Logical Optimisation of Distributed Knowledge Base Queries

M. C. TAYLOR*
Department of Computer Science, University of Keele, Keele, Staffs.

Query optimisation is a crucial element in providing acceptable performance in a distributed knowledge base system.

This paper considers optimisation in a heterogeneous environment where each node provides an interface to a
common model. The common model is object-oriented, using unnormalised relations with an extended relational

" algebra as query language. Both the data structures and the language are formally defined using the Vienna

Development Method (VDM). These formal definitions are then used as a basis for deriving conditions under which

various optimising transformations can be applied.

Received November 1988, revised July 1989

1. INTRODUCTION

The last few years have seen a rapid growth in knowl-
edge base research. Considerable progress has been
made, and the scope of applications has widened. Some
of these applications require a very substantial store of
data, which has led to the idea of storing the knowledge
in a conventional database. Such approaches include
Prolog interfaces to relational databases. Alternatively,
a tightly-coupled system such as LDL,'* POSTGRES"
or DEALE can be used to provide integrated data and
knowledge processing. Traditional database approaches
to performance issues, such as query optimisation and
indexing techniques, can then be used to provide
efficient processing.

The integration of data and knowledge processing
creates the potential for the development of distributed
knowledge bases (DKBs) as an extension of the concept
of distributed databases. When the required knowledge
is spread over more than one knowledge base, a DKBS
can extend the range of knowledge processing.

In its most general form, a DKBS will allow pre-
existing knowledge bases to join as nodes, irrespective
of their underlying knowledge representation model
and other potential sources of incompatibility. Clearly
a good deal of progress must be made before these
generalised systems become available, but such a gen-
erality is an important goal since the linking of pre-
existing knowledge bases is the primary motivation for
DKBs.

A heterogeneous DKBS requires a common knowl-
edge model in whose terms all internodal messages must
be expressed. Each node needs to provide a translator
between this common model and its own model. The
ideas developed in this paper assume that DEAL will
be used as the common model. DEAL (DEductive
AlLgebra) is an extended relational algebra capable of
deductive and recursive processing on unnormalised
relations (hence supporting complex objects).®7 It is
believed that DEAL has the features that are necessary
in a common model, in particular combining the power
of frame languages and Prolog.

Since the query language is based loosely on relational
algebra, it is possible to use some established ideas from
distributed database research in developing an approach
to query optimisation. In distributed databases, three

* Present address: Department of Computer Science, University
of Houston, Texas, USA.

distinct phases of query optimisation have been ident-
ified:

(i) logical optimisation
(ii) execution strategy selection
(iii) local access strategy selection

The first phase refers to the process of determining the
order in which operations should be carried out, without
regard to which node should execute any particular
operation. The second phase allocates each operation
to a specific execution node. The final phase is con-
cerned with the way in which a particular execution
node will carry out an operation. Usually this phase is
considered to be outside the control of the distributed
system, and solely the concern of the executing node
itself (at least in systems which allow pre-existing
databases as nodes). We propose to adopt the same
approach for a DKBS.

This paper is concerned solely with the first phase,
viz logical optimisation. Generally it is possible to find
more than one sequence of operations that will produce
the required results. A set of transformations can be
found, which can be applied to a query expression to
yield logically equivalent expressions. For each trans-
formation, we need to discover the conditions under
which it is valid and, of course, whether it can be
expected to bring about a more efficient execution of
the query. For the latter, we shall adopt the heuristics
developed in [5]. In order to check the validity of each
transformation, we have formally defined the semantics
of DEAL, using the Vienna Development Method
(VDM). The meaning of each construct of the language
is precisely defined by pre and post-conditions, and thus
two sequences of operations can be shown to be logically
equivalent (or not). A similar approach has been shown
to work well for relational algebra queries to a dis-
tributed database,'? but the extension to a knowledge
base environment brings added complexity.

The remainder of this paper is structured as follows.
In section 2 we describe an architecture for a distributed
knowledge base — the approach to optimisation assumes
this architecture to be used for the system. In section 3
we describe DEAL, and indicate how it can handle
the basic requirements of Prolog and frame languages.
Section 4 describes VDM, which is then used in the
following section to define the semantics of DEAL.
Section 6 discusses possible optimising transformations

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 49

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/woo dno-olwsapede//:sdiy Wwolj papeojumo(q

M. C. TAYLOR

for DEAL queries, in line with the heuristics adopted.
In section 7 we describe the use of VDM to formally
derive the conditions under which each of the optimising
transformations is valid. Section 8 is the conclusion.

2. DISTRIBUTED KNOWLEDGE BASE
ARCHITECTURE

We envisage a DKBS which will support as nodes pre-
existing knowledge bases, each potentially using a dif-
ferent knowledge representation model. To enable all
these systems to interact, we require a common model
to which each node can provide a translator. Similar to
the distributed database approach, each node provides
anodal knowledge participation schema in the common
model, describing the knowledge that it is making avail-
able to the global system. The common model should
be high-level, and should be capable of representing
any construct of each of the underlying nodal models.
In particular we anticipate nodes using production rules,
logic programming and frame languages.

Production rules take the form

IF (antecedent) THEN (consequent)

Logic programming languages such as Prolog are based
on horn clauses. Prolog can represent production rules
provided the consequent is a simple one without logical
connectives. Frame languages, on the other hand, have
little in common with the other approaches. They are
based on an object hierarchy with property inheritance.
In a sense they are more general, yet often they allow
only pre -defined operations.

In’, DEAL has been proposed as the common
language, and that is the approach which we shall follow
here. The advantages of a relational framework for an
object-oriented language to represent knowledge are
that relations can be readily decomposed and recom-
posed, and that the relational operations are closed,
permitting both high-level structures and operations.
These advantages are particularly apparent in a dis-
tributed environment.

We shall assume all end-user queries to be expressed
in DEAL, though in pr1nc1ple other interfaces could be
provided. At the user’s node, a transaction processor
will compile the query into the form of a parse tree. At
this point an optimiser will apply optimising trans-
formations to the tree according to a set of heuristics,
and will decompose it into subtrees, each representing
a subquery. Each subquery must be allocated to an
execution node, and sent via a standard communication
protocol. Each node must have a means of executing
DEAL queries. Since full translation of DEAL into the
underlying model will not generally be feasible, some
nodes may include a supplementary knowledge module
to carry out processing which cannot be handled locally.

3. DEAL LANGUAGE

In this paper we shall not consider the whole of DEAL,
but shall concentrate instead on the constructs that must
be provided in order to provide interfaces to both Prolog
systems and frame-based systems.

DEAL supports complex objects by means of unnor-
malised relations. It allows a relation to possess attri-
butes which are themselves relations. Alternatively an
attribute may be composite, with several subordinate

attributes grouped together to form a higher-level attri-
bute. An example is

DEPT (DNO, DNAME, EMP (ENO, ENAME, DOJ
(DAY, MONTH, YEAR), SAL))

Here the relation DEPT is defined to have three attri-
butes — DNO, DNAME and EMP. EMP is itself a subrel-
ation, having four attributes ENO, ENAME, DOJ and
SAL. Of these, DOJ (representing date of joining) is in
turn composite, having components DAY, MONTH and
YEAR.

A DEAL expression in general has three
components, though sometimes one or more may be
omitted. The components are:

- base expression
— attribute specification
- selection predicate

The attribute specification corresponds to the relationa¥
algebra ‘project’ operation, specifying the attributes tG
appear in the result. These attributes may be high- leveii
‘molecular’ attributes (such as EMP and DOJ in thg
above example) or they may be atomic.

The selection predicate corresponds to the relatlonaB
algebra ‘select’ operation, though it also allows tupl%t
predicates.

The base expression may involve various operatlonﬁi
on one or more relations, and evaluates to a relations
The allowed operations include:

— cartesian product
— (natural) join

— outer join

— union

— difference

18| ulwooywoo dno-oiws

|
o
>
-
o
=
[=N
~~
-
o
e+
(=9
[=9
)
=
o
%
-
-
19
M)
-
(=
-]
e
=
-
o
-
o
Y]
-
-0
M)
=
Qo
=
-
=

’

values of the new attribute being defined in terms oﬁ
existing attributes)

- replace (similar to extend, except that the new attri<
bute replaces an existing one)

|
=
=}
=
o
=}
3
=3
Z
[¢])
~
s
=
(¢}
-
(¢}
5]
=
[l
3
o
[¢)
-t
Q
-
[¢]
>
2
=]
agQ
o%)
=S
=
(on
[=1
-
[¢])
d6ct/6v/1Iee/ol

are grouped together under a new higher-level attri<S
bute (such as DOJ in the above example)).

Aa gl

Each tuple of a relation is regarded as representing m
fact. Deduction may be accomplished by generatmgg
new tuples from existing ones, and adding them to a
relation by means of a union operation. As an example
consider a relation LIKE (PER, OBJ) where each tuple>
represents the fact that the named person (PER) likes=
the named object (OBJ, which may itself be another>
person). A possible rule involving this relation woul
be

“John likes anyone who likes wine”’
In Prolog such a rule could be expressed as
LIKE (john, X) :— LIKE (X, wine)
In DEAL, the same rule can be written

LIKE := LIKE ++ ANON [PER := “John’”, OBJ :=
X]
WHERE LIKE [PER = X, OBJ = "“Wine"’]

Here °++’ indicates the union operation. The
expression to the right of the union generates the tuples
to be added to LIKE. The part within the first set of
square brackets is the attribute specification, and the

50 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

LOGICAL OPTIMISATION OF DISTRIBUTED KNOWLEDGE BASE QUERIES

part following WHERE is the selection predicate. The
word ANON is used to indicate the absence of any base
expression from that part of the query. The full query,
however, can be viewed as being a union of two base
expressions, yielding another base expression. Thus a
base expression can be defined recursively — essentially
it is any subexpression which evaluates to a relation.

4. THE SPECIFICATION LANGUAGE

The query language semantics will be specified using
VDM, which originally evolved from work on the
definition of programming languages and their com-
pilers but is now used more generally for the speci-
fication of software systems. It has also been used quite
widely for database specifications>3. VDM is often
described as a model-oriented specification language,
in that data types are specified by providing a model.
The language provides a basic set of models (set,
sequence, map and composite object), and more com-
plex models can be constructed by using the basic set
as building blocks. We first outline each of the basic
models, and then describe the way in which operations
can be specified. The language allows specifications to
be sufficiently precise to form the basis for proofs of
correctness—in our case the correctness of a trans-
formation applied to a query expression.

The set is a familiar concept from mathematics, and
the notation used in specifications is largely the same as
that used in mathematics. The notation set of X is used
in preference to P(X) (ie the power set) when only finite
subsets are permitted.

A composite object has a number of fields and is
denoted by, for example,

Datec:: day: {1,...,366)
year: {1583,...,2599}

which defines Datec to be composed of fields day and
year, the type of each field defined as a subrange of
integers. An instance of a composite type can be con-
structed by means of a make-function, eg mk-Datec
(20, 1987) will construct an instance of type Datec,
having day = 20 and year = 1987. To select a par-
ticular field from a composite object, we use the notation
field (object). Thus day(mk-Datec (20, 1987)) will
yield 20.

A map is essentially a finite function from a domain
set to a range set. Whereas a function is often defined
by a fixed expression, a temperature chart could be
modelled as a map from the set of cities to the set of
possible temperatures. The declaration would be

Tempchart = map City to Temp

An instance of such a map can be defined by, for
example,

m = {’London’— 10, ‘Keele’— 8, ‘Aberdeen’— 11}
The domain of a map is denoted by
Dom(m) = {"London’, ‘Keele’, ‘Aberdeen’}

The application of a map to a specific element of its
domain is dentoted by

m(‘London’) = 10

There is a map union operator (U) which is defined

only on two operand maps whose domains have empty
intersection. The result of the union is a map which
contains all the maplets of each of the operands.

{’London’— 10, ‘Aberdeen’ — 11} U

{’Keele’ — 15, ‘Glasgow’ — 6}

={’London’ — 10, ‘Keele’ — 15, ‘Aberdeen’ — 11,
‘Glasgow’ — 6}

To restrict a map to those elements of its domain which
belong to a specified set, we use the notation s <Im.
Thus

{’London’, ‘Edinburgh’, ‘Aberdeen’} <m
= {’London’ — 10, ‘Aberdeen’ — 11}

Similarly, to get just those elements of the domain which
do not belong to the specified set, we use s I m.

The sequence is not used in our model, and is therefore
not discussed here.

In specifying a data type, it is often useful to include
in the model an invariant, which imposes a restriction
on the set of values allowed in the data type. For
example, the composite type Datec, defined above,
would require an invariant to state that the value 366
is only permissible for the day field when the value of
year corresponds to a leap year. Thus

Inv-Datec (mk-Datec (d, y)) A
is-leapyr (y) vd < = 365

In addition to modelling the values of a data type, we
need to be able to specify operations. In VDM, an
operation specification in general has four components

(i) OPNAME (arg1:typel, arg2:type2,...,argn:

type n)r:type r
(ii) ext rd g1:type 1, wrg2:type 2, ..., rd gn:
type n
(iii) pre predicate
(iv) post predicate

The first component gives the name of the operation,
the names and types of its arguments, and the name
and type of its result.

The second component gives the names and types of
any external variables to which the operation has access.
The specifications used in this paper do not include
any external variables, hence this component will be
omitted.

The two remaining components define the behaviour
of the operation, and are called the pre-condition and
post-condition. The specification states that, for any
initial state which satisfies the pre-condition, the opera-
tion yields a final state which satisfies the post-condition.

5. SEMANTICS OF DEAL

Before defining the constructs of DEAL itself, it is
necessary to define the data structures on which it oper-
ates. The data structures will be defined as VDM models
(or abstract data types) and the language will then be
defined as a set of operations on these models.

DEAL operates on a database consisting of unnor-
malised relations. Thus

db = set of relation

Each relation may contain repeating groups (subre-
lations) and composite attributes, in addition to the

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 51

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/woo dno-olwsapede//:sdiy Wwolj papeojumo(q

M. C. TAYLOR

atomic attributes of Codd’s relational model. For
example,

(A1) DEPT (DNO, DNAME, EMP (ENO, ENAME,
SAL, DOJ (DAY, MONTH, YEAR)))

In this case, for each department tuple, there may be
many employees. EMP is a subrelation of DEPT, each
tuple of DEPT containing one EMP relation as an attri-
bute. Furthermore, EMP contains a composite attribute
DOJ which has three components—DAY, MONTH and
YEAR. Figure 1(a) shows a possible extension for the
DEPT relation. To model this structure, we first nor-
malise the relation thus

(A2) DEPT (DNO, DNAME, ENO, ENAME, SAL, DAY,
MONTH, YEAR)

with in general the same (DNO, DNAME) values being
repeated many times for the same values of the remain-
ing attributes (see figure 1(b)). Then we preserve the
information on subrelations and composite attributes
separately, in an attribute hierarchy, which in VDM
terms can be modelled as a map from inferior attributes
to superior attributes. The hierarchy defines DOJ as
consisting of (DAY, MONTH, YEAR) and EMP as con-
sisting of (ENO, ENAME, SAL, DOJ) (see figure 2).

In VDM notation

relation::structure : map attname to domain
hierarchy : map (inf)attname to
(sup)attname
where state : set of tuple
tuple = map attname to attval

As it stands, this definition allows too broad a class
of objects to qualify as (unnormalised) relations. We

require an invariant to capture the further essential
properties of relations:

inv-relation (mk-relation (str, h, sta)) A

VteE sta.domt C dom str/\ (1)
Va€&edomt.t(a) €str(a) \ (2)
rng h N dom str = {} A\ (3)
domh C rng h U dom str (4)

Condition (1) states that the attributes whose values
appear in any given tuple must be a subset of the
attributes of the relation as a whole. In many cases it
will be the entire set, but allowing more generally any
subset permits us to include null values. Strictly, the
definition should incorporate the entity integrity con-
straint that only non-key attributes may take null values.

. . . . O
For simplicity, however, we shall disregard keys herez

AN
AN

MONTH

Figure 2. Attribute hlerarchy for the DEPT relation (attrlbut-
DNO and DNAME are not part of the hierarchy)

00/woo°dnoolwepeor//:sdiy woly pepeoju

u%

=
Q
w
@
&
DNO DNAME EMP (ENO ENAME SAL DOJ (DAY MONTH YEAR)Y
[(o]
[=]
1 FINANCE 101 CARTER 10 1 3 86 o
106 MAXWELL 15 1 9 87 g
2 PERSONNEL 108 ROBSON 11 15 2 88 L(%
122 MILLER 8 1 4 89 2»
3 PLANNING 103 HARVEY 20 1 10 78 ;
104 ATKINSON 16 3 9 87 >
115 FERGUSON 25 10 8 83 =
(a) A possible extension of the DEPT relation §
DEPT.
DNO DNAME ENO ENAME SAL DAY MONTH YEAR
1 FINANCE 101 CARTER 10 1 3 86
1 FINANCE 106 MAXWELL 15 1 9 87
2 PERSONNEL 108 ROBSON 11 15 2 88
2 PERSONNEL 122 MILLER 8 1 4 89
3 PLANNING 103 HARVEY 20 1 10 78
3 PLANNING 104 ATKINSON 16 3 9 87
3 PLANNING 115 FERGUSON 25 10 8 83

(b) A normalised DEPT relation

Figure 1: DEPT relation

52 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

LOGICAL OPTIMISATION OF DISTRIBUTED KNOWLEDGE BASE QUERIES

Condition (2) states that any attribute value must be
a value of the domain over which that attribute has been
defined.

Condition (3) states that the range of the hierarchy
mapping has an empty intersection with the set of attri-
butes defined in the structure. This is because the struc-
ture gives only the attributes in the normalised version
of the relation (see (A2) above), whereas the hierarchy
maps inferior attributes to superior ones. Thus the range
of the hierarchy mapping consists of only the composite
attributes and subrelations, i.e. precisely those which
are omitted from the structure definition.

Condition (4) states that any inferior attribute must
either be also a superior attribute or else one of the
attributes in the normalised version of the relation. It is
necessary to allow the first of these possibilities because
sometimes the hierarchy may extend to more than two
levels. Thus in (A1) above, the attribute DOJ is superior
to DAY, MONTH and YEAR but inferior to EMP
(figure 2).

Before proceeding to define the language, one special
function is introduced. This is to give the set of attributes
at the lowest level of the hierarchy which correspond to
a given set of attributes. This allows for queries to refer
to attributes at various levels, and for the system to
interpret each query as though the corresponding bott-
om-level attributes had been referred to. The function
is defined by

leaves :set of atthame — > set of attname

leaves ({}) = {}

and, for any x # {},

leaves (x) = (x — rng(hierarchy(rel)))

U leaves({y|hierarchy(rel)(y) € x})

where x contains attributes from the relation rel.

Since rng(hierarchy(rel)) represents all the non-leaf
attributes of rel, it can be seen that (x — rng(hier-
archy(rel))) is the set of all leaf attributes within x. To
this set must be added the leaf attributes which are
descendants of attributes in x, which are given by the
term on the right of the union. For example, considering
the relation (A1) whose attribute hierarchy is shown in
figure 2,

leaves({dname,ename,doj}) =
({dname,ename,doj{doj,emp}) U
leaves({day,month,year})
= {dname,ename,day,month,year}

We now proceed to specify the general form of a DEAL
expression, ignoring for the moment the possible forms
of the base expression. In the general case, the base
expression is simply a relation, which may be derived
in a variety of ways from the underlying database. The
attribute specification can be viewed as a set of attribute
names, each of which is either a bottom-level or a
higher-level attribute. The selection predicate could be
viewed as a map from tuples to the boolean set. To
make the specifications more precise, however, it is
useful to state explicitly whether the predicate is depen-
dent on the whole tuple or only on certain attribute
values. Thus we define a data type pred (for predicate)
by

pred = map (map attname to attval) to B

The predicate takes a projection of a tuple onto certain

attributes, and returns a boolean result. It is important
to note that it takes the same projection for each tuple
of the relation. Thus

inv,pred (p) AV m1, m2 € dom
p.dom m1=dom m2

Here dom m1 is the set of attributes which appear in
the predicate.

We are now in a position to define the general form
of a DEAL query:

EvalQuery (b:relation, as:set of attname, sp:pred)

res:relation

pre as C dom structure (b) U rng hierarchy (b) A\
Vm € dom sp. Vt € state (b) . dom m<it
€ dom sp

post structure (res) = leaves (as) < structure (b) A\
hierarchy (res) = {a € dom hierarchy (b)
. leaves ({a}) N leaves (as) # {}} < hierarchy (b) N\
state (res) = {dom structure (res) <t.t € state (b)

A ¥Ym € dom sp.sp (dom m <t)}

The pre-condition states that

(i) each attribute in the attribute specification is either
a bottom-level attribute (in dom structure (b)) or
a higher-level attribute (in rng hierarchy (b)).

(ii) the selection predicate is defined on all the typles
of the relation

The post-condition states that

(i) the structure of the result relation can be formed
by restricting the structure of the base expression
to those bottom-level attributes which are either
in the attribute specification or inferior to some
attribute in the attribute specification.

(ii) the attribute hierarchy of the result relation can be
formed by restricting the hierarchy of the base
expression to those parts where the inferior attri-
bute is either in, or overlaps with, the attribute
specification. Such overlaps might occur through
the inferior attribute itself being a higher-level attri-
bute, only part of which is retained in the result
relation.

(iii) the result relation can be formed by taking those
tuples of the base expression which satisfy the selec-
tion predicate, and projecting them onto the
required attributes as specified in (i).

An alternative form of DEAL expression involves tuple
predicates in the WHERE clause, and generates tuples
in terms of these predicates rather than selecting them
from a base expression. The attribute specification can
then be modelled by a type

attspec = map (map attname to attval) to (map
attname to attval)

The semantics of this form of query can be specified by

Evalquery2 (as:attspec,sp : pred) res: relation

pre Vd € dom as . Vm € dom sp.dom d C dom m
post structure(res) = {a — > d|Vterng as. a
€domtAVs€Erng as.a€doms=>s(a)Ed}N
hierarchy(res) = {} \

state(res) = rng as }

Since this second form of expression does not involve

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 53

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/woo dno-olwsapede//:sdiy Wwolj papeojumo(q

M. C. TAYLOR

any base expression, there is little scope for applying
optimising transformations to it. Therefore we shall
concentrate here on the first form of expression, and
shall refer to that as the general form of DEAL query.

Having specified the general form of a DEAL query,
it remains to define the possible forms of the base
expression. The base expression consists of a sequence
of operations of an extended relational algebra, the
operations of course being slightly modified to cater
for unnormalised relations. The correct sequence of
operations can be determined by syntax analysis. If
specifying the semantics we need only be concerned
with the definition of each individual operation.

The extend operation takes a single relation and
extends it with a further attribute. The value to be
assigned to the new attribute is a function of the other
attribute values in the tuple—though sometimes it may
be a constant for all tuples. To allow for the fact that
the value is not necessarily dependent on every attribute
value in the tuple, we define the generating function in
similar fashion to the selection predicate:

gener = map (map attname to attval) to attval
where

inv-gener (g) A Vm1, m2 € dom g.dom m1
=dom m2 _

The invariant states that the attributes needed for gen-
erating the new value are the same for each tuple.
The extend operation is defined as follows:

Extend (rel:relation, att:attname, value:gener)
res:relation
pre att & dom structure (rel) U rng hierarchy (rel) /\
Vm € dom value. Vt € state (rel).dom m <t
€ dom value
post 3d.rng value C d/\
structure (res) = structure(rel) U {att — > d}/\
hierarchy (res) = hierarchy (rel) A\
state (res) = {t U {att— value (dom m <[t)}|
t € state (rel) /A m € dom value}/\
leaves ({att}) N dom hierarchy (res) = {}

The pre-condition states that

(i) the added attribute must have a name that is distinct
from those of the existing attributes (bottom-level
or higher-level) of the relation

(ii) the generating function which defines the new attri-
bute is defined on all tuples of the relation.

The post-condition states that

(i) the structure of the result can be formed by adding
to the original structure a new attribute whose name
is specified in the query and whose values belong
to a (unspecified) domain d which can be deduced
from the nature of the generating function.

(ii) the hierarchy is unchanged by the operation—
implying that the new attribute must not form part
of the hierarchy, but may possess neither superior
nor inferior attributes.

(iii) the result relation may be formed by extending
each tuple with an additional attribute, whose value
is taken from the generating function.

(iv) as implied by (ii), the new attribute remains sep-
arate from the attribute hierarchy.

The replace operation is similar to extend except that
here the new attribute replaces one which was pre-
viously present. It may be viewed as extend followed
by a projection to remove the replaced attribute. For-
mally it is defined thus:

Replace(rel:relation, oldatt: attname,
newatt:attname, newval:gener)res:relation
pre newatt ¢ dom structure (rel) U
rng hierarchy (rel)/\
oldatt € dom structure (rel) U
rng hierarchy (rel) \
Vm € dom newval.Vt €
state (rel).dom m <t e
dom newval
post 3d.rng value Cd/\
structure (res) = leaves ({oldatt}) <
(structure (rel) U {newatt — > d}) \
hierarchy (res) = {a €
dom hierarchy (rel).leaves ({a}) N
leaves (dom structure (rel) U
{newatt} — leaves ({oldatt}))
{1
hierarchy (rel) N\
state (res) = {leaves ({oldatt}) € (t U
{newatt — > newval (dom m < t)})
|t € state (rel) A m € dom newval}/\
leaves ({newatt}) N dom hierarchy (res) = {}

The pre-condition states that

ﬂjo:)'dnooguuepeoe//:sduu Luofﬂ‘pepeowmoq

(i) the new attribute has a name that is distinct fro
those of the existing attributes (bottom-level o
higher-level) of the relation.

(i) the attribute to be replaced must initially be preseng
either as a bottom-level or as a higher-level attrio
bute @

[wdo,

/U

of the new attribute, is defined on each tuple of th
relation.

kg €1068¢/8y

The post-condition states that

(i) the structure of the result is the original structureigD
with the definition of the new attribute added and”
with appropriate attributes removed. Those>
removed are either just the replaced attribute (in°
the case where it is a bottom-level attribute) or allc
bottom-level inferiors of the replaced attribute (in
the case where it is a higher-level attribute).

(i) the attribute hierarchy of the result is taken from
the original hierarchy, eliminating those parts
involving the replaced attribute.

(iii) the result relation is formed by extending each tuple
of the original relation with a new attribute, whose
value is obtained from the generating function, and
removing the attribute or attributes which are being
replaced.

(iv) as with the extend operation, the new attribute
remains separate from the attribute hierarchy.

¥20

The remaining operators are mostly more straight-
forward. For the join, we impose the restriction that
relations may be joined only on a single attribute, which
must be at the bottom level of the attribute hierarchy
(or separate from the hierarchy altogether).

54 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

LOGICAL OPTIMISATION OF DISTRIBUTED KNOWLEDGE BASE QUERIES

Join (rel1:relation, rel2:relation, att1:attname,
att2:attname)res: relation
pre att1 € dom structure (rel1) /\ att2 €
dom structure (rel2)/\
structure (rel1) (att1) = structure (rel2) (att2)
post structure (res) = structure (rel1) U
att2 4 structure (rel2) /\
hierarchy (res) = hierarchy (rel1) U
att2 € hierarchy (rel2) N\
state (res) = {t1 U att2 9 t2|t1 €
state (rel1)/A\t2 € state (rel2) \
t1 (att1) = t2 (att2)}

Cartesian product requires no pre-condition, since it is
defined on any pair of relations.

Cartprod (rel1 :relation, rel2:relation) res:relation
post structure (res) = structure (rel1) U
structure (rel2) \
hierarchy (res) = hierarchy (rel1) U
hierarchy (rel2) N\
state (res) = {t1 U t2|t1 € state (rel1) /\
t2 € state (rel2)}

The post-condition states that

(i) the structure of the result is merely the union of
the structures of the operands.
(ii) the hierarchy of the result is the union of the hier-
archies of the operands.
(iii) the result relation is formed by concatenating
tuples, one from each operand relation, for each
possible pair of tuples.

The definition of outer-join is similar to that of join,
except that there is no information loss with an outer-
join. A tuple of one relation which matches no tuple of
the other relation is nevertheless included in the result,
being filled out with null values for the attributes which
come from the other relation.

Outerjoin (rel1:relation, rel2:relation,
att1:attname, att2:attname) res:relation
pre att1 € dom structure (rel1)/\att2 €
dom structure (rel2)/\
structure (rel1) (att1) = structure (rel2) (att2)
post structure (res) = structure (rel1) U
att2 dstructure (rel2) N\
hierarchy (res) = hierarchy (rel1) U
att2 9 hierarchy (rel2)/\
state (res) = {t1 U att2 9t2|t1 €
state (rel1)/\t2 € state (rel2) \
t1 (att1) = t2 (att2)} U
{t1|t1 € state (rel1)/\A t2 € state (rel2).
t1 (att1) = t2 (att2)} U
{t2|t2 € state (rel2) \A t1 € state (rel1).
t1 (att1) = t2 (att2)}

The set operations (union and difference) are very
straightforward:

Union (rel1:relation, rel2:relation) res: relation

pre structure (rel1) = structure (rel2)/\
hierarchy (rel1) = hierarchy (rel2)

post structure (res) = structure (rel1)/\
hierarchy (res) = hierarchy (rel1)/\
state (res) = state (rel1) U state (rel2)

The pre-condition is simply the condition for union-
compatibility.

Difference (rel1:relation, rel2:relation) res:relation
pre structure (rel1) = structure (rel2) \

hierarchy (rel1) = hierarchy (rel2)
post structure (res) = structure (rel1) A\

hierarchy (res) = hierarchy (rel1 N\

state (res) = state (rel1) — state (rel2)

The unnormalise operation has the effect of grouping
together a number of existing attributes and introducing
a higher-level attribute as their superior. No new values
are added to the relation, only the attribute hierarchy
being affected.

Unnorm (rel:relation, sup:attname,
inf:set of attname) res: relation
pre sup & dom structure (rel) \ sup &
rng hierarchy (rel) N\
inf C dom structure (rel) U rng hierarchy (rel) A\
inf N dom hierarchy (rel) = {}
post structure (res) = structure (rel) /\
hierarchy (res) = hierarchy (rel) U
{a—supla€inf} N\
state (res) = state (rel)

The pre-condition states that

(i) the introduced higher-level attribute must have a
name that is distinct from that of any existing
(bottom-level or higher-level) attribute.

(ii) each of the grouped attributes must already exist,
some may be superior attributes while others may
be separate from the attribute hierarchy, but none
may be already inferior attributes in the hierarchy.

6. LOGICAL OPTIMISATION OF QUERIES

Each query is first compiled into a parse tree. Algebraic
languages are particularly suited to this approach, as
has been found in distributed databases.* The tree rep-
resents the operations to be carried out, along with
their parameters and an indication of the ordering of
operations. The ordering will be determined purely on
the grounds of the way in which the query has been
expressed by the user. There may be alternative
sequences of operations which will produce the desired
results more efficiently because they

(a) involve less processing, perhaps due to the most
expensive operations being carried out on smaller
operands

(b) involve less knowledge being moved between
nodes

In distributed database research, the latter of these has
been found to be the more significant factor.®!

The object of logical optimisation is to apply appro-
priate optimising transformations to the parse tree to
yield a logically-equivalent expression that will be more
efficient in execution. The system does not have suf-
ficient information available to be able to evaluate
execution efficiency precisely. Some heuristics are
required to determine whether or not a given trans-
formation is sensible.

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 55

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/woo dno-olwsapede//:sdiy Wwolj papeojumo(q

M. C. TAYLOR

First of all the optimiser must determine what is
the best decomposition of the current expression into
subqueries. Following the approach for distributed
databases adopted in,” we take the view that usually an
expression should be broken only where necessary, with
as few subqueries as possible. The fewer the subqueries,
the fewer the number of intermediate results to be sent
between nodes. Further, a subquery involving a large
number of operations will often produce a result
substantially smaller than the sum of the sizes of its
constituent relations. So this strategy should produce
low communication costs. For some types of expression
it will also reduce local processing costs by doing pro-
cessing on locally stored knowledge, rather than on
external knowledge (knowledge sent from another
node) for which fast access paths are not available.

The approach of° can be applied to DEAL
expressions to identify the breakpoints of an expression
(i.e. the vertices at which it should be split into subex-
pressions). From a query expression, and the list of
breakpoints which describe its decomposition, we seek
transformations which can improve the query
expression. There are two classes of transformations to
be considered:

(1) distribute a unary operation over a binary operation
(2) change the order of two adjacent unary operations

In fact some of the transformations in class (1) involve
the unary operator being applied to only one of the
operands of the binary operator, as will be discussed in
the next section.

In,’ four rules have been proposed for determining
which transformations to apply:

Rule 1

Distribute a unary operation over a binary operation if
the binary operation is a breakpoint of the expression
and the unary operation tends to reduce the size of its
operand.

Rule 2

Distribute a unary operation over a binary operation if
the binary operation is a breakpoint of the expression;
the unary operation does not significantly increase the
size of its operand and is best done on locally-stored
knowledge; and the operand is locally stored (i.e. no
descendant of the binary operation in the expression
tree is a breakpoint).

Rule 3

Change the order of two adjacent unary operations if
the first operation (i.e. the first to be evaluated) is a
breakpoint and the second operation reduces the size
of its operand.

Rule 4

Change the order of two adjacent unary operations if
the first is an expensive operation and the second
reduces the size of its operand.

We shall next consider the application of these rules
to DEAL queries.

7. CONDITIONS FOR APPLYING
TRANSFORMATIONS

The general form of a DEAL query is

SELECT (attribute specification)
FROM (base expression)
WHERE (selection predicate)

The natural order of execution would be to first evaluate
the base expression, then apply the selection predicate,
and finally to project according to the attribute speci-
fication. In the semantic definition presented in section
5, the last two stages of this process were combined in
an operation called Evalquery. Here we shall continue
to regard Evalquery as a single operation, though
clearly it could be divided into a sequence of smaller
operations. Where a transformation involves
Evalquery, it will be quite clear when the applicabilityg
of the transformation could be extended by using instea:
only a suboperation in the transformation.

Since Evalquery is an operation which tends toZ
reduce very substantially the size of its operand, oneZ.
potential source of optimisation lies in carrying ou
Evalquery earlier, before completion of evaluation of=
the base expression. There are other potential trans-3
formations within the base expression itself. In order to?f:
identify all of them, we shall follow the four rules listed2
in section 6. We can then test the validity of eachS
transformation by using the semantic definitions of sec-2
tion 5 to determine overall pre- and post-conditions for5
each sequence of operations. 8

A query can be regarded as a sequence of operations,%
such a sequence being denoted by listing the component§
operations, with semi-colons used as separators. Thus=
OP1; OP2 represents OP1 followed by OP2. Denoting®.
by pre(OP) and post(OP) the pre-condition and post-2
condition respectively of operation OP, the semanticss
of a sequence of operations can be found from

>

eo

€

pre(OP1; OP2) = pre(OP1) /\ pre(OP2)
post(OP1; OP2) = post(OP2)

67d £1068E/6/)

with the result of OP1 being replaced in both pre(OP2

and post(OP2) by its definition from post(OP1).
Then a transformation from a sequence seql to

another sequence seq2 of operations is valid iff

o1sen

(1) pre(seq1) = pre(seq2)
and

¥20zZ IMdy oL u

(2) pre(seq1) /\ post(seq2) = post(seq1)

The point here is that, whenever the specification of
seq2 is satisfied, it should be guaranteed that the speci-
fication of seq1 is also satisfied. Loosely, this requires
that seq2 should have a weaker pre-condition and
stronger post-condition than seq1. However, the origi-
nal sequence of operations is only valid under the con-
dition of pre(seq1) - hence the inclusion of pre(seq1)
in (2).

Since the number of possible transformations is large,
we shall present a proof of validity for just two trans-
formations and shall then state without proof the con-
ditions for validity of the remaining transformations.
Each operation in a sequence will be written in the form

(operation name) ((argument list)) (result name)

56 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

LOGICAL OPTIMISATION OF DISTRIBUTED KNOWLEDGE BASE QUERIES

Example 1

First we consider the sequence

seq1 = Extend(r,att,val)res1;
Evalquery(res1,as,sp)res

Relation r is first extended with new attribute att, pro-
ducing res1. Selection and projection are then per-
formed on res1 to yield res. The transformation sought
in this case is to do the Evalquery before the Extend.
This means that the projection must be onto as-{att}
because r does not possess an attribute att. Thus

seq2 = Evalquery(r,as-{att},sp)R1;
Extend(R1,att,val)R

Now using the formulae for overall pre- and post-con-
ditions, with the definitions of Extend and Evalquery
given in section 5,

pre(seq1)=
att € dom structure(r) U rng hierarchy(r) A (1)
V m1 € dom val . V t1 € state(r) . dom m1 (2)
<1t1 € dom val N\
as C dom structure(r) U {att} U rng (3)
hierarchy(r) N
Vm2 € domsp.Vt2 € state(r) . Y m3 € (4)
dom val . dom m2 < (t2 U {att — val(dom
m3 < t2)}) € dom sp

and

pre(seq2)=
as-{att} C dom structure(r) U rng (5)
hierarchy(r) N\
V m1 € dom sp .V t1 € state(r) . dom m1 (6)
<1t1 € domsp N\
att ¢ leaves(as-{att}) U rng hierarchy(r) N\ (7)
Vm3€E€domval.V1t2 estate(r) .Vm2e€ (8)
dom sp . sp(dom m2 <1t2) = (dom m3 N
leaves(as-{att})) <1t2 € dom val

The first requirement for validity of the transformation
is

pre(seq1) = pre(seq2)

First we observe that condition (7) follows from con-
dition (1), because leaves is a function which produces
a set of atomic attributes. Since dom structure(r) is the
complete set of atomic attributes in r, it follows that
leaves(as-{att}) is certainly contained in dom struc-
ture(r). Further, it is easy to see that (5) can be deduced
from (1) and (3). To deduce (6) from (4), however,
requires the further condition that att is not in the
domain of the map m2, so that dom m2<l(t2U
{att— X}) reduces to dom m2<1t2. Conditions (6) and
(4) are both stating that the selection predicate must be
defined on each tuple of the relation, but in the case of
(4) the original relation has been extended with an
extra attribute. The condition derived is that the extra
attribute att must be irrelevant to the selection predi-
cate. Moreover, (8) follows from (2) only if dom
m3Cleaves(as), so that the intersection of those
expressions is equivalent to dom m3 (it is obvious that
att is not in dom m3, since the latter is the set of
attributes needed to generate att). Thus we derive two
requirements for the validity of the transformation:

(i) att (the extension attribute) is not used in the selec-
tion predicate (more formally, V m1€
domsp. att¢ dom m1)

(i) the projection does not remove any attributes that
are needed for defining the extension attribute
(more formally, YVm3 € dom val.dom m3C
leaves(as)).

We still need to consider the post-conditions, to estab-

lish whether any further conditions are required.

post(seq1)=
structure(res) = leaves(as) < (9)
(structure(r) U {att — d}) N\
hierarchy(res) = {a € dom hierarchy(r) . (10)
leaves({a}) N leaves(as)+# {}} < hierarchy(r) /\
state(res) = {leaves(as) < (t U {att — (11)
valldom m1 <t)}) . t € state(r) A m1 €
dom val AV m2 € dom sp . sp(dom m2 < t)}

and

post(seq2)=
structure(R) = leaves(as-{att}) < (12)
structure(r) U {att — d} N\
hierarchy(R = {a € dom hierarchy(r) . (13)
leaves({a}) N leaves(as) # {}} < hierarchy(r)
N
state(R) = {leaves(as-{att}) <t U {att — (14)
val((dom m1 N leaves(as-{att})) < t)} .t €
state(r) A\ m1 € dom val A Ym2 € dom sp
. sp(dom m2 < t)}

To meet the requirement pre(seq1)

/\ post(seq2) = post(seq1) we must show that con-
ditions (9)—(11) can be deduced from (1)—(4) and (12)-
(14). In fact we can immediately deduce (10) from (13).
Further, (11) follows from (14) and (1), subject to
condition (ii) which was found to be a requirement
earlier. But (9) follows from (12) only if att belongs to
leaves(as), thereby ensuring that the maplet att— d
appears in the structure. The difference between (9)
and (12) is the result of interchanging the extension and
the projection. The new attribute att is added in each
case, but in (9) there is the possibility that it is removed
by the subsequent projection. Thus the analysis of post-
conditions has revealed the need for a third requirement

(iii) the extension attribute is not removed by the pro-
jection (i.e., att € leaves(as)).

Example 2
We now consider the sequence

seq1 = Cartprod(r1,r2)res1;
Replace(res1,oldatt,newatt,val)res

First res1 is formed as the Cartesian product of r1 and
r2. In this relation, we then replace oldatt by newatt,
derived according to the function val. Here we seek to
carry out the replace operation on one of the relations
first, and then to form the Cartesian product. The motiv-
ation for this is that it would make the replace operation
faster (since it would be performed on a much smaller
operand), without greatly affecting the performance of
the Cartesian product. Thus

seq2 = Replace(r1,oldatt,newatt,val)R1;
Cartprod(R1,r2)Res

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 57

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/woo dno-olwsapede//:sdiy Wwolj papeojumo(q

M. C. TAYLOR

Again we begin by analysing the pre-conditions:
pre(seq1)=
newatt ¢ dom structure(r1) U dom
structure(r2) U rng hierarchy(r1) U rng
hierarchy(r2) N\
oldatt € dom structure(r1) U dom
structure(r2) U rng hierarchy(r1) U rng
hierarchy(r2) N\
Vm € domval .V t1 € state(r1) . Vt2 €
state(r2) . dom m < (t1 U t2) € dom val

and

pre(seq2)=
newatt ¢ dom structure(r1) U rng
hierarchy(r1) N\
oldatt € dom structure(r1) U rng
hierarchy(r1) N\
V m € dom val . V t1 € state(r1) . dom m
<t1 € dom val

In examining whether pre(seq2) follows from
pre(seq1), it is clear that (4) can be deduced from (1),
but (5) cannot be deduced. Thus (5) is needed as one
of the conditions for applicability of the transformation.
Moreover, (6) follows from (3) only if dom m is con-
tained within dom t1, so that dom m <(t1U t2)
reduces to dom m <1t1. Conditions (3) and (6) derive
from one of the pre-conditions of the replace operation,
which stated that the generating function for the new
attribute must be defined on each tuple of the relation.
The difference between (3) and (6) arises as a result of
different relations being considered in the two cases,
since in one case the cartesian product has already
been formed. But if the generating function uses only
attributes from one of the original relations, this dif-
ference will not be significant. Thus we derive two
requirements for the validity of this transformation:

(1)
(2)

(3)

(4)
(5)
(6)

(i) one relation contains all the attributes needed for
defining the extension attribute (more formally,
Vm € dom val. Vt1 € state(r1).dom m C dom
t1)

(i) the same relation contains the replaced attribute
(more formally, oldatt € dom structure(r1) U rng
hierarchy(r1)).

Now analysing the overall post-conditions, we find that

post(seq1)=
3d . rng val C d /\ structure(res) =
leaves({oldatt}) <9 (structure(r1) U
structure(r2) U {newatt — d}) N\
hierarchy(res) = {a € dom hierarchy(r1) U
dom hierarchy(r2) . leaves({a}) N
leaves(dom structure(r1) U dom
structure(r2) U {newatt} —
leaves({oldatt})) # {}} < (hierarchy(r1) U
hierarchy(r2)) N\
state(res) = {leaves({oldatt}) < (t U {newatt
— valldom m < t)})|t € {t1 U t2|t1 €
state(r1) /\ t2 € state(r2)} A m € dom val}

and

(7)

(8)

(9)

post(seq2)=
structure(Res) = (leaves({oldatt}) <
(structure(r1) U {newatt — d})) U
structure(r2) N

(10)

hierarchy(Res) = ({a € dom hierarchy(r1) . (11)
leaves({a}) N leaves(dom structure(r1) U
{newatt} - leaves({oldatt})) # {}} <

hierarchy(r1)) U hierarchy(r2) A\

state(Res) = {leaves({oldatt}) € (t1 U (12)

{newatt — val(dom m < t1)}) U t2|t1 €
state(r1) A m € dom val \ 12 € state(r2)}

We need to show that conditions (7)—(9) can be deduced
from (1)-(3) and (10)—(12). In fact, (7) can be seen to
follow from (10), subject to the earlier requirement (ii)
being satisfied. Similarly, (8) follows from (11) and (ii).
Finally, (9) can be deduced from (12) provided that
both (i) and (ii) are satisfied. Thus analysis of the
post-conditions reveals that no further conditions are
required for the validity of this transformation, beyond
those discovered by analysis of the pre-conditions.

Applying the same tests to all the possible trans-
formations we find the following conditions for making
transformations:

Under rule 1

(i) Distribute Evalquery over Union and Difference
always.

Union(r1,r2)res1; Evalquery(res1,as,sp)res
transformed to

Evalquery(r1,as,sp)R1; Evalquery(r2,as,sp)R2;
Union(R1,R2)Res

and similarly for Difference
(ii) Distribute Evalquery over Cartesian product if

sp = sp1/\ sp2 where sp1 is defined on r1 only, and
sp2 on r2 only

Cartprod(r1,r2)res1; Evalquery(res1,as,sp)res
transformed to

Evalquery(r1,as N (dom structure(r1) U rng
hierarchy(r1)),sp1)R1; Evalquery(r2,as N (dom
structure(r2) U rng hierarchy(r2)),sp2)R2;
Cartprod(R1,R2)Res

(iii) Distribute Evalquery over Join if

(a) sp =sp1/\sp2where sp1 is defined on r1 only,
and sp2 on r2 only
(b) a1 € leaves(as)

Join(r1,r2,a1,a2)res1; Evalquery(res1,as,sp)res
transformed to

Evalquery(r1,as N (dom structure(r1) U rng
hierarchy(r1)),sp1)R1; Evalquery(r2,(as U {a2}) N
(dom structure(r2) U rng hierarchy(r2)),sp2)R2;
Join(R1,R2,a1,a2)Res

Under rule 2

(i) Distribute Extend or Replace over Union or Dif-
ference always

Union(r1,r2)res1; Extend(res1,att,val)res
transformed to

Extend(r1,att,val)R1; Extend(r2,att,val)R2;
Union(R1,R2)Res

58 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

O
o)
=

¥20Z Iudy 01 uo 1senb Ag €1068E/61/1/€E/210e/|ulwoo/wod dno-olwspede//:sdiy wolj pepeoju

LOGICAL OPTIMISATION OF DISTRIBUTED KNOWLEDGE BASE QUERIES

and similarly for other cases

(ii) Distribute Extend over Cartesian product (extend-
ing one relation only) if one relation contains all
the necessary attributes for defining the extension
attribute

Cartprod(r1,r2)res1; Extend(res1,att,val)res
transformed to
Extend(r1,att,val)R1; Cartprod(R1,r2)Res

(iif) Distribute Replace over Cartesian product (replac-
ing in one relation only) if

(a) one relation contains all the necessary attributes
for defining the extension attribute, and
(b) the same relation contains the replaced attribute

CartProd(r1,r2)res1; Replace(res1,oldatt,
newatt,val)res

transformed to
Replace(r1,oldatt,newatt,val)R1; Cartprod(R1,r2)Res

(iv) Distribute Extend over Join (extending one
relation only) if one relation contains all the nec-
essary attributes for defining the extension attribute

Join(r1,r2,a1,a2)res1; Extend(res1,att,val)res
transformed to
Extend(r1,att,val)R1; Join(R1,r2,a1,a2)Res

(v) Distribute Replace over Join (replacing in one
relation only) if

(a) one relation contains all the necessary attributes
for defining the new attribute

(b) the replaced attribute belongs to the same
relation

(c) the replace operation does not remove the Join
attribute a1

Join(r1,r2,a1,a2)res1; Replace(res1,oldatt,
newatt,val)res

transformed to

Replace(r1,oldatt,newatt,val)R1;
Join(R1,r2,a1,a2)Res

(v) Distribute Extend over Outerjoin (extending one
relation only) if
(a) one relation contains all the attributes needed for
defining the extension attribute
(b) the other relation does not contain all the nece-
sary attributes

Outerjoin(r1,r2,a1,a2)res1; Extend(res1,att,val)res
transformed to
Extend(r1,att,val)R1; Outerjoin(R1,r2,a1,a2)Res

(Note that condition (b) is needed because the extension
attribute might be defined only in terms of the join
attribute, or indeed it might be just a constant. In such
cases, to do the extension before the outer join would
mean that the unmatched r2 tuples would no longer get
a value for the extension attribute).

(vii) Distribute Replace over outer join (replacing in
one relation only) if

(a) one relation contains all the necessary attributes
for defining the new attribute

(b) the replaced attribute belongs to that relation

(c) the other relation does not contain all the nec-
essary attributes for defining the new attribute

(d) the replace operation does not remove the join
attribute

Outerjoin(r1,r2,a1,a2)res1;
Replace(res1,oldatt,newatt,val)res

transformed to

Replace(r1,oldatt,newatt,val)R1;
Outerjoin(R1,r2,a1,a2)Res

Under Rule 3 (these could also be done under Rule 4)

(i) Do Evalquery before Extend if

(a) the extension attribute is not used in the selection
predicate

(b) the extension attribute is not removed by the
projection

(c) the projection does not remove any attributes
that are needed for defining the extension attri-
bute

Extend(r1,att,val)res1; Evalquery(res1,as,sp)res

transformed to

Evalquery(r1,leaves(as)-{att},sp)R1;
Extend(R1,att,val)R

(ii) Do Evalquery before Replace if

(a) the new attribute is not used in the selection
predicate

(b) the new attribute is not removed by the projection

(c) the projection does not remove any attributes
that are needed for defining the extension attri-
bute

(d) the replaced attribute is not removed by the pro-
jection

Replace(r1,oldatt,newatt,val)res1;
Evalquery(res1,as,sp)res

- transformed to

Evalquery(r1,leaves(as)-{att},sp)R1;
Replace(R1,oldatt,newatt,val)Res

Under Rule 4

Do Evalquery before Unnormalise if
(a) leaves(inf) is contained in leaves(as)
(b) sup ¢ as
Unnorm(r,sup,inf)res1; Evalquery(res1,as,sp)res
transformed to
Evalquery(r,as,sp)R1; Unnorm(R1,sup,inf)Res

The transformations made under rule 1 are similar to
those described by Ullman for relational algebra
queries,' though there are some differences due to our
use of unnormalised relations as the underlying data
structures. The transformations under rules 2, 3 and 4

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 59

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/woo dno-olwsapede//:sdiy Wwolj papeojumo(q

M. C. TAYLOR

are all new, since they involve the extensions to rela-
tional algebra which we have adopted specifically for a
distributed knowledge base system.

8. CONCLUSION

Good query optimisation techniques are essential if
distributed knowledge base systems are to be accepted.
An important aspect of query optimisation is logical
optimisation, by which we mean the application of
semantic-preserving transformations to a query
expression. Before making a transformation, two con-
siderations are vital:

(1) does the transformation preserve the semantics of
the query?

(2) is the transformation likely to improve the execution
efficiency of the query?

To judge (2), we have adapted a set of heuristics devel-
oped for distributed database systems. The main result
of this paper lies in the approach to (1). By formally
defining the semantics of the language, we are able
to determine precise conditions under which a given
transformation is valid. Sometimes the parameters of
an operation need to be changed when a transformation
is applied. In cases where such changes are not immedi-
ately obvious, the formal semantic definitions have been
found to provide useful assistance in highlighting the
need for changes.

The transformations developed here have been for a
subset of DEAL, sufficient to represent complex objects
and to perform first-order deductions. Optimisation of
other features of the language, including recursive
expressions, remains to be tackled. It is anticipated that
the same approach can contribute further in developing
an optimiser for the full language.

REFERENCES

1. P. Bernstein et al., ‘Query processing in a system for
distributed databases (SDD-1)’, ACM TODS 6:4, Decem-
ber (1981).

2. D. Bjorner, ‘Formalisation of database models’, Abstract
Software Specifications, Springer-Verlag LNCS 86 (D.
Bjorner ed.) (1979).

3. D. Bjorner and H. Lovengreen, ‘Formalisation of data-
base systems — and a formal definitions of IMS’, Proc. of
8th VLDB, Mexico City (1982).

4.S. M. Deen, R. R. Amin and M. C. Taylor, ‘Query
decomposition in Preci*’, Distributed data sharing
systems, publ. North Holland (1984) (Schreiber/Litwin
eds.)

5. 8. M. Deen, R. R. Amin and M. C. Taylor, ‘A strategy for
decomposing complex queries in a heterogeneous DDB’,
Proc. 10th VLDB, Singapore (1984).

6. S. M. Deen, ‘A relational language with deductions, func-
tions and recursions’, Data and Knowledge Engineering
Vol 1 (1985).

7. S. M. Deen, ‘An overview of issues in linked knowledge
base systems’, Proc. of EEC COST 11 conference, Vienna
(1988).

8. S. M. Deen and R. V. L. Hinds, ‘A non-normal form
representation for knowledge base systems’, University of
Keele Internal Report (1988).

9. A. HevnerandS. B. Yao, ‘Query processing in distributed
database systems’, IEEE trans. on Software Engineering,
SE-5:3, May (1979).

10. C. B. Jones, ‘Systematic Software Development Using
VDM’, Prentice-Hall (1986).

11. M. Stonebraker, ‘The design of the POSTGRES storage
system’, Proc. 13th VLDB, Brighton (1987).

12. M. C. Taylor, ‘Formal development of query decom-
position algorithms for distributed databases’, University
of Keele Internal Report (1988).

13. J. D. Ullman, ‘Principles of database systems’, 2nd edition
(chapter 8), Computer Science Press (1982).

14. C. Zaniolo, ‘The representation and deductive retrieval
of complex objects’, Proc. 11th VLDB, Stockholm (1985).

Announcements

8-10 May 1990
BUDAPEST, HUNGARY

COMNET ’90 International Conference
Forward into the Second Quarter-Century in
Networking

This Conference is to be a continuation of
the traditional and successful COMNET
meetings held first in 77 and subsequently in
1981 and 1985 in Budapest. It is the most
important meeting of its kind in Central East-
ern Europe, with the participation of experts
in the field of computer networks from all
over the world.

The COMNET series of Conferences are
milestones in networking, that is, important
results came out for the first time on each
occasion (eg message handling-X.400 pro-
tocols, the very first reports about ETHER-
NET, Petri-net models for protocols and
others.)

Scope

The state-of-the-art in networking will be
thoroughly discussed. Results, bottlenecks
and trends in networking (design, operation

and use of networks for different purposes).
LAN-s, special networks, WAN-s, MAN-s
and world-wide nets.

In 1990 networking will complete its 25
years as the idea and very first results of
computer networks appeared in 1965. So this
provides an appropriate opportunity to evalu-
ate the outstanding achievements of the past
quarter-century, to outline the future trends
and new network applications to come.

Within this framework major manufac-
turers will also have the chance to present
their views regarding trends in networking
developments and applications.

Venue

Hotel TOT, located at a panoramic spot in
the hilly green belt of Budapest:
54 Normafa u. Budapest 12.

Information

For more information please contact:
COMNET ’90 Conference Secretariat, c/o
John v. Neumann Society, P.O.B. 240, H-
1368 Budapest. Tel: 36-1-329-349, 36-1-329-
390. Telex: 22-5359. Fax: 36-1-354-317.

60 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

20-22 JUNE 1990
BARCELONA

Fourth International Conference on Data
Communication Systems and Their
Performance

Main Objective

The main objective of this conference is to
provide a large professional forum for the
exchange of recent and original develop-
ments on all kind of theories and techniques
regarding the data communication systems
and their modeled or measured performance.
This meeting follows the conferences organ-
ized in Paris 1981, in Ziirich 1984 and in Rio
de Janeiro 1987.

Conference Chairman

Prof. Ramon Puigjaner, Univ. Illes Balears,
Vice-President of ATI.

Conference Secretariat

BRP - Barcelona Relaciones Piblicas,
Edificio Layetana, C/Pau Claris, N.° 138, 7.°,
4.%, 08009 Barcelona, Spain. Tel: (93) 215 72
14; Fax: (93) 215 72 87.

¥202 I4dy 01 uo 1senb Aq £1068¢/6%/1/£E/2101e/|ulwoo/wod dnoolwsapede//:sdiy Wwolj papeojumo(q

