Structure Clashes — An Alternative to Program Inversion

R. G. DROMEY* AND T. A. CHORVAT

Programming Methodology Research Group, Computing and Information Technology, Griffith University, Nathan, Brisbane, 4111, Australia

A method for handling boundary structure clashes is presented. It provides a simple alternative to Jackson’s program
inversion technique. It is a constructive approach based on the use of prototypes. Development begins by solving the
corresponding simpler problem that has no structure clashes. This solution is then used to guide the solution of the
original problem. Programs constructed in this way preserve the correspondence between the program control structure
and the data structure. They should therefore be easier to maintain than their counterparts developed using Jackson’s

program inversion method.

. Received May 1988, revised August 1988

1. INTRODUCTION

Often the processing of information is not synchronized.
This results in structure clashes [Jackson-75]. A bound-
ary structure clash is defined as an incompatibility
between two or more data structures involved in a
transfer of information. A situation where data must be
read in records of one size and written in records of
another size is typical of such problems. In this case,
the input of records and the output of records is not
synchronized. If such problems are not carefully and
systematically dealt with they can lead to complex, and
potentially error-prone, programs.

The existing method of solving boundary structure
clash problems involves decomposition of the problem
with respect to data structure into two or more simpler
problems. The solutions to these simpler problems are
then composed to provide the total solution. Standard
techniques for implementing the composition involve
use of co-routines and separate processes communi-
cating through a shared buffer or pipe. When these
facilities are not available Jackson’s technique of pro-
gram inversion can be used.

The advantage of Jackson’s method lies in the relative
simplicity of the functions produced by the decom-
position with respect to data structure and the straight-
forward way inversion composes those functions
[Hughes-79]. However, decomposition destroys that
correspondence between the program structure and the
original data structure. There is then a need to compose
the functions and to communicate data and control
information between them. This adds to the complexity
of the solution.

The question that needs to be asked is whether the
added complexity and loss of correspondence associated
with decomposition and inversion are really necessary
for solving boundary structure clash problems. Hughes
[Hughes-79] obtained a result that shows the boundary
structure clashes can be solved using Jackson’s basic
method of matching data structure and program struc-
ture. The forced synchronization of loops suggested
here realises this result.

The forced synchronization method for resolving
boundary structure clashes relies on the application of
a prototyping strategy. What we are suggesting is that
the basic program structure used in solving the problem

* To whom correspondence should be addressed.

where there is no structure clash should be preserved
in solving the corresponding problem where there is a
structure clash. The control structure of the prototype
solution should be designed to match the data structure
in the sense advocated by Jackson.

The guiding structuring principle for prototyping is
the principle of structural simplification. It may be stated
as follows:

Principle of structural simplification
“For any problem for which there is a structure clash
there is a corresponding simpler problem for which
there is no structure clash.”

This principle can be used to identify an appropriate
structure for a program that must resolve a structure
clash.

2. FORCED SYNCHRONIZATION OF
LOOPS

To introduce the concept of forced synchronization of
loops, we will consider a very simple copying problem.

nb Aq G£858¢/92Z L/Z/cE/e1o1e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

2.1 Buffer-copy problem

Suppose we want to input data from a file consisting of 3
homogenous data objects grouped in records of one§
size, M, and then output the data objects grouped in g
records of a different size, N. Here, the prototype >
problem corresponds to the case where the input, trans- =
fer of information, and output of data are all synch- S
ronized (i.e.: M = N). The input of data is accomplished =
by filling the input buffer in[1 .. M]. This is achieved by

a cell to getrec, which accepts three arguments — in,
where to put the data; M, the maximum amount of data
to get, and m, the actual amount of data placed into in.
In this case the processing is merely to copy the input
buffer in[1.. M] to the output buffer out{1.. N]. The
data is written out by a call to putrec, whose arguments
identify where the data is, and the size of the record to
output. All of this occurs before there is a need for a
new call to getrec. Processing will need to continue
until the input is exhausted. Getrec returns a value of
zero in parameter m when there is no more data to
actually place into the buffer. Matching the program
structure with the data structure using Jackson’s JSP
method we arrive at the prototype solution below.

126 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

STRUCTURE CLASHES - AN ALTERNATIVE TO PROGRAM INVERSION

Prototype structure*
i:=0;
j:=0;
repeat
getrec(in, m, M);
doi#m—
outi,1:=injq; ii=i+1;j:=j+1;
{Process (in this case just a copy)}

{Input}

od;

i:=0;

putrec(out, m); j:=0; {Output}
until m=0;

With this particular type of problem, as soon as we
admit the possibility that the input buffer in[1.. M] and
the output buffer out[1. . N] may be different in length
(i.e. M=+ N) there is no longer any synchronization
between the calls to getrec and putrec. This creates a
loop structuring problem where it is necessary to make
a call to either getrec or putrec or both with each
iteration.

In our introduction we suggested that a good strategy
for handling problems of this type was to exploit the
structure of the prototype solution that had no structure
clash in constructing a solution that handles the structure
clash.

Examining the structure of our prototype solution to
the problem we see that it has the basic form:

repeat
1. input data
2. process while not requiring input or output
3. output the processed data

until termination condition

All that is required to handle the situation where the
input and output buffers are different in size is to make
the input of data and the output of data conditional.
That is, we only input data when it is required, and we
only output data when it is required. This preserves the
prototype control structure in the solution of the more
complex problem. We then have the augmented or
synchronized structure:

repeat

1. if require input then input data

2. process while not requiring input or output

3. if require output then output the processed data
until termination condition

With this new structure, because of the conditional
input and conditional output, there is either input or
output with each iteration of the outermost loop. When
the input and output buffers are the same size (i.e. M =
N) there will be input and output with each iteration
because the two processes are synchronized. This struc-
ture with conditional input and output implements the

 forced synchronization of the input and the output. The

component of the structure that implements processing
while there is no demand for either input or output is
referred to as a pipe. The pipe controls the flow of
information from the input to the output. It inter-
mittently suspends the flow when either the sink
(output) is full or the source (input) is empty. Ter-
mination of the information flow through the pipe is

* For our implementations we have used a variant of Dijkstra’s
Guarded Commands.

achieved using the forced termination technique which
has been discussed in detail elsewhere [Dromey-85].

Surprisingly, these very simple guidelines can lead to
the straightforward solution of a wide range of
problems. Applying forced synchronization to the
present problem we get:

Mismatched copy:
i:=0; {Input initialization}
j:=0; {Output initialization}
repeat

if i = 0 then getrec(in, m, M) fi;

pi=m: {Conditional Input initialization}
do j# p—# {Process while not requiring
input or output}

ifj#N—outi :=in,;i:=i+1;j:=j+1;

[i=N—p:=i
fi
od
if i= M then i:=0 fi; {Conditional Input
finalization}
if j = N then putrec(out, j); {Conditional

j:i=0
fi;
until m=0;
if j # N then putrec(out, j) fi
{Final output finalization}

Output finalization}

The advantage of the forced synchronization solution
to the problem is that it retains the structure of the
prototype problem. This keeps input, processing, and
output well separated. The separation will make any
subsequent change to one of these phases easier.

2.2 A Simple Structure Clash

The next example is slightly more complicated. Suppose
we have a file of student records (each record consisting
of a course descriptor, student name, and mark) which
are sorted by course. For example:

CS1 Name1 40
CS1 Name2 66
CSZ Name1’ 75

CS2 Name2’ 53

To process this data it is required to produce a report
that is split into pages, with a heading on each page.
The file is to be read and student names and marks are
to be listed together with the total class count at the end
of each course. In this problem there is an arbitrary
relationship between course and page. For example:

Page 1 Course 1
Page 2 o

_— Course 2
Page 3 e

— Course 3

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 127

¥20Z I4dy 60 Uo 1senb Aq G£8G8€/9Z L/Z/€E/a1o1e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

R. G. DROMEY AND T. A. CHORVAT

The prototype problem in this case is one where each
course fits exactly on a page. The solution obtained
using Jackson’s method may take the form:

Prototype solution*

M = true;
getl(data); i := eofidata);
linecount := 0;
doi# M-
WritePageHeading(data“ .course); {page
output initialization}
currentcourse .= data”.course; {course output

{input initialization}

classcount := 0; initialization}
m:= M, g
doi#Fm— {process while there is more

data, and it is the same course}
if data”.course = currentcourse —
write(data”.name); write(data”.mark);
linecount := linecount + 1;
get(data); i := eofidata);
classcount := classcount + 1
[ldata”.course # currentcourse— m := i
fi
od;
write(classcount); {course output finalization}
write(PAGEBREAK); {page output finalization}
linecount := 0;
od;

Once again loop control is achieved using the forced

- termination technique [Dromey-85]. The outer loop will
terminate when the input is exhausted. The inner loop
will terminate when either there is no more data, or
there is a change of course. m provides an upper limit
on the amount of processing in the inner loop and is
used to satisfy proof of termination requirements. i
always signifies whether the end of the data file has been
reached or not.

To handle the case where course and page boundaries
do not correspond we need to conditionalize the init-
ialization and finalization mechanisms for input and
output and force termination of the inner course-pro-

cessing loop when a new page is needed, (i.e. when
linecount = PAGELENGTH).

Forced synchronization solution
M := true
linecount := 0;
classcount := 0;
get{data); i := eofidata);

doi#M—
if linecount =0 then {conditional page init.}
WritePageHeading(data”.course)

{page initialization}
{course initialization}
{input initialization}

fi;
if classcount = 0 then {conditional course init.}
currentcourse .= data”.course

fi;
m:=M,
doi#m—

if data”.course = currentcourse /\
linecount + PAGELENGTH—
write(data”.name);
write(dark™.mark);

* Pascal’s I/O has been borrowed and used here.

linecount := linecount + 1
getldata); i := eofidata);
classcount := classcount + 1
[ldata”.course # currentcourse \/
linecount = PAGELENGTH—- m :=i

fi

od;

if data”.course # currentcourse then
write(classcount); {conditional course
classcount := 0 finalization}

fi;

if inecount = PAGELENGTH then
write(PAGEBREAK); {conditional page
linecount :=0 finalization}

fi

od;

if classcount # 0 then write(classcount) fi;
{course output finalization}

if linecount +# 0 then write(PAGEBREAK) fi
{course page finalization}

2.3 Multiple Input Structure Clash

The same basic prototyping strategy can easily be
extended to handle more than one input and output.
As an example suppose we extend our original buffer-
copying problem of section 2.1 to a stream addition
problem where there are two input streams and one
output stream. Each of the streams has a different
record size.

Stream Buffer
Input_A All..M]
Input_B B[1..N]
Output Out{1..P]

In the prototype problem we assume that the sizes of
the records are the same (i.e.: M = N = P). Once again
we produce the corresponding prototype solution using
Jackson’s technique of matching data structure to pro-
gram structure.

Prototype solution

i:=0; {Input_A initialization}
j:i=0; {Input_B initialization}
k:=0; {Output initialization}
repeat

getrec(A, M, m);

getrec(B, N, n);

do k# P—
OUty,q:=Ajs1+ Bjyq; {Process loop}

it=i+1,j:=j+1, ki=k+1

od;

i:=0;j:=0;

putreclout, k); k:=0

until m=0\/n=0

{Input_A initialization}
{Input_B initialization}

{Input finalizations}
{Output finalization}

To resolve the structure clash both the inputs and the
output need to be conditionalized and the processing
loop must be forced to terminate when either of its
inputs are exhausted as well as when the output buffer
is filled. Making these refinements we get:

128 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

¥20Z I4dy 60 Uo 1senb Aq G£8G8€/9Z L/Z/€E/a1o1e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

STRUCTURE CLASHES - AN ALTERNATIVE TO PROGRAM INVERSION

Forced synchronization solution

i:=0;j:=0; {Input initializations}
k:=0; {Output initializations}
repeat

| if i = 0 then getrec(A, M, m) fi; {Input_A
Conditional initialization}
9 if j = 0 then getrec(B, N, n) fi; {iInput_B
Conditional initialization}

p:=F
do k# p— {Information transfer conditional
if i#m/\j# n— on availability of inputs}
Outy,y:= A1+ Bjyy; {Processing}
i=i+1;j:=j+1, k:=k+1
i=mvj=n—p:=k
fi

od;

§ if i=M then j:=0 fi; {Input_A

Conditional finalization}
§ if j= N then j: = 0 fi;

{Input_B Conditional finalization}

if k= P then putrec(out, k); {Conditional

k:=0fi; Output finalization}

untiim=0\/n=0;
if k # 0 then putrec(out, k); fi {Terminal
finalization}

2.4 Text Formatting Problem

The next problem that we wish to consider has been
discussed by Floyd [Floyd-78]. It may be stated infor-
mally as follows:

‘Read lines of text until the input is exhausted. Elim-
inate redundant blanks between words, and print the
text with a maximum of L characters to a line without
breaking words between lines. It is also required that
leading and trailing blanks should be removed and
there should be the maximum number of words poss-
ible on each line.’

In designing a solution to this problem we will first
construct a solution for the prototype problem that
involves no structure clashes. We will then modify it
using forced synchronization to handle the structure
clash.

In the prototype solution a line of words is read, the
leading and trailing spaces are removed, and multiple

spaces between words are discarded. Words are written

as soon as they are read.

The prototype implementation obtained by following
Jackson’s guidelines to handle lines of text containing
one or more words may take the following form:

{ Note m and n are zero when there is no more input data.

§ Also note that the conditional finalizations and the conditional
initializations may be combined if the same guard is employed. Here,
the same condition would be used to signal that all the input has
been processed as well as the need to (re)fill the input buffer. The
corresponding initialization would indicate that all input has been
processed. There are two views of the conditions. Firstly, there is the
transitional view — where only one guard is required: the condition
signals movement from one task to the next. Then there is a more
discrete view — where there are two distinct guards: one condition
signalling the start of a task and another signalling the end of a task.

Prototype text formatter:

M : = true;
i:= eoflinput);
1:=0;
doi#M—
getspaces(j); getword(word, w, j);
getspaceslj); {input initialization}
writeword(word, w); {output initialization}
l:i=1+w;
do j+# ENDLINE —
getword(word, w, j); getspacesj);
{input process}
write(SPACE); writeword(word, w);
li=1+w+1; {output process}
od; .
readin; j:= STARTLINE;
writeln; | := 0;
i := eoflinput);
od

{input finalization}
{output finalization}

To proceed from the prototype solution to handle the
structure clash we need to make the initialization for
input and output conditional. We also need to make the
finalization mechanisms for input and output
conditional. The flow of information through the pipe
must be suspended when the next word to be printed
exceeds the output line length limit L. In our implemen-
tation we use the variable / to hold the current length
of the output line and w to hold the length of the
next word to be processed. The implementation of the
formatter for handling text with non-empty lines takes
the following form:

Text formatter:

M := true;
1:=0;, w:=0;
j:= STARTLINE;
i:= eoflinput);
doi# M-
if j = STARTLINE then
getspacesi)) fi;
if /=0/\w=0 then
getword(word, w, j); getspacesl))
fi;
if | =0 A w0 then {start of output line}
writeword(word, w); | := |+ w;
p:=p+w, w:=0

{output initialization}
{input initialization}

{staﬁ of input line}

fi;
n:= ENDLINE;
doj#n—

getword(word, w, j); getspaceslj);
if |+ w+ 1= L— write(SPACE);
writeword(word, w); | := 1+ w+1; w:=0
N+w+1>L->n:=j
fi
od;
if j = ENDLINE then
readin; j:= STARTLINE; i:= eofiinput)
fi;
if '+ w+ 1> L then
writeln | := 0
fi
od;

{end of output line}

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 129

¥20¢Z I4dy 60 Uo 1senb Aq G£8G8€/9Z L/Z/SE/a1o1e/|ulwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

R. G. DROMEY AND T. A. CHORVAT

if ' =0/\ w+# 0 then {output finalization}
writeword(word, w); | := 1+ w; w:=0

fi;

if / # 0 then writeln fi

Some additional comments about this implemen-
tation are in order. With each iteration of the outermost
loop there may be an initialization for the input or
output of a new line of text. Furthermore, with each
iteration of the outermost loop, there may be invocation
of a finalization mechanism to terminate either the
current output line, or the current input line.

It is interesting to study the effects of complicating
the present problem further by introducing another
structure clash. For this we may consider a structure
clash resulting from the requirement that there should
be at most P characters on a page. A page is a sequence
of the previously described lines of text. In addition,
there should be the maximum number of words on a
page.

To accommodate this new structure clash in our most
recent implementation, we need to add a conditional
initialization for new pages and a conditional finalization
mechanism for a new page. The only other requirement
is to add a condition that suspends information flow
through the pipe when it is necessary to move to a new
page. Augmenting our previous implementation with
these modifications we obtain a paged-line text format-
ter.

Paged-line text formatter:

M : = true;
1:=0; w:=0; {line output initialization}
p:=0; {page output initialization}
] = STARTLINE; {input initialization}
i:= eoflinput);
do i+ M—)

if j = STARTLINE then getspaces()) fi; {start of

input line}
if =0/ \w=0 then {start of output line}
. getword(word, w, j); getspacesj)
1
if /=0/\ w+# 0 then writeword(word, w);
I'=I+w, pi=p+w, w:=0
fi;
n:= ENDLINE;
doj#n—
getword(word, w, j); getspaces(j);
ifl+w+1=LAp+w+1=P>
write(SPACE); writeword(word, w);
I'=l+w+1, p:=p+w+1, w:=0
N+w+1>Lyp+w+1>P>n:=j
fi
od;
if j = ENDLINE then readin;
; j:= STARTLINE; i := eoflinput)
(K

if/+w+1>L\/p+w+1>Pthen

writeln; 1:=0 {end of output line}
fi;

if p+w+ 1> P then wnte(PAGEBREAK)
; p:=0 {conditional page finalization}
i

od;

if /=0/\ w+# 0 then writeword(word, w);
I'=I+w;, p:=p+w, w:=0
fi; {output finalization}
if / # 0 then writeln fi;
if p # 0 then
{write the final pagebreak if needed}
write(PAGEBREAK) fi

A comparison of this implementation with the pre-
vious implementation suggests that the changes needed
to accommodate an additional structure clash are rela-
tively minor provided we conform to the guidelines
for conditional initialization and finalization. What is
somewhat surprising about the last two implementations
is that they both retain the same underlying structure
that was used for the prototype problem. Furthermore,
the extra effort to handle the additional structure clash is
small. It is in this domain where forced synchronization
offers advantages over program inversion.

3. COMPARISON WITH PROGRAM
INVERSION

Q

sdyy wouy papeojumog

To make a comparison of program inversion and forced @

synchromzatlon it is useful to use the Buffer-Copy prob-
lem discussed in section 2.1. Figure 1 represents the 2
different design steps required to solve this problem 3
using each of the methods.

O_

3

With the Program Inversion method there are twon

occasions where the correspondence with the original 3
problem may be obscured. Firstly, when the problem is
decomposed two sub-problems are created. Secondly

’

Forced Synchronisation Program [Inversion Process
Process
4
Data Structure
Prototype Decomposition
4

Corresponding

Simpler Problem
Basic t Basic | Basic |
Method Method Method

Solutlon 2

Corresponding
Simpler Solution

Forced
Synchronisation

Program
Inversion

Figure 1. Alternative methods for solvmg the Buffer-Copy

Problem

130 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

202 Iudy 60 uo 1senb Aq G£8G8€/92ZL/Z/€E/B101e/|ullwod/wo

Q

STRUCTURE CLASHES - AN ALTERNATIVE TO PROGRAM INVERSION

when the two sub-problem solutions are composed using
program inversion iteration is changed to selection in
one of the sub-problems. This sub-problem then
becomes subordinate to the other. The solution’s main
structure corresponds to one of the sub-problems, while
a separate procedure is required for the altered solution
of the other sub-problem.

With the Forced Synchronization method there are
also two occasions where the correspondence with the
original problem may be obscured. Firstly, when the
problem is prototyped to produce the corresponding
simpler problem the number of iterations of each rep-
etition must be adjusted so as to coincide. This is a
relatively trivial alteration and the data’s structure
remains exactly the same. Secondly, when the technique
is applied to derive the solution the existing init-
ializations and finalizations are made conditional. This
does not alter the program control structure, which still
corresponds directly to the original problem’s structure.

It is claimed that the solution produced using Forced
Synchronization retains a more direct correspondence
to the original problem.

It is also claimed that Forced Synchronization pro-
vides for a more consistent progression from the synch-
ronized problem to the problem where the structure
clash becomes evident. Note that the structure of the
data is the same in these two problems. The only change
is that the actual number of iterations of the repeated
structures are not the same in the structure clash prob-
lem.

Consider the situation where we have already solved
the problem for buffers of the same size (using Jackson’s
basic method) and we are required to accommodate the
more general problem involving buffers of different
size. Using program inversion the problem must be
reconsidered in order to find the greatest common struc-
ture so that the problem may be decomposed. If the
problem had warranted the use of decomposition as an
abstraction tool then it would have been used for the
initial solution. Here, however, decomposition is used
solely to handle the boundary structure clash which is
now apparent — even though the structure of the data
has not changed. So two different program structures
are produced for the same data structure where only
the number of iterations has changed.

To compare the methods it is useful to describe the
input and output using EBNF [Wirth-82]. An arrow
(=) represents the transformation from the input
described in the left to the output on the right. Epsilon
(e) is the empty sequence.

Using this notation the original problem may be
described by:

{byte}*} — {{byteM}},

and in the situation where the structure clash occurs we
have

{{byte}*} — {{byte}"},
where M # N.

With Forced Synchronization for the structure clash
problem we have

{{byte}¥| e} — {{byte}"|e}.
+ The Basic Method referred to is Jackson’s basic method where
the program control structure is matched with the data structure.

Here the repeated data structure remains the same.
The only addition is the alternation with the empty
sequence to force synchronization. The alternation
allows for the input of the empty sequence if the next
input buffer ({byte}") is not yet required.

For Program Inversion there is a more significant
change in the structure of the problem. Two sub-prob-
lems are formed, i.e.

{{byte}} — {byte}, and {byte} — {{byte}"}.

The resulting program control structure after com-
position using program inversion has a less direct cor-
respondence with the data structure of the original
problem.

4. BOUNDARY STRUCTURE CLASHES

Jackson defines structure clashes as those problems in
which a 1-1 correspondence between data components
in the data structure and program components in the
program structure cannot be found. Since it has been
demonstrated that a program component can be formed
from the generally provided notions of sequence, selec-
tion and iteration to correspond to the data component
of unmatched repetition then this case can no longer
be considered a ‘structure clash’. This is intuitively
appealing since boundary structure clashes were the
only structure clashes which did not require additional
storage of information. Boundary structure clashes can
be successfully processed using a single left to right
scan of the input - this is in contrast to backtracking,
ordering, and multithreading structure clash problems
where either the space complexity of the program must
be increased or multiple passes of the input used.

This intuitive appeal may be supported by theory.
Hughes has argued that Jackson’s basic design method
is only applicable to generalized sequential machine
(g.s.m.) computable functions with input languages
definable by deterministic regular expressions. Hughes
conjectured that boundary structure clash problems are
g.s.m. computable and so theoretically amenable to
solution using the basic method without need for decom-
position. It was proposed that the other types of struc-
ture clash are not g.s.m. computable and so remain as
genuine structure clashes.

An alternative definition of correspondence given by
Javey [Javey-86] which is more operational in nature is
given below. It uses a pair consisting of an alphabet and
a regular expression to represent the structure diagrams
of JSP. The input alphabet is symbolized by X and the
input regular expression is symbolized by R. The pair
(A, S) symbolises the output structure.

Definition. Two structures (£, R) and (A, S) are said
to correspond if by proceeding from the left to right,
in R and S, we can form a correspondence between
all the components, i.e. symbols or parenthesized
regular expressions, of R and S. Two components x
from R and y from § correspond, written (x, y), if the
following conditions are not violated:
1.The generation of y should only require a single
left-to-right scan of x (with at most k symbol look-
ahead, for a fixed k), and
2. (x", y") > (n mod m = 0)
where x" stands for n repetitions of x.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 131

¥20Z I4dy 60 Uo 1senb Aq G£8G8€/9Z L/Z/€E/a1o1e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

R. G. DROMEY AND T. A. CHORVAT

Problems for which correspondence cannot be for-
mulated are referred to as structure clash problems.
Problems which violate the second condition, i.e. n mod
m # 0, are referred to as boundary clash problems

The second condition is mainly concerned with the
practical aspects of being able to make the input and
output loop structures correspond. The condition allows
for either a single loop (the case of n = m) or a nested
loop (n mod m =0). The case of n mod m # 0 was
excluded since there was not a loop construct which
could accommodate it.

Let us consider transformations on program control
structure for transforming a repetition of input com-
ponents to a repetition of output components. The goal
of the program transformations is to reduce the space
complexity of the program. To transform an input data
component to the corresponding output data com-
ponent we require storage for the whole of the input
component and the whole of the output component. If
we can gain correspondence with smaller data com-
ponents then there will be less space required for the
transformation. Once again the arrow (—) represents
some mechanism to transform the input on the left to
the output on the right. Epsilon (&) is the empty
sequence and operationally may be considered the skip
statement. The braces {} indicate repetition. The super-
cripts represent the number of iterations required.

We proceed with a simple case analysis.

1. {x}"— " Two loops in sequence with
same number of iterations.
N Required storage = m X

size(x) + m X size(y)
(Since all of the input must
be obtained before it is
transformed to all the
~output.)

fx— ypm Single combined loop
Required storage =
size(x) + size(y)
(Since scope of x and y are
limited to one iteration then
the space used to store them
can be reused.)

2a. {x}"*¢ - {yp Two loops with common
factor in number of iter-
N ations.
Required storage=m X g
{fxy" — yg X size(x) + g X size(y)

Simple Nested Loop
Required storage =
m X size(x) + size(y)

2b. {x}g — {y}**¢ Two loops with common
factor in number of iter-
1% ations.

Required storage = g X
size(x) + n X g X size(y)

{x—)le Simple Nested Loop
Required storage = size(x)
+ n X size(y)

3. {x}e o {y)r<e Two loops with factor
(where m mod n # 0)
U Required storage =m X g

X size(x) + n X g X size(y)

{{x}m — {y}pe Nested Loop with internal
boundary clash
Required storage =
m X size(x) + n X size(y)
If required storage is still
too large (or unbounded)
then will need to transform
{x}" — {y}" further (see case

4. {x}"—>) Two loops in sequence
(where m mod n # 0)
NV Required storage =
m X size(x) + n X size(y)
{x|efp — {y|e® where
max(m,n)=<p=m-+n
U This is now amenable to
transformation by case 1 too
give
{x|le— y|eP Single combined Loop w1thm

Forced Synchronization
Required storage

= size(x) + size(y)

(since & requires n
additional storage).

(A number of 1terat10n5m
may be required to fullym
build up y (or to fullyg
decompose x).)

'sdﬁq wolj paped

O

This analysis shows that all cases (even when n mod
m # () can be accommodated by appropriate loop andg
condition control structure. Thus the use of ForcedO
Synchronization obviates the need for condition 2 of2
Javey’s Definition of Correspondence.

5. CONCLUSIONS

A practical alternative to program inversion has been
presented. Its simplicity makes it an attractive OpthIl\
for solving boundary structure clashes. The method 1sm
based on the principal of structural simplification. Itw
utilizes forced synchronization of loops to 1mplementg
solutions to boundary structure clash problems. Thec
method preserves the structure of the prototype solution 2
in developing the solution to the structure clashg
problem. Thus the correspondence between thego
solution’s program control structure and the or1g1nal>
problem’s data component structure is retained. Fur-=.
thermore, additional structure clashes are simply ando
easily accommodated. S

9cl/eiee/a1one/|ul

REFERENCES

R. G. Dromey, Forced Termination of Loops. Software:
Practice & Experience 15 (1), 30-40 (1985).

R. W. Floyd, Paradigms of Programming. Comm. ACM 22
(8), 455-460 (1978).

J. W. Hughes, A Formalization of Explication of the Michael
Jackson Method of Program Design. Software: Practice &
Experience 9 (4), 191-202 (1979).

M. Jackson, Principles of Program Design. Academic Press
(1975).

S. Javey, The Concept of ‘Correspondence’ in JSP, Technical
Report CS-86-05. Department of Computer Science, York
University, Toronto, Ontario, Canada (1986).

N. Wirth, Programming in Modula-2. Springer-Verlag (1982).

132 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

