level of representation, are simple extensions of
conventional relations.

(ii) retain the flexibility of SQL whereby a user may
formulate a query in different ways (e.g., nesting
instead of multiple relations in FROM).

(iii) the extensions should be minimum and simple to
implement.

In the previous section, we applied standard relational
algebra operations to the historical relations. We also
proposed some new and some extended operators. On
the basis of their analysis, we can establish directions
for extending SQL.:

(a) The expand (¢) and contract (¢) operations are
useful as well as basic. We must incorporate them

in some suitable form. The project-and-widen
(w) operator is sufficiently general and can be
provided as equally useful but more practical
alternative to ¢ and ¢.

(b) The need for concurrent product y would be very

common for relating data across two or more
relations. Although it is not fundamental, we can
provide it in TSQL so that users are saved from
the burden of writing lengthy predicates on time
in the WHERE clause.

(c) The fundamental assumption that result tuples
with null periods are automatically discarded will
be built into TSQL (again, this would simplify
writing WHERE clause).

(d) Finally, it would be necessary to provide in TSQL
the various operations on time discussed in Sec-
tion 2. =

2
TSQL may be used for historical and standard
relations. We assume that HDBMS, as proposed 111‘(:‘%
Refs. 5 and 6, provides facilities for defining both hlS-O-
torical and conventional relations. A TSQL query ons
only standard relations must have same form and mean-—
ing as a SQL query. If R is a historical relation, we:
permit in TSQL the following references to R (in FROI\/%
clause):

R
CURRENT (R): refers to only current tuples of R
HISTORY (R): refers to non-current tuples of R ©

no‘olwepes

o} [V¥[elo}

The primary objective in prov1d1ng explicit refers
encmg to the current status data is to permit its efﬁc1en§
quering (as the current data is expected to be used moreg
often than history data). The efﬁmency is achieved by2
certain storage structures proposed in our HDBMS.® &

The project-and-widen (w) operator is supported i
two ways:

LL/L/@&/@

(1) the SELECT phrase implies w: thus, not only
duplicates are removed but result tuples with3
matching attribute values and overlapping/con-~
secutive periods are merged before outputting%r
attributes listed in SELECT.

(ii) A new clause

TIME GROUPING ON attribute-list

\/ 0] UO 1sen

is provided to basically implement @, ibue.ist- It is equiv->
alent to GROUP BY with the difference that pro jectlon—-
is performed on listed attributes and, then, tuples w1tho
same values for attributes and overlappmg/consecutlveJ>
periods are merged. This clause may be followed by
HAVING for selecting (groups of) tuples based on
some predicate.

The concurrent product (y) is indicated simply by the

(optional) word CONCURRENT after FROM. Thus,
FROM CONCURRENT relation-list

(at least, conceptually) produces a concurrent product

of all relations given in the relation-list. Recall that

result of y is a historical relation (i.e., it would have a
c

single time period).

Finally, the operations on time (Section 2) are pro-
vided in a direct and consistent manner with some
renaming for readability. Specifically,
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(i) R.PERIOD, R.START, R.END can be used
(as in Section 3) to refer to time values in tuple
R,
(ii)) The period operations (.., +,*) can be used
both in SELECT and WHERE, and
(iii) The period comparison operations (renamed as
follows) can be used in WHERE and HAVING:

€ WITHIN
| MEETS

= SAMEAS
C INCLUDES
U OVERLAPS

Since the extensions are minor and straightforward,
we do not give syntax for TSQL (it is largely same as
SQL). We now consider a few examples to illustrate its
use for the database and queries given in Section 4.

01
To obtain ranks and their durations in 1985 for JOHN:

SELECT RANK, r.PERIOD =* (1/85..1/86)
FROM EMP r
WHERE ENAME = ‘JOHN’

There is no need to do selection of tuples with periods
overlapping with 1985 as it is implied by ‘*’ operator on
periods. Note that SELECT implies project-and-widen.
An alternative way to formulate this query is:

SELECT RANK, PERIOD
FROM CONCURRENT EMP, {(1/85..1/86)}
WHERE ENAME = ‘JOHN’

Here, {(1/85..1/86)} is a constant period relation. The
concurrent product implied by FROM above contains
a single period value (in each result tuple), which is
projected in SELECT.

Note: The following two TSQL queries are not equiv-
alent:

(i) SELECT *

FROM EMP

WHERE PERIOD OVERLAPS (1/85..1/86)
(ii) SELECT *

FROM CONCURRENT EMP, {(1/85..1/86)}

The result of (i) will contain unaltered period values
from the tuples of EMP, while in (ii), periods in the
result tuples will be contained in 1/85. . 1/86. The opera-
tion in (i) corresponds to o and the operation in (ii)
corresponds to 7 (i.e., time-slice). The query (ii) above
is equivalent to

SELECT ENAME, RANK, PROJECT, SALARY,
PERIOD * (1/85..1/86)
FROM EMP.

Q2

To list employees who worked on project LOTUS for
entire 1985 (employees who were hired for a part of
1985 but otherwise worked entirely on LOTUS are not
to be included):

SELECT ENAME
FROM EMP

WHERE PROJECT = ‘LOTUS’
TIME GROUPING ON ENAME
HAVING PERIOD INCLUDES 1/85..1/86

The TIME GROUPING clause performs project-and-
widen on ENAME, producing result that contains
ENAME and PERIOD. The FROM CONCURRENT
may be used (as in Q1) to make the query execution
more efficient. The following variation

SELECT ENAME

FROM CONCURRENT EMP, {(1/85..1.86)}
GROUP BY ENAME

HAVING SET (PROJECT) = {{LOTUS’}

is not same as earlier, since it would list employees who
were hired only for a part of 1985.

03

To list employees working on projects of labs located
in NEW YORK during 1985:

SELECT ENAME
FROM CONCURRENT EMP r,,
LAB r,,
PROJ 73,
{(1/85. .1/86}
WHERE LOC = ‘NEW YORK’ and
r,.PROJECT = r,. PROJECT and
rs. L# =Tr;. L#

The condition in WHERE turns the concurrent product
into a ‘concurrent join’. A possible variation is to put a
condition on PERIOD in WHERE instead of including
the constant period relation in FROM.

7. CONCLUSIONS

In this paper, we have proposed the concept of historical
relation to capture the ubiquitous time dimension of
real-world activities. It has both a natural connotation
and a simple representation. While other research works
in this field have conceptualized ‘temporal relation’ as
a ‘cube’,!? we define it simply as a set of states, where
a state, represented by a tuple, prevails over a period
of time. The representation chosen by us is a simple
extension of a conventional relation. In fact, both con-
ventional and historical relations can co-exist in a data-
base. With a provision for referencing period values,
we can use standard relational operators and query
languages for historical relations. This is a considerable
advantage for practical applications of our model.

The basic relational operators (7, o, x) along with set-
theoretic operations have been used to define ‘com-
pleteness criteria’ for relational query languages.'! We
have defined two more basic operators called ‘expand’
and ‘contract’, which cannot be expressed in terms of
the basic relational operators. We need these operators
primarily due to period-oriented recording of states. By
using the new operators, we can construct state of a
database object at every instant of time. Clifford and
Warren in Ref. 2, in fact, defined semantics for temporal
data model where a historical relation depicts state at
every instant of time. We, therefore, regard expand
and contract as fundamental operations for defining
completeness criteria.
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While standard operators are applicable, they are not
always practical and effective, because queries on time
have some unique requirements. We have defined three
new operators called project-and-widen, time-slice and
concurrent product. They are high-level and very useful
operations as demonstrated by many examples in this
paper.

Using the framework established by a set of useful
algebraic operators, we finally extend the popular query
language SQL'’ so that it can be effectively used for
querying historical databases. Extensions to SQL were
guided by three important objectives: (i) the conceptual
basis of SQL queries must be retained, (ii) extensions
should retain the basic flexibility of SQL, and (iii) exten-
sions be minimal.

The high-level operators have been incorporated in
SQL in a simple and consistent way. We have also
illustrated power and expressiveness of extended SQL
by many examples.

Besides closeness to the standard relational model,
our proposal has the additional advantage of efficient
support in both representation and query execution.
The basic operations are performed on tuple-by-tuple
basis and there are no ‘implied or hidden’ scans of the
relations. Queries can be optimized on the basis of
algebraic propertles of operators and physical storage
structures.’

We now review our proposal with other important
contributions in this area of research.

Snodgrass and Ahn® have succinctly brought out two
measures of time called real-world and system time.
They propose 4 types of historical databases depending
on extent of support for these two time measures. We
consider real-world time to be of primary concern as
computer system is merely a tool to maintain databases.
We expect the two time measures to be equal for most
transactions. As pointed out in Ref. 6, although support
is required for processing out-of-sequence transactions,
such transactions are not isolated events and they
require considerable and careful planning in real-world
environment. The considerations would be application-
specific.

Still, it is possible to include multiple time measures
in our model by user-defined attributes. It is possible to
extend query languages to provide basic support for
external time-measures (as in Refs. 9 and 1). Snodgrass
and Ahn® have suggested a few (basically, only for time-
slicing) extensions to the query language QUEL.

In Ref. 3, two historical relational algebras have been
presented. In Clifford’s view, a historical relation is an
unnormalized relation with attribute values stamped
with time instants at which the values became effective.
Attributes are classified into three types based on their
time properties. A large number of concepts (e.g., many
types of nulls, life-span of a relationa and a tuple)
and operations are identified, but there is no effort to
identify basic set of operators and how they may relate to
standard relational operators. Many types of selections,
time-slicing operations and variety of joins make the
picture quite complex. It is also difficult to efficiently
support such a model, both in terms of storage and
query execution.

In Tansel’s view,® a historical relation is one with
attributes stamped by time periods. Four types

of attributes and a large number of operators are de-
fined.

The ‘cube’ oriented conceptualization is proposed in
the work of Ariav.! A tuple is extended in the time
dimension by stamping it with the instant when it
became current. Thus, a tuple, more appropriately,
represents an event. In such models, a tuple is not really
an independent element (as required in set-oriented
definition of a relation) because another tuple indicates
up to what time the state prevailed.

Ariav defines projection and selection operations on
cubic view of historical relations. Both their con-
ceptualization and practical realization are complex (for
example, projection is not a simple tuple-by-tuple
operation; it is necessary to check sequences of attribute
values for removing duplicates). The SQL query lan-
guage has also been extended in Ref. 1, but only with
respect to projection and selection operations.
However, some of the extensions do not fit into the
simple basis of SQL queries (for example, WHILE g
clause or keyword EVERYWHEN require implicitly &
another scan of the source relation). Although some
extensions proposed in Ref. 1 are useful and of very-

high-level nature, their complex nature makes it difficult =

U
E
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>

to comprehend them in the simple framework of stand- @

ard SQL.

The above discussion indicates that the model pro-
posed in this paper is simple, close to and consistent
with the relational data model, and efficiently imple-
mentable.
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