Integrating Security with Fault-tolerant Distributed Databases*

D. AGRAWAL AND A. EL ABBADI

Department of Computer Science, University of California, Santa Barbara, CA 93106, USA

Replication reduces the security of data in a distributed environment. In this paper, we address the issue of
maintaining security in a fault-tolerant replicated database. We present a protocol that combines both security and
reliability aspects in a database system. Although this protocol provides the desired level of security, it does so at the
expense of availability. By integrating a propagation mechanism with our protocol, we are able to achieve a high level

of security and availability.

Received April 1989.

1. INTRODUCTION

In a distributed database system, data is often replicated
on several sites to achieve fault-tolerance. Such rep-
lication allows the database to remain available to the
users in spite of site and communication failures. How-
ever, by increasing the availability of data, replication
increases the “availability” of the data to intruders or
illegal users of the system. Earlier when there was no
replication, only one copy of a critical data object
existed in the entire network. When we introduce rep-
lication, there are several copies of the same data object
present in the network, making it more vulnerable. If
an intruder manages to access any copy of this data
object, the security of the data may be compromised.
Thus, most fault-tolerant database systems jeopardize
the security of data. In this paper we address the issue
of maintaining security in a fault-tolerant replicated
database.

A distributed system consists of a set of sites con-
nected by a communication network. We assume that
both sites and communication links may fail by crashing,
and that combinations of such failures may lead to
partitioning failures.® Sites in a partition can com-
municate with each other, but, not with sites in other
partitions. The database consists of a set of objects (or
simply files), which are implemented by copies that
reside on different sites. Users access the database by
issuing transactions that consist of read and write opera-
tions. To be consistent, the system should behave as if
each object has only one copy in so far as the users can
tell. Furthermore, if operations of different transactions
are interleaved, the system must behave as if all the
transactions are executed in a serial order. These two
concepts have been formalized as one-copy serializ-
ability?.

A simple example of a protocol that ensures one-copy
serializability, is one that uses two-phase locking* to
synchronize the interleavings of different transactions,
and where a write operation writes all copies of an
object while a read operation reads any copy. Although
correct, this protocol is not fault-tolerant to the failure
of even one site: if one site fails, no write operation
may be executed on any object with copies residing
on that site. Furthermore, the protocol provides no

* This research is supported by the National Science Foundation
under grant numbers CCR-8809387 and IRI-8809284.

security, since if an intruder acquires one copy, all the
information about the object is compromised.

In order to provide fault-tolerance, Gifford proposed
the quorum protocol,’ where associated with each
object, x, is a read quorum, q,[x], and a write quorum,
q.[x]. Each copy has associated with it a wversion
number, which is initialized to one. A write of object x
is executed by writing g,,[x] copies of x and updating
their version numbers to be greater than the maximum
version number associated with any of those copies. A
read of object x is executed by accessing g,[x] copies of
x and reading the value associated with the highest
version number. To ensure correctness, any set of size
q.[x] must have at least one copy in common with any
set of size g,,[x] or g,[x]. Since the write quorum can be
less than all copies of an object, write operations in this
protocol may be executed even when half the copies of
an object are inaccessible. However, this protocol does
not ensure any level of security of the data, since every
copy of an object contains complete information about
that object (although this information may not be up-
to-date). Hence, an intruder, who can acquire a single
copy of an object, jeopardizes the security of the data-
base.

Several schemes have been proposed to achieve
security in distributed systems. However, there have
been relatively few attempts to integrate security with
fault-tolerant databases. Randell and Dobson!® propose
an approach in which security and reliability issues in a
distributed computing system are completely separated
from one another. However, they suggest that the con-
cepts of “reliability and security are not necessarily best
treated so separately, and that their joint consideration
can lead to some interesting new insights”. In this paper,
we propose a protocol where the security of the data is
integrated with the data replication process itself.

Herlihy and Tygar present a secure quorum consensus
protocol® in which they use the concept of a secret key
for encoding and decoding copies of replicated data.
The secret sharing algorithm'® is used to divide the key
into n pieces, which are distributed on n sites. To
read the object, m pieces of the key are retrieved to
determine its value, and then a read quorum of copies
are read and decrypted using the key. To write an
object, the new value is encrypted using the key and
then distributed to a write quorum of copies. Although
this protocol results in secure data, it does so by sepa-
rating the issue of the security of the key from the

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 71

¥202 I4dy 01 uo 1senb Aq Ly068¢/1L 2/ L/EE /2101 e/|ulWwoo/wod dnoolwspede//:sdiy Wolj papeojumo(

D. AGRAWAL AND A. EL ABBADI

replication of the data (the encoding of the data is
separate from the secret distribution of the key). Our
approach deviates from these two approaches'>® in the
sense that we integrate the security and reliability issues
with the protocol itself.

In the next section, we provide some background
on security and describe the information dispersal algor-
ithm."? In Section 3, we present a data management
protocol that integrates the information dispersal algor-
ithm (for security) and the quorum protocol (for
reliability). Although this protocol provides the desired
level of security, it does not achieve the same level of
availability for both read and write operations as the
quorum protocol. In Section 4, we describe a propa-
gation mechanism,"” which ensures that components
of a distributed application share information through
implicit communication. This mechanism is integrated
with our protocol to achieve the same level of avail-
ability for both read and write operations as other
quorum protocols, while maintaining the desired level
of security. Section 5 concludes the paper.

2. SECURITY

In this section, we define the two primary concerns for
secure operations on data. Next, we briefly discuss some
of the algorithms that provide secure operations in a
network. We then describe in greater detail the encod-
ing an(lizdecoding techniques used by one of these algor-
ithms.

2.1 Background

There are two aspects of security: confidentiality and
resiliency. Confidentiality of a file determines the maxi-
mum number of representatives of the file that may be
accessed without compromising the information stored
in the file. Resiliency (in the context of security) of a
file determines the maximum number of representatives
that may be destroyed by an adversary without losing
the file completely.

One of the approaches for maintaining a secure file
in a distributed system is Shamir’s secret sharing algor-
ithm.'® In this algorithm, a file, f, is broken into n
representatives, f;,...,f,, each of them is the same
size as f, i.e., |f)| = |f|, 1 <i=<n, where |f| represents
the number of characters in f. The file f can be con-
structed from any m representatives, but m — 1 rep-
resentatives do not give any information about f. Thus,
if we store the n representatives of f at different sites in
the network, the algorithm has both desirable aspects
of secure data: it provides confidentiality of information
in the file (at least m sites must be broken into in order
to access the file), and it is resilient to accidental or
intentional information losses (the file can be recon-
structed despite a loss of n — m representatives). How-
ever, the algorithm leads to n-fold increase in total
storage.

Rabin'? proposed the information dispersal algorithm
(IDA), which attains data security at nominal storage
cost. In this algorithm the file can be constructed from
any m representatives but it can not be reconstructed
in its entirety from any set of m — 1 representatives. An
important characteristic of IDA is that each rep-
resentative is of size |f|/m. Therefore, the total storage

cost involved is (n/m)|f]. Since n and m can be chosen
such that n = m and (n/m) = 1, this dispersal scheme
is highly efficient in terms of storage requirements.
Furthermore, the algorithm does have both aspects of
security: it guarantees confidentiality and can recover
from loss of information. Also, the standard replication
is a special case of this technique when m = 1. Rabin
discusses several techniques to make the dispersal and
reconstruction computationally efficient. We now
discuss the details of this algorithm.

2.2 Efficient dispersal of information

Consider a file f, which is a stream of characters and is
of size L, i.e.,

fzbl,bz,...,bL.

Each character b; may be considered as an integer taken

@)

from a certain range [0 .. B]. For example, if b; is an2
eight bit character then 0 < b; < 255. We choose a prime 5
number p such that p > B. In the case of eight bit‘:%’
characters, p = 257 will suffice; a larger prime could=

also be chosen. Now, f can be considered as a string of
residues mod p, i.e., a string of elements in the finite

=
o

>

field Z,. All the following computations are performedg
in Z,, i.e., all operations are performed in terms of >

mod p.
Our goal is to disperse f such that:

1. With overwhelming probability no more than &

wapes

5
o

representatives will be lost as a result of failures orc
Q

security mishaps.
2. With overwhelming probability fewer than m rep-
resentatives can be accessed by intruders.

We call k the resiliency level of f, and m its confidentiality
level. We choose n such that n = m + k, where m and

=
[
=
o
[=9
[}
-
o
-
3
=
o
=
<Y
»
[=9
o
@
o
=,
=2
(4]
o
Y
g
Q
<
[¢)]
(¢
[e]
=
Q
@]
7
o
S

vectors

ai=(ail,...,aim)EZ;,",ISiSn

such that every subset of m different vectors are linearly
independent. One way of ensuring that any m vectors
outofa,..
n different elements «, .
n <p), and set

a,=1,a;,...,a" "), 1<is<n.

SPLITTING

The file f is segmented into sequences of length m; if

- the size of fis not a multiple of m, it can be padded

with null characters to make its size a multiple of m.
Thus, if we assume that the size of f, L, is a multiple of
m then:

f=(b|7"'*bm)~""(b(i—l)m+lﬁ"'7bim)7“"

(b(L/m—l)m+l ye e ey b(L/m))

|ulwoo/wo

=
Q
=

=
Q

8e/LL/LiEEr®

<]
o
n
N

., a, are linearly independent, is to choose <
.., a, € Z, (this requires thatc

0Z Iudy Q| uo 1se

N
N

We denote the ith segment of f as s;, where each s; is of

length m, i.e.,

f=sl,52,.

We construct each representative f; by picking the ith
vector q;, and disperse f as follows:

coSw/m)

fi=ai-si,ai-s2,...,8; S /m

72 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

INTEGRATING SECURITY WITH FAULT-TOLERANT DISTRIBUTED DATABASES

Equivalently, f; can be written as a string of characters

fi=cu,cn,... > Ci(L/m)
where ¢ = a; - 5;. Hence |f;| = (|f]/m), or |f,| = (L/m).

RECOMBINATION

If m representatives of f, say fi, f5, . . . , f,, are available,
fcan be reconstructed as follows. WeletA = (a;),<; j<m
be the m X m matrix such that ith row of the matrix is
a;. It can be easily verified that the result of multiplying
the matrix A with the segment s; of f are the ith charac-
ters of each f;. Hence

[¢y

[Cmi]
Thus, by using the inverse of the matrix A and the ith

character taken from each representative f, we can
extract the ith segment s;. That is:

Cii

Cmi

Therefore, from all the characters of fi, . . . , f,, we can
extract the segments sy, . .., 5. /m), Which are all the
segments of the original file f.

The information dispersal algorithm, considers only
the case when a write operation updates n rep-
resentatives and a read operation requires m rep-
resentatives. This protocol is fault-tolerant for read
operations but is not fault-tolerant for write operations.
That is, all n representatives must be available for a
write operation to complete successfully. In the next
section we combine a quorum based data management
protocol with the dispersal algorithm, and propose a
generalized algorithm to attain security and reliability
of data in a distributed environment.

3. A SECURE QUORUM PROTOCOL

We consider a set of sites connected by bidirectional
links. A distributed database consists of a set of objects,
which may reside at different sites.* Users execute
transactions that read and write the objects in the data-
base. The execution of a transaction is atomic, i.e.,
before a transaction terminates it either commits or
aborts all changes it made to the database. We also
assume that transaction execution is synchronized by an
underlying concurrency control mechanism, e.g., two-
phase locking protocol* or timestamp ordering
protocol.™

* Henceforth, files and other abstract entities will be referred to as
objects.

3.1 The protocol

In a distributed system we are interested in achieving a
high level of security and reliability of data. The aspect
of resiliency in the context of security is guaranteed by
replication, since an object can be recovered if some of
the copies of the object are destroyed or lost. However,
replication does not guarantee confidentiality. We use
Rabin’s efficient dispersal technique'? to distribute the
object at n different sites. In this section we integrate
the quorum protocol® with the dispersion technique
to achieve both security and reliability of data. The
information dispersal algorithm (IDA) only considers
the fault-tolerance aspects of read operations on
objects. Our approach extends IDA, and makes both
read and write operations fault-tolerant. An interesting
outcome is that the protocol described here can achieve
the same level of availability as the quorum protocol
for at least one operation (read or write), while pro-
viding the desired level of security.

Given an object x, we distribute it on several sites
using the dispersal technique such that it guarantees the
confidentiality level of m[x] and the resiliency level of
k[x]. The total number of representatives is n[x], where
n[x] = m[x] + k[x]. Each representative is stored at a
different site in the network. A representative consists
of the encoded data and the associated encoding vector.
The properties guaranteed by the dispersal technique
are:

Storage property. The total storage involved in storing
the object x is (n[x]/m[x])|x|, where |x| is the size of the
object.

Confidentiality property. The object x can be con-
structed from any m[x] representatives of x stored at
n[x] sites, but m[x] — 1 representatives of x are not
sufficient to reconstruct the entire object x.

We associate with each representative a version number,
which is initialized to one, and with each object x a
read quorum, q,[x], and a write quorum, q,[x]. A read
operation, r[x], is executed as follows:

(1) Select g,[x] representatives of x, and determine the
maximum version number, vn,,,, of the selected
representatives.

(2) Read m[x] representatives with version number
URpma in the read quorum, and reconstruct x by
employing the recombination technique.

A write operation, w[x], is executed as follows:

(1) Select g,,[x] representatives of x, and determine the
maximum version number, vn,,,, of the selected
representatives.

(2) Create g,[x] representatives out of n[x] using the
splitting technique.

(3) Write these g,,[x] representatives with version num-
ber vng,, + 1.

Read and write quorums must satisfy the following
requirements:

m[x] < q,[x] < n[x] 4.1)
n[x]+1

max (m[x], [5

n[x] + mlx] < q,[x] + q.[x] <2 - n[x]

]) <q,[x]=n[x] (4.2)

(4.3)

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 73

¥202 I4dy 01 uo 1senb Aq Ly068¢/1L 2/ L/EE /2101 e/|ulWwoo/wod dnoolwspede//:sdiy Wolj papeojumo(

D. AGRAWAL AND A. EL ABBADI

Equation (4.1) captures the requirement that each
read operation must access at least m[x] representatives,
otherwise the confidentiality property indicates that the
object cannot be reconstructed completely.

Equation (4.2) places two restrictions on the lower
bound of the write quorums. First, a write operation on
object x must at least write m[x] representatives. If a
write operation writes fewer than m[x] representatives,
subsequent read operations will not be able to construct
x. Second, any two write operations of an object x must
have a non-empty intersection, i.e., there must be at

‘least one representative written by both operations.

This restriction is imposed because every write opera-
tion must assign a new version number greater than the
version numbers assigned to any representative. Note
that the second restriction on the lower bound is the
same as the one imposed on write operations in the
quorum protocol.

Finally, equation (4.3) imposes the restriction that
for an object x, any two sets of sizes g,[x] and g,[x]
must contain at least m[x] representatives in common.
Since a read operation intersects with every write opera-
tion, it can determine the highest version number
written. Furthermore, the entire object x can be con-
structed from m|x] representatives with the highest ver-
sion number. The next theorem formalizes these
arguments and shows the necessity of the lower bound
in equation (4.3).

Theorem 1

For a read operation, r[x], to read the current value of
an object x q,[x] + g,,[x] must be greater than or equal
to nf[x] + m[x].

Proof. If q,[x] + q,[x] < n[x] + 1, then in the worst case
r[x] may not access any representative with the highest
version number. Hence, we only have to consider the
case when:

n[x] < q,[x] + q,[x] < n[x] + m[x]

i.e., the case where a read and a write operation have
a non-empty intersection that does not contain m[x]
representatives. In this case, r[x] intersects with every
write operation at least at one representative, and
hence, r[x] can determine the value of the highest ver-
sion number vn,,,. Let w,,,,[x] be the write operation
that writes x with the version number vn,,,. Let
q,[x] + q,[x] = n[x] + m[x] — 1. Then, in the worst
case, operations w,,,[x] and r[x] have at most m[x] — 1
representatives in common. But by the confidentiality
property, this implies that r[x] cannot reconstruct the
entire object x with vn,,,. Thus, g,[x] + ¢,[x] must be
greater than or equal to n[x] + m[x].

We next compare equations (4.1), (4.2) and (4.3)
with the equations from the quorum protocol relating
the read and write quorums of replicated objects. In the
quorum protocol, a read operation can be performed
by accessing as few as one copy of an object. On the
other hand, in our protocol, one representative does
not represent the entire object, and hence from
Equation (4.1) a read operation must access at least
m[x] representatives. It must be noted, however, that

* Two operations conflict if they operte on the same object and at
least one of them is a write operation.

this is desirable to ensure the confidentiality of the
information contained in the object x.

A similar distinction exists for the write operations in
the two protocols. In the quorum protocol, a write
operation can be executed with as few as [(n[x] + 1)/
2] copies of an object x, while our protocol requires at
least the maximum of m[x] and [(n(x) + 1)/2] rep-
resentatives. This restriction, however, can be made
void by always choosing a value of m[x] such that
m[x] < (n[x]/2). Hence, equation (4.2) requires that
two write operations must have at least one rep-
resentative in common, which is the same as in the
quorum protocol. This is due to the observation that in
order to execute a write operation the current value of
the object is not necessary, rather the highest version
number associated with any of its representatives must
be available.

Finally, in the quorum protocol, a read and a write
operation on an object x need only have one copy in
common while equation (4.3) requires m[x] rep-
resentatives to be in common. Note that for the purpose
of correctness, i.e., to ensure one-copy serializability
the sum of read and write quorums of n[x] + 1 rep-
resentatives would be sufficient. This is due to the fact
that to ensure one-copy serializability, all our protocol
has to guarantee is that two conflicting operations* must
physically conflict on at least one representative. Since
our protocol imposes stronger restrictions on read and
write quorums, it must ensure one-copy serializability.
We next analyze the level of availability achieved by
our protocol.

3.2 Resiliency of the protocol

This simple protocol is a generalization of the quorum
protocol in which objects are not split and dispersed, or
equivalently in which for object x, m[x] =1. In this
section we compare the levels of resiliency achieved by
both protocols: we show that in general our protocol
can achieve the same resiliency level for at least one
operation while providing a higher level of security. We
start by formalizing the notion of resiliency as follows:
an implementation of an object x has read resiliency,
R,[x], if a read operation on x can be executed even
after R,[x] representatives are inaccessible due to site
or partitioning failures. Write resiliency, R,[x], for an
object x is defined similarly.

For purposes of comparison, let Q,[x] and Q,[x] be
the read and write quorums associated with an object x
according to the quorum protocol, and let N[x] be the
total number of copies implementing object x. This
implementation has a read resiliency R,[x]=
N[x] - Q,x] and a write resiliency R,[x]=
N[x] — Q,[x]. We now present two implementations
using our protocol, one that achieves the same write
resiliency as that achieved by the quorum protocol (but
a lower degree of read resiliency), and another that
achieves the same read resiliency (but a lower write
resiliency). Both implementations provide the same
level of security attained by IDA while making read or
write operations fault-tolerant.

We implement our protocol using n[x] = N[x] rep-
resentatives, and any value of m[x] such that m[x] <
(n[x]/2). The dispersion approach can achieve the same
write resiliency for write operations by assigning

74 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

¥202 I4dy 01 uo 1senb Aq Ly068¢/1L 2/ L/EE /2101 e/|ulWwoo/wod dnoolwspede//:sdiy Wolj papeojumo(

INTEGRATING SECURITY WITH FAULT-TOLERANT DISTRIBUTED DATABASES

gu[x] = Q,[x]; since n[x] = N[x], q,[x] > (N[x]/2) =
(n[x]/2), and since m[x] < (n[x]/2), q.[x]> m[x].
Unfortunately, to achieve this degree of write resiliency
and communication cost, read operations in our pro-
tocol become more expensive and less resilient to fail-
ures. More specifically, g,[x] = Q,[x] + m[x] — 1, i.e.,
the read quorum has increased in size by (m[x] — 1),
and hence the read resiliency has decreased by that
factor too. Our second implementation achieves the
same read resiliency as the quorum protocol but at the
expense of write operations. Let n[x] = N[x] and q,[x] =
Q,[x], thus achieving the same read resiliency as the
quorum protocol. However, write quorums are q,,[x] =
0,[x] + (m[x] — 1) in this case, i.e., the write quorum
has increased in size by (m[x] — 1), and thus lowering
the write resiliency of x. Note that from the storage
property the storage cost is n[x]/m[x] and m[x] is gen-
erally greater than one in case of secure data. Therefore,
a side-effect of using IDA is that our protocol requires
less storage for data replication.

In conclusion, we note that since a read and a write
quorum for an object x must contain m[x] represen-
tatives, both read and write operations cannot achieve
the same degree of resiliency and communication cost
as the quorum protocol while maintaining the desired
level of security. In the next section we present a special
mechanism that overcomes this problem.

4. A HIGHLY AVAILABLE SECURE
QUORUM PROTOCOL

In the previous section we showed that in order to
achieve confidentiality of an object x to m[x] and to
achieve resiliency of x to n[x] — m[x], the size of the
intersection between read and write operations
increases from one copy of x to m[x] representatives
of x. The larger size intersection results in increased
communication costs for read and/or write operations.
In this section we provide an underlying mechanism to
ensure that the information written by a write operation
on an object is eventually propagated to all rep-
resentatives of the object in the system. Although all
representatives of an object x are updated as a result of
a write operation on x, it does not mean that g,,[x] in this
protocol is n[x]. By using this underlying mechanism, we
will show how to decrease the size of the intersection
from m[x] representatives to one representative while
maintaining the desired security of x. First, we describe
the underlying mechanism to propagate write opera-
tions to all representatives of an object. Next, we explain
how to integrate our protocol with the propagation
mechanism. Finally, we compare our modified protocol
with the quorum protocol and demonstrate that we
achieve the same level of resiliency and communication
cost for read and write operations in our protocol.

4.1 The propagation mechanism

A common technique to propagate information
efficiently in a network and, thus, synchronize various
components of a distributed application is to construct
a log of certain application specific events that have
occurred in the network.' In the case of a replicated
database such events include reading or writing a copy
of an object at the coordinator site of a transaction.

Each site maintains a local copy of the log, which is
organized as an ordered sequence of event records,
and a propagation mechanism is employed to keep the
copies of the log up-to-date. The mechanism makes
use of communication operations, send and receive, to
exchange Portions of the copies of the log for this
purpose.> 7-% -7 The background messages used in the
propagation mechanism to bring all the copies of the
log up-to-date are also referred to as gossip messages.!!
We have chosen the algorithm proposed by Wuu and
Bernstein'? to integrate the propagation mechanism
with our protocol.

Wuu and Bernstein!” describe an efficient implemen-
tation of the propagation mechanism. Each site, S,
maintains a time-table, T;, which is an N X N array of
timestamps of events that have occurred in the network,
where N is the total number of sites. A site uses the
time-table to place a bound on how out-of-date other
sites are about events that have happened in the net-
work. The time-table allows a site to decide what portion
of its copy of the log should be sent to another site, and
when all sites have learned about a particular event.
The latter information is used by the site to determine
when certain portions of its copy of the log can be
discarded. Hence, a site retains a particular event record
in its copy of the log only if it is not certain that all other
sites have learned of that event. The happened-before
relation, “—”,!° relates the application specific events
and the communication operations employed by the
propagation mechanism. Periodically a site sends its
timetable and a portion of its copy of the log to another
site. On receiving such a message, a site updates its
copy of the log by including event records of which it was
unaware and updates its time-table using information in
the received time-table. The following two properties
are guaranteed by the algorithm:

Propagation property. Every site eventually learns of
each event.

Causality property. If e, and e, are two events such
that e; — e,, then if a site knows of e,, it must also know
of e,.

The propagation property is dependent on the assump-
tion that site failures and network partitions are not
permanent. It follows from the causality property that
a site can process events in the happened-before order.

It should be noted that in the model of the system
discussed above, all communications among sites is per-
formed implicitly by exchanging the copies of logs
among the sites. That is, explicit communication opera-
tions, send and receive, are not available to application
programs. Instead, an application program relies on the
underlying propagation mechanism to inform other sites
about its operation request (for example, a find opera-
tion on a distributed dictionary). The responses of other
sites (for example, the results of a find operation on a
distributed dictionary) are also communicated to the
application program through the log. Although the
propagation mechanism has an overhead of maintaining
copies of the log, it has several advantages that offset
this extra overhead: it can be easily implemented in an
unreliable network, and the number of messages in the
system can be reduced at the expense of the size of
messages. Furthermore, the size of the copies of the log
is bounded since sites discard event records from their

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 75

¥202 I4dy 01 uo 1senb Aq Ly068¢/1L 2/ L/EE /2101 e/|ulWwoo/wod dnoolwspede//:sdiy Wolj papeojumo(

D. AGRAWAL AND A. EL ABBADI

copies as soon as they discover that all sites have learned
about the events corresponding to these event records.
Several optimizations have been proposed to reduce the
overhead associated with this mechanisn.'’

4.2 The integrated protocol

We now integrate the propagation mechanism intro-
duced in the previous subsection with the execution of
read and write operations of transactions. The disper-
sion technique described earlier is used to store the
representatives of objects at different sites. The model
of the system remains the same as developed in Section
3.1 except for the distinction that application programs,
transactions in our case, do not explicitly communicate
with remote sites in the system. All communication is
achieved by modelling operations and the results of the
operations as events in the system, and then exchanging
the copies of the log among the sites. The site, where a
transaction originates, is designated as the coordinator
of the transaction. Read and write operations of a
transaction are recorded as events in the copy of the log
at the coordinator; other sites in the network learn
about these events as a result of the propagation. Fur-
thermore, sites agreeing to be in the quorum of an
operation do not communicate explicitly with the coor-
dinator. Instead, their decision to be in the quorum is
also recorded as an event in their copy of the log; they
too rely on the underlying communication operations
to propagate these events to the coordinator.

We associate with each object x, a read quorum, q,|x],
and a write quorum, q,[x]. A read operation, r[x], is
executed as follows:

(1) A read operation, r[x], results in an event, r[x]-
event, at the coordinator. An r[x]-event record is
placed in the coordinator’s copy of the log. When
the coordinator’s copy of the log is propagated to
other sites, the effect is the same as the transaction
sending a read request to other sites in the system.

(2) When assite, S, learns of r[x]-event and decides* to
be in the quorum for r[x], an event, okg(r[x])-event,
occurs at that site. The event record corresponding
to okg(r[x])-event in the copy of the log includes the
value of the representative of x at that site. When
the site’s copy of the log is eventually propagated
to the coordinator, the effect is the same as the
transaction receiving a reply to the read request
from a site in the quorum.

(3) The operation, r{x], is not completed until the coor-
dinator can determine that g,[x] representatives of
x have been accessed. The events, oks(r[x])-event,
are observed at the coordinator for this purpose.
After accessing g,[x] representatives of x, the coor-
dinator returns the value of x to the requesting
transaction. The object x is constructed by ident-
ifying m[x] representatives with the highest version
number, and by using the recombination technique
described in Section 2.2.

A write operation, w[x], is executed as follows:

(1) A write operation, w[x], results in an event, v[x]-
event, at the coordinator. A v[x]-event record is

* This decision is based on the concurrency control mechanism
employed.

placed in the coordinator’s copy of the log. When
the coordinator’s copy of the log is propagated to
other sites, the effect is the same as the transaction
sending a version request to other sites in the system.

(2) When a site, S, learns of v[x]-event and decides to

be in the quorum for w(x], an event, okg(v[x])-event,
occurs at that site. The event record corresponding
to okgs(v[x])-event in the copy of the log includes the
version number of the representative of x at that
site. When the site’s copy of the log is eventually
propagated to the coordinator, the effect is the same
as the transaction receiving a reply to the version
request from a site in the quorum.

(3) The operation, w[x], is not completed until the

coordinator can determine that g,[x] representives

of x have been accessed. The events, okg(v[x])-

event, are observed by the coordinator for this pur-

pose. The operation, w[x], is completed when an ¥
event, w[x]-event, occurs at the coordinator. A w[x]- 5
event record includes the new value and the new g
version number of x that will be used to update the &
representatives of x at various sites in the network. 3
When the coordinator’s copy of the log is propagated =3
to other sites, the effect is the same as the transaction T%
sending a write request to other sites in the system.

Note that the underlying concurrency control mech-
anism ensures that no other transaction can access
x until the transaction executing w[x] commits or
aborts at its quorum.

The modified protocol must satisfy the following
requirements:

mlx] < q,[x] < n[x]

max (m[x], P—[%D

nlx] +1=<gq,[x] + qu[x] <2 n[x]

(5.1)

< qu[x] < nlx]

(5.2)

(5.3)

Equations (5.1) and (5.2) are the same as Equations
(4.1) and (4.2) from the previous section; this is due
to the identical considerations. On the other hand,
Equation (5.3) is different and states that the read
and write quorum intersection of one representative is
sufficient. This is a significant improvement from the
previous section, where it was required that a read and
a write quorum for an object x must have an intersection
of m[x] representatives. This is due to the fact that the
event record for w[x] in the copy of the log at a site
contains the entire information about x, and not only
the information concerning the representative of x at
that site. Since gq,[x]+ q,[x] =n[x] + 1, there will
always be at least one representative with the highest
version number in g,[x] corresponding to some write
operation wy,,[x]. If r[x] collects m[x] representatives
or more with the highest version number, it can recon-
struct the entire object x. In the case when r[x] collects
fewer than m[x] representatives with the highest version
number, then w,,,[x]-event has not been propagated to
all representatives of x in the network. Since an event
record is discarded by a site only when all sites learn
about the event, w,, [x]-event record must still exist in
the log. Hence, the coordinator can always construct
the entire object x by using its copy of the log. This is
formally proved in the following theorem.

76 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

¥202 I4dy 01 uo 1senb Aq Ly068¢/1L 2/ L/EE 2101 /|ulwod/wod dnoolwapeoe),

INTEGRATING SECURITY WITH FAULT-TOLERANT DISTRIBUTED DATABASES

Theorem 2

For a read operation, r[x], to read the current value of
an object x, g,[x] + g,[x] must be greater than or equal
to n[x] + 1.

Proof. Since q,[x] + q,[x] = n[x] + 1, r[x] intersects
with every write operation at least at one representative,
and hence, can determine the highest version number
VNmax. Let wi,[x] be the write operation that writes x
with version number vn,,,. Since q,[x] = m]|x], there
are two cases to consider. If r[x] collects m[x] rep-
resentatives or more with vn,, in its quorum, it can
construct x from the replies of the sites in the quorum.
Otherwise, r[x] collects fewer than m[x] representatives
with vng,, and w,,,,[x]-event must exist in the copies of
the log at the sites that have the representatives of x
with vn,, (this is from Ref. 17 where an event record
is discarded by a site if it can determine that all sites
have learned about the event). At least one of these
sites, S, with vn,,,, must be in g,[x]. Since at S, r[x] will
read from w,,,[x], then:

Wmax [X]-event — r[x]-event — ok s (r[x])-event

Hence by the causality property, when the coordinator
of r(x] learns about okg(r[x])-event, it must also become
aware of w,[x]-event. Thus, the coordinator will
always return the current value of x. O

4.3 Resiliency of the protocol

The quorum intersection requirement in our protocol is
identical to that in the quorum protocol, and therefore,
our protocol achieves the same level of availability while
providing security. As in Section 3.2, let Q,,[x] and Q,[x]
be the read and write quorums associated with an object
x according to the quorum protocol, and let N[x] be the
total number of copies implementing object x. This
implementation has a read resiliency R/[x]=
Nix]- QJx] and a write resiliency R,[x]=
N[x] = Q,[x]. In our implementation, we use n[x] =
Nlx]. 4[] = Q/lx], and g,[x] = Q,[x]. We choose m[x]
such that:

(5.1)

mix] < g,[x] < nlx]

n[x] +1

max (m[x], [5 D =<gq,[x]<n[x] (5.2)

If we choose a value of m[x] such that m[x] < (n[x]/2)
then equation (5.2) reduces to:

5

which imposes the same restriction on write operations
as in the quorum protocol. Thus the only restriction
imposed by our scheme is that the read quorum must
be greater than or equal to m[x]. This implies that the
range of read quorum assignment is restricted at the
lower end in our protocol. However, this is not a serious
shortcoming, since any fault-tolerant implementation of
an object x will rarely use the lower end of the read
quorum assignments (for write operations to tolerate
the failures of t copies, the read quorum must be greater
than r). Furthermore, in order to guarantee con-
fidentiality of x, we will generally choose a value of g,[x]

| = vl < nta (5.22)

that is greater than one, and use this to choose the value
of m[x]. Thus, the restricted range of read quorum
assignments does not have any significant ramifications.
Note that the storage requirement for replication in
n[x]/m[x] of the size of x in our modified protocol.

S. CONCLUSION

. In this paper, we presented a secure and fault-tolerant

protocol. We first integrated the information dispersal
algorithm!? with the quorum protocol® to provide both
security and fault-tolerance in a database system. This
resulted in a protocol that extends the fault-tolerant
aspects of IDA to both read and write operations.
However, this protocol can not achieve the same level of
availability of read and write operations as the quorum
protocol, while maintaining the desired level of security.
In order to overcome this drawback, we integrated
the propagation technique!” with our protocol. The
propagation mechanism does have an extra overhead
of maintaining copies of the log in the system. However,
there are several advantages of this mechanism that
offset this overhead: it can be easily implemented in an
unreliable network, and the number of messages can
be reduced at the cost of the size of messages. We
demonstrated that for any read quorum greater than
one, our protocol can provide security and reduce the
storage while maintaining the same availability for read
and write operations. The large size of read quorum is
desirable for highly secure databases. Furthermore, in
most fault-tolerant systems based on the quorum
approach, the write quorum is generally less than all
copies of an object, and hence the read quorum is
greater than one. Such fault tolerant systems can benefit
from the approach proposed in this paper to provide
secure database operation and also reduce storage
requirements. '

REFERENCES

1. D. Agrawal and A. El Abbadi, Reducing Storage for
Quorum Consensus Algorithms, Proceedings of the Four-
teenth International Conference on Very Large Data Bases
pp. 419-430 (1988).

2. P. A. Bernstein and N. Goodman, The failure and recov-
ery problem for replicated databases, Proceedings of the
Second ACM Symposium of Principles of Distributed
Computing pp. 114-122 (1983).

3. S. Davidson, H. Garcia-Molina and D. Skeen, Con-
sistency in Partitioned Networks, Computing Surveys 17
(3) pp- 341-370 (1985).

4. K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger,
The notion of consistency and predicate locks in database
system. Communications of the ACM, 19 (11) pp. 624
633 (1976).

5. M. J. Fischer and A. Michael, Sacrificing serializability to
attain high availability of data in an unreliable network,
ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems pp. 70-75 (1982).

6. D. K. Gifford, Weighted voting for replicated data, Pro-
ceedings of the seventh ACM symposium on operating
systems principles pp. 150-159 (1979).

7. A. Heddaya, M. Hsu and W. Weihl, Two phase gossip:
Managing distributed event histories, To appear in Infor-
mation Sciences: An international journal.

8. M. P. Herlihy and J. D. Tygar, How to make replicated
data secure, Advances in Cryptology, Proceedings of

THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990 77

¥202 I4dy 01 uo 1senb Aq Ly068¢/1L 2/ L/EE /2101 e/|ulWwoo/wod dnoolwspede//:sdiy Wolj papeojumo(

10.

11.

12.

D. AGRAWAL AND A. EL ABBADI

CRYPTO '87, Springer Verlag, Lecture Notes in Computer
Science, No. 293 pp. 379-391 (1987).
. T. A. Joseph and K. P. Birman, Low cost management
of replicated data in fault-tolerant distributed systems,
ACM Transactions on Computer Systems 4 (1) pp. 54-70
(1986).
L. Lamport, Time, clocks and ordering of events in a
distributed system, Communications of the ACM 21 (7)
pp. 558-565 (1978).
B. R. Liskow and R. Ladin, Highly available services in
distributed systems, Proceedings of the Fifth ACM Sym-
posium on Principles of Distributed Computing pp. 29-39
(1986).
M. O. Rabin, Efficient dispersal of information for secur-
ity, load balancing, and fault tolerance, Journal of the
ACM, 36 (2) pp. 335-348 (1989).

13.

14.

15.

16.

17.

B. Randell and J. Dobson, Reliability and security issues
in distributed computing systems, Proceedings of the Fifth
Symposium on Reliability in Distributed Software and
Database Systems, pp. 113-118 (1986).

D. P. Reed, Implementing atomic actions on decentralized
data, ACM Transactions on Computer Systems, 1 (1) pp.
3-23 (1983).

F. B. Schneider, Synchronization in distributed programs,
ACM Transactions on Programming Languages and Sys-
tems 4 (2) pp. 125-148 (1982).

A. Shamir, How to share a secret? Communications of
the ACM, 22 (11) pp. 612-613 (1979).

G. T.J. Wuu and A. J. Bernstein, Efficient solutions to
the replicated log and dictionary problems, Proceedings
of the Third ACM Symposium on Principles of Distributed
Computing pp. 233-242 (1984).

Announcements

dho-oiwepeoe//:sdiy wouy pepeojumoq

2-6 NOVEMBER 1992
MADRID, SPAIN

12th World Computer Congress
IFIP Congress ’92

The International Federation for Information
Processing (IFIP) and the Federacion Espaii-
ola de Sociedades de Informatica (FESI)
invite you to participate in IFIP Congress *92,
the 12th World Computer Congress.

IFIP

The Interational Federation for Information
Processing is a multinational federation of
professional and technical organizations (or
national groupings of such organizations)
concerned with information and computer
sciences. As of March 1989, there are 46
organizational members of IFIP, represent-
ing 64 countries.

The aims of IFIP are to promote infor-
mation science and technology by:

o fostering international cooperation in the
field of information processing;

® stimulating research, development and the
application of information processing in
science and human activity;

o furthering the dissemination and exchange
of information about the subject;

® encouraging education in information pro-
cessing.

IFIP came into existence in January, 1960. It
was established after the first International
Conference on Information Processing which
was held in Paris in June, 1969, under the
sponsorship of UNESCO. Its technical work
is managed by nine Technical Committees,
divided into a number of Working Groups.

The World Computer Congresses

The most significant event in the IFIP pro-
gramme is the World Computer Congress,
held every three years. The Congress is an
international occasion which attracts infor-
mation and computer professionals from all
over the world, to learn and exchange ideas
with their colleagues from other countries.

Congress Site

IFIP Congress '92 will be held at the City
Hall Pavillions in the Casa de Campo, the
largest park in Madrid, just a few minutes
ride by underground or bus from the centre
of the old town. Parallel sessions will take
place at nearby buildings, amidst the most
picturesque landscape of Spain’s capital city.

Technical Programme

IFIP Congresses’ technical programmes pro-
vide, in plenary and multiple parallel sessions
of outstanding quality, an up-to-date state-
of-the-art panorama of information and com-
puter science and technology disciplines.
Managers, professionals, scientists and edu-
cators can choose in them the particular
menus that cover their specific areas of inter-
est.

Exhibition

In 1992, Spain’s major annual international
exhibition for the information and computer
industries (SIMO) will be held in Madrid in
conjunction with the World Computer Con-
gress.

SIMO was started in 1961 and has grown
since then to cover a surface of 30,800 sq m,
with over 500 exhibitors and almost 180,000

78 THE COMPUTER JOURNAL, VOL 33, NO. 1, 1990

The official air carrier for the Congress is
Iberia, the Spanish National Air Company.
The international airport of Madrid (Barajas) <
is one of the six busiest airports in Europe, J
with frequent connections to all countries.g
Spain is a member of the European Com- 3
munity and maintains diplomatic relations @
with all IFIP member nations and, in fact, —
with almost all others. Information aboutZ
passport and, in some cases, visa require-2
ments can be obtained at any Spanish diplo- §
matic delegation.

Accommodation has been arranged in sev-
eral categories, from de luxe through econ-o
omy, in order to suite the needs of all%>
delegates.

Besides the Congress receptions and offi- 3
cial banquet, an extensive sightseeing, cul-'Y
tural and activities programme is being
planned for delegates and accompanying per-
sons. Pre- and post-congress tours will be
available for those wishing to explore further
into the many opportunities that Spain offers
to suit any visitor’s interest.

visitors, mostly professionals coming from all 8
the country and abroad. 3
E
Travel, Accommodation and Social Pro-=
gramme)
&
Qo
w

| Uo1s

AL

Additional Information

The official language of the Congress will be
English. Simultaneous translation into Span-
ish will be offered by sponsoring entities.

For other additional information, contact us
at:

IFIP Congress '92, FESI, Federacién Espaii-
ola de Sociedades de Informatica, Hortaleza
104-2.° Izqda, 28004 Madrid, Spain. (elec-
tronic mail: fesi _ dit.upm.es)

