Parameter Transmission Abstractions

M. O. JOKINEN

Department of Computer Science, University of Turku, SF-20500 Turku, Finland

In many programming languages parameter transmission involves implicit actions like copying, type conversions or
assigning default values to optional parameters. We propose a linguistic mechanism that allows such actions to be
defined within the language. The same mechanism can also be used to define most conventional parameter
transmission mechanisms and pattern-matching based parameter binding

Received September 1987, revised May 1988

1. INTRODUCTION

In many programming languages the values of actuals
in a procedure call are not passed as such to the sub-
program. The values may undergo various conversions
before they are bound to formals. Parts of the data
objects may be copied. Sometimes the conversion pro-
cess may involve more than a single formal-actual pair
and the number of actuals may be different from the
number of formals. There may be optional parameters
which get certain default values if omitted in the call,
or asingle actual may define the value of several formals,
as conformant array parameters in Pascal.! Implicit
actions allow a more compact notation and their proper
use may thereby improve readability. Unfortunately the
rules are usually built in the language and although
modern languages allow the definition of application-
specific types, they rarely” provide any way to extend
implicit actions to user-defined types.

The FEXPR feature of Lisp’ is one method to give
the programmer more control over the actual
parameters. The list of actual parameters is passed as
such and can be freely manipulated in the called routine.
The method relies on the representation of programs as
list structures and the existence of a user-callable EVAL
function. Another approach to handle optional, repeat-
able and variable-type parameters has been suggested
by Prasad* and Ford and Hansche.® Their methods
include syntax extensions to specify formal and/or
actual parameters with such properties, and special
statements or standard functions to test the existence of
optional parameters, the number of repeatable par-
ameters and the actual type of variable-type parameters.
These mechanisms, unlike the FEXPR feature, were
designed as extensions to strongly typed languages.

In this paper we present a new linguistic mechanism
that allows the programmer to define various actions
in parameter transmission. The details of parameter
transmission can be hidden not only from the calling
program but also from the body of the called routine.
In other words, the formal parameter part of a routine
is an abstract interface between the caller and callee.
Transmission rules can be defined separately from the
routines in which they are used. Even libraries of trans-
mission rules could be built.

2. THE LANGUAGE

It is easier to represent the abstraction mechanism in
an orthogonal and fully dynamic language. In particular,

type checking and binding of identifiers are assumed to
occur at run time, and types and procedures are assumed
to be first class citizens in the language. At the end of
the paper we shall discuss the possibility of embedding
the abstraction mechanism into languages with static
binding and strong typing.

Here is a sketch of the syntax of the language:

e= literal
| identifier
I [el’ o . -’en]
| env (e;;=¢€5,...,€, = €n2)
| use e, in e,
| proce,>e,
[e e
| e e
| if e, then e, else e;
| case ejiney, >e,,,. .., € > €

elsee,,;1>e,,,
| abort

The above syntax is written in a semiabstract form.
Extra parentheses and indentation are used to disam-
biguate the parse structure when necessary.

2.1 Classes of data objectsv

Literals include denotations for integers, strings and
other scalars.

Clause [e;, . . ., e,] evaluates to a tuple. Tuples are
ordered sequences of zero or more data objects. A
one-element tuple is not identical with its element.
Expressions e; can be evaluated in an arbitrary order,
or interleaved.

Clause env(e;; = e, .. ., e, = e,,) evaluates to an
environment. An environment is a mapping from a finite
set of strings into data objects; it is a generalization of
the record and package concepts. Subexpressions e; are
evaluated in an arbitrary order. Each e;, must evaluate
to a string. The resulting environment binds strings e;,
to the values of expressions e,.

An environment can be used in a clause

use e, in e,

where clause e, evaluates to an environment. The value
of this clause is the value of e, whose free identifiers are
bound as in the environment yielded by e,. Clauses e,
and e, can be evaluated in any order or interleaved; this
gives some extra freedom in optimization as will be seen
in section 4.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 133

¥20Z I4dy 01 uo 1senb Aq 218G8¢/E€ L/Z/ce/aIome/|ufwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

M. O. JOKINEN

The whole program is implicitly embedded in an
environment that contains the definitions of standard
identifiers. Standard procedure select can be used to
find the value of an identifier in an environment. The
value of select[e, x] is the value bound to string x in
environment e. Both operands can be arbitrarily com-
plex expressions. Procedure econcat concatenates two
or more environments. Clause econcatle,,...,e,]
returns an environment that contains the combination of
bindings from environments ey, . . ., e,. If an identifier is
bound in more than one ¢;, its value is taken from the
last one.

Envnronments as first class objects can be traced back
to Simula,® and they have recently gained new interest
in the field of language design.”-8 Our environments are
semantically close to the corresponding structures of the
Pebble language which has considerably inspired the
ideas presented in this paper.

The evaluation of the abort causes a failure, or an
exception, i.e. termination without any result. Failures
are propagated so that if a subclause of clause e fails
while e is being evaluated, then e fails too. However,
failures can be trapped in case-clauses, as will be
described in section 2.5.

Components of the serial clause (e,; e,) are evaluated
from left to right and the value of the clause is the value
of e,. The value of the clause if e, then e, else e; is the
value of either e, or e;, depending on the value of the
boolean clause e;.

2.2 Procedures

Before discussing procedure definitions in our language,
let us examine more closely the semantics of call-by-
value parameter transmission in conventional pro-
gramming languages. The definition of a procedure
usually looks something like

P= proc(xl; tl" LR}

where e is the body of the procedure. The call of this
procedure is written as

pley,...,e,)

where the result of clause e; is of type ¢, The effect of
the call is that the body e of p is evaluated in an
environment in which each x; is bound to the value of
e;. This call is therefore equivalent with the following
use-clause:

X, ty)e

”»

use env("x,;" =e, ..., "x," =¢€)ine

Thus the formal parameter part (x,:¢,...,x,:,) can
be regarded as a function that maps the tuple [e,, . . . ¢,]
into the environment env(“x,” = e,,... “x,” =e,)

Since environments can be treated as first-class
objects, it is natural to attempt a further step and
consider also the formal parameter part as an ordinary
procedure. Any environment-valued procedure can
then be freely used as a formal parameter part of
another procedure. In such a language a variety of
parameter transmission abstractions can be built from
a few elementary formals, as will be demonstrated in
section 3.

In our language a procedure object is created with a
clause

proc e, > e,

where e, is an arbitrary clause that evaluates to an
environment-valued procedure (from now on we shall
call all such procedures as generalized formals or simply
as formals) and clause e, is the body of the procedure.
All procedures take exactly one argument and (if the
evaluation terminates without a failure) return exactly
one result. Multiargument procedures can be reduced
to single-argument procedures either by currying or by
treating the argument list as a tuple. Parameterless
procedures formally take an empty tuple as an argu-
ment.
Procedure invocations are written as

€ e

where clause e, evaluates to a procedure and e, evalu-
ates to its argument. If the value of e, is procf= b,
the invocation is equivalent to usefe, in b. Nested
invocations associate from left to right; thus clauseS
(e ey €3) is equivalent to ((e; e;) e3) For convenience,=

certain operators will be written in their familiar mﬁxLl
or postfix notation. For instance, we shall write x := y&
instead of :=[x, y].

[umoQ

eoe//:sdpy wouy

2.3 Basic formal generators

The language must contain a set of standard formals org
formal generators as elementary building blocks form'
user-defined procedures. We shall first introduce a pro-3 3
cedure named atomf, which generates ‘atomic’ formals. 2
It accepts as an argument a 2-tuple [s, f], where s is a5
string and ¢ is a type. The value of the clause

atomfs, t]

is a procedure that maps an object x (of type ¢) into an
environment that binds s to x. If x is not of type ¢, the 5
call causes a failure.

env(s = x),
abort

Note that s may be an arbitrary string-valued expression
and it is the value of s (rather than the identifier s) that
becomes bound in the environment. For example,

atomf[“n”, int]4 = env(“n” = 4)

For tuple arguments we first introduce a procedure,
denoted by nullf, that accepts an empty tuple as its
argument and returns an empty environment. Thus

nullf[] = env()
nullfx = abort,

if x is of type ¢
atomfs, tjx = .
otherwise

202 Iudy OL uo 1senb Aq /$858¢/cEL/Z/cE/al01e/|ufwod/woo d

if x #[]

Next we introduce a procedure, denoted by fconcat,
that maps 2-tuples of formals to formals. The value of
the clause fconcat[f,,f,] is a formal that accepts as
its argument a nonempty tuple whose first element is

- accepted by the formal f; and whose tail is accepted by

the formal f,. The result of the concatenated formal is
an environment which is constructed by combining the
environments yielded by f; and f,.

feoncat[f, f,]le1,. .., €] =

econcat[(fi e;), faley, - - -, e,]]
feoncat(f,, f,][] = abort

feoncat(f,, f,]x = abort, if x is not a tuple

134 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

PARAMETER TRANSMISSION ABSTRACTIONS

For convenience, we shall often use an additional formal
generator tuplef, which can be defined in terms of nullf
and fconcat:

tuplef[] = nullf
tuplef[fl’fZ’ .

2.4 Types

Since type checks occur at runtime in our language,
there must be a sensible action taken when a type check
fails. We define a failing type check equivalent to the
execution of abort. In the examples to follow we will
use standard types int, real, string, anyenv, anytuple,
any and type, and type constructors ref, union, tuple
and —. Type ref ¢ is the type of pointers to ¢-typed cells.
Type union[t;,...,t,] is a coalesced union of types
t,...,t,. The value space of a union type is the set-
theoretic union of the value spaces of component types.
Type tuplet,, . . ., t,] is the type of tuples [x,,. . ., x,]
where x; is of type ¢;. Clause t— u denotes the type of
functions with domain ¢ and range u. Identifier anyev
denotes the type of all environments, anytuple denotes
the union of all tuple types and any denotes the union
of all (nonunion) types. Identifier type denotes the type
of all types (including or excluding type).

Union types (either the union constructor or any) are
essential to the expressive power of the abstraction
mechanism. Other types are more or less optional,
replaceable by each other, or required only in specific
examples.

"fn] =fconcat[f,, tuplef[f27 . "fn”

2.5 Case-clause
The syntax of the case-clause is

"fnéen elsefn+1$en+l

where the values of clauses f; to f, ., are formals. The
else-part is optional. The clause is evaluated by first
evaluating the clause e and then invoking formals f; to
f, (in an unspecified order) using the value of e as the
argument. If the invoked formal f; returns an environ-
ment, then the clause ¢; is evaluated in that environment
and the value of e¢; becomes the value of the case-clause.
If f; fails, then the next formal is tried. If all the formals
fito f, fail, then the optional formal f, . , is invoked and
the clause e, , ; is evaluated in the resulting environment.
If f, ., fails too or if there is no else-part, then the case-
clause fails.

caseein f,>ey,..

3. EXAMPLES
3.1 Implicit type conversions

As a simple example, let us define a generator for
formals that accept either a real or an integer as their
actual argument and convert it into a real in the latter
case. Standard procedure inttoreal performs the con-
version explicitly.

intreal =
proc atomf[“id”, string] =>
proc atomf[“x”, union[int, real]] >
atomf(id, real]
(case x in
atomf[“r”, real] > r,
atomf[“n”, int] = inttoreal n)

Here the case-clause is used to compute the argument of
atomf(id, real]. Type union[int, real] could be replaced
with the type any. Formal (intreal x) would be normally
used in definitions of arithmetic functions. However,
atomf(x, real] could be used instead in cases where an
integer argument makes no sense. For example, assume
that we need a procedure that computes the integral of
a given function f over a closed interval [a, b] in the
accuracy epsilon. The header of the procedure might
look like this:

proc tuplef[atomf[“f”, real — real],
intreal “a”,
intreal “b”,
atomf[“epsilon”, real]] > . . .

As an analogous but a more specialized example, let
us define a generator for formals that accept as an
argument a month represented either as an integer or
as a string:

proc atomf[“id”, string] >
proc atomf[“x”, union[int, string]] >
atomf(id, int]
(case x in
atomf[“n”, int] >
ifn<lorn>12
then abort
else n,
atomf(“s”, string] >
if s = “January” then 1
else if s = “February” then 2

else if s = “December” then 12
else abort)

3.2 Optional parameters

Procedures with a variable number of arguments can be
constructed by treating the list of arguments as a tuple.
One possibility is to define a fixed number of normal
arguments and bind the rest of the argument tuple to
one identifier. For example, in the following formal the
length of the fixed part is one:

feoncat[atomf([“head”, t], atomf[“tail”, anytuple]]

Another possibility is to define optional arguments that
get default values if omitted in the call. The following
procedure takes a list L of 3-tuples [name, type,
default_value] and returns a formal that accepts a tuple
A whose i element corresponds to the i* element of
the tuple L. The length of A may be smaller than the
length of L, and in that case the missing elements get
default values from L.
optlist = proc atomf[“L”, anytuple] >
case L in
nullf = nullf,
feoncat [tuplef[atomf|“name”, string],
atomf[“t”, type],
atomf|“default”, any]],
atomf(“tail”, anytuple]] =>
proc atomf[“A”, anytuple] >
case A in
nullf = defaults L,
feconcat[atomf[“x”, 1],
atomf|“rest”, anytuple]]>
econcat[atomf[name, t]x, optlist tail rest]

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 135

¥20Z I4dy 01 uo 1senb Aq 218G8¢/E€ L/Z/ce/aIome/|ufwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

M. O. JOKINEN

where
defaults = proc atomf[“L”, anytuple] >
case L in

nullf = env(),

feoncat[tuplef[atomf[“name”, string],
atomf[“t”, type],
atomf[“default”, any]],

atomf([“tail”, anytuple]] >
econcat{atomf[name, t|default, defaults tail]

If there are many optional parameters it is more
convenient to identify them by names than by position.
Each optional actual parameter is given as a (sub)tuple
[name, value] in the argument list. The following pro-
cedure takes the specification of optional arguments in

the same form as above but the resulting formal accepts -

a list of 2-tuples in an arbitrary order:

optset = proc atomf[‘;L”, anytuple] =
proc atomf[“T”, anytuple] >
econcat[defaults L, values(types L, T]]

Procedure types computes an environment that maps
the names of the formal arguments to their types. This
environment is used in the other auxiliary procedure to
check the types of actual arguments.

types = proc atomf[“L”, anytuple] =>
case L in

nullf > env(),

feoncat[tuplef[atomf[“name”, string),
atomf[“t”, type],
atomf|“default”, any]],

atomf[“tail”, anytuple]] =>
econcat[atomf[name, typelt, types tail)

values = proc tuplef[atomf|“ttable”, anyenv],
atomf[“T”, anytuple]] >
case T in
nullf = env(),
feoncat[tuplef(atomf(“name”, string),
atomf| “value”, any]],
atomf(“tail”, anytuple]] >
econcat{atomf[name, select[ttable, namel]
value),
values|ttable, tail]]

3.3 Pattern-matching formals

Especially in recent years it has become popular to write
the formal parameter part as a pattern. A pattern is a
data structure in which certain elements denote vari-
ables to be bound in an invocation. Patterns can be
easily defined in our system. Below is a generator for
patterns of possibly nested tuples. Variables are denoted
by strings that begin with a capital letter.

pattern = proc atomf[“p”, any] >
case p in
nullf = nullf,
atomf[“s”, string]=>
if s[1] = ‘A’ and s[1] = ‘Z’
then atomf(s, any]
else(proc atomf[“t”, string] =>
ifs=¢
then env()
else abort),

feoncat{atomf[“head”, any],
atomf[“tail”, anytuple]] >
feoncat| pattern head, pattern tail)

For example, the value of the clause
pattern[“f‘n, [uxn, “Y})], [ugn’ “Z”]]

is a formal that accept all tuples that can be constructed
by replacing “X”, “Y” and “Z” with any objects in the
tuple [“f”, [“X”, “Y”], [“g”, “Z”]]. Patterns for other
data types can be defined in an analogous way.

In a more realistic program the types of the variables
would be included in patterns and the formal generator
would take care of multiple occurrences of a variable.
A quotation mechanism is also desirable to permit arbi-
trary constant terms in patterns (like strings beginning
with a capital letter in this example). These features can
be defined in the language without difficulty.

3.4 Transmission mechanisms

Transmission mechanisms are closely related to types.
If the type system of the language is rich enough, trans-
mission by various mechanisms can be reduced to trans- 2
mission of various types of data.!? Call by reference is 2
equivalent to transmission of a parameter of type ref z. §

:sdyy wouy pepeojumo(

- Call by name is equivalent to transmission of a par-=

ameter of type void— t, where void = tuple[]. Call byé
need is equivalent to transmission of a recipe, an objects
of type ref union[t, void— t]. However, the pro-§
grammer may still want to think in terms of transmission g
mechanisms rather than in terms of types. To make 3
the underlining type system transparent, an argument =
should undergo an implicit type conversion when it is =
transmitted further by a different method.

We shall first define two auxiliary procedures.
Rep_value generates procedures that compute values of
recipes.

e,

rep_value = proc atomf[“t”, type] >
proc atomf[“x”, ref union[t, void — t]] >
case x 7 in
atomf[“y”,] >y,
atomf[“f”, void— t]=> (x :=f[]; x 1)

Here x T denotes the contents of the cell pointed by x.
The other auxiliary procedure rcpdefs just generates
two shorthand notations, rcp and u.

rcpdefs = proc atomf[“t”, type] =
env(“rcp” = ref union(t, void— i),

€@ 9

u” = union(t, void— t, ref t, rcp))

202 Iudy 01 uo1senb Aq 2¥8G8E/EEL/Z/EE/BI0

Call by value, name, need and reference, and all
the required conversions, can now be defined with the
following procedures.

value = proc tuplef[atomf[“id”, string],
atomf[“t”, type]] =>
use rcpdefs t in
proc atomf[“x”, u] >
env(id =
casex in
atomf[“y”, t] >)
atomf[“p”, ref t]>p 1,
atomf[“f”, void— t]| > f[],
atomf[“r”, rcp] > rcp_value t r)

136 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

PARAMETER TRANSMISSION ABSTRACTIONS

name = proc tuplef(atomf[“id”, string],
atomf[“t”, type]] =
use rcpdefs t in
proc atomf[“x”, u] >
env(id =
case x in
atomf[“y”, tf]=>(proc nullf > y),
atomf[“p”, ref t] = (proc nullf > p 1),
atomf[“f”, void— t]| > f,
atomf[“r”, rcp] >
(proc nullf = rep_value tr))

atomf[“f”, void— t] > f,
atomf[“r”, rcp] >
(proc nullf = rep_value t r))
need = proc tuplef[atomf[“id”, string],
. atomf[“t”, type]] =
use rcpdefs t in

proc atomf[“x”, u] >
env(id =
case x in
atomf[“y”, t| > new rcp y,
atomf[“p”, ref t] > newrcp (p 1),
atomf[“f”, void — t] = new rcp f,

atomf[“r”, rcp] > r)
where clause (new rcp e) allocates a new cell of type

rcp, initializes its contents to e and returns a pointer to
the cell.

reference = proc tuplef[atomf[“id”, string],

atomf[“t”, type]] >

use rcpdefs t in
proc atom[“x”, u] =>
env(id =
case x in

atomf[“y”, t] > new ty,
atomf[“p”, ref t] > p,
atomf[“f”, void — t] > new t(f[]),
atomf[“r”, rcp] > new t(rcp—value t r))

Call by result cannot be implemented in this way
because it involves implicit actions at the termination
rather than at the start of the called procedure.

"4, IMPLEMENTATION

The above language has not yet been implemented, but
in this section we will briefly discuss the compilation of
generalized formals in conventional computers. The
text below is an introduction of implementation ideas
rather than a comprehensive analysis, but we try to
demonstrate that in many cases there is a natural way to
compile the formals into efficient instruction sequences.
In a stack-oriented machine a procedure -call
pley,. .., e,) is compiled into the following code:

code(e,)
conv(e;)
code(e,)
conv(e,)
code(e,)
conv(e,)
code(p)

Code(e;) is an instruction sequence that evaluates the
expression ¢; and leaves its value on the top of the stack.
Conu(e;) is a (possibly empty) instruction sequence that

converts the primary value of e; into the type required
by p. Conu(e;) replaces the value of e; on the stack with
the converted value. Code(p) computes the value of the
clause p (unless it can be evaluated at compile time)
and transfers control to the body of the procedure.
Values of arguments form the lower part of the acti-
vation record of the procedure. The overall effect of
the execution of the body of p is that the stacked values
of the arguments are replaced by the result of the
routine.

In our language the invocation (proc f= e) a is, by
definition, equivalent to use f a in e, which can be
compiled into the following instruction sequence:

code(a)

code(f)
code(e)

Code(a) leaves the value of the argument a on the top
of the stack. Code(f) replaces it with an environment
yielded by the formal f. Code(e) may be either an inline
instruction sequence for e or a jump to the start of
the instruction sequence for e (which must then be
terminated by a return-instruction). The latter alterna-
tive is more natural for use-clauses originated from
invocations. The result of f is used to bind the free

"identifiers of e — how that is done depends on the

representation of environments.

General environments can be represented as associ-
ation lists, hash tables, binary trees or combinations of
these (and possibly other) structures. However, in the
special case that the bound identifiers are known at
compile time, an environment can be represented
exactly like a conventional record: the components of
the environment can be stored in consecutive memory
locations and the value of an identifier is found by
adding a static offset to the base address of the environ-
ment. In this case the environment produced by a formal
can be used as the lower part of the activation record
of a procedure as in conventional languages. The order
of the components is irrelevant but it should be uniquely
determined by the identifiers and the types of the com-
ponents. Alphabetic order is perhaps the most natural
choice.

4.1 Optimization of standard formals

Consider compilation of a formal atomf|[x, t] where the
values of x and ¢ are known at compile time. If the
result of clause e is known to be of type ¢, invocation
(atomf|x, t]e) is equivalent to the clause env(x = ¢). The
memory representation of the environment is identical
with the representation of the value of e. Thus the
invocation can be compiled simply into code(e). Pro-
cedure atomf generates no code at all.
Next consider a call

tuplef[fl’ . "fn][elv st en]

By the definition of tuplef and by associativity of econcat,
the call is equivalent to

econcat[(flel), RS (fnen)]

.Let E denote the result of the call. Assume that each

(f; e;) returns an environment with exactly one bound
identifier x;, which is known at compile time, and assume
that identifiers x; are distinct. Components of E can
then be stored in consecutive memory locations as noted

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 137

¥20Z I4dy 01 uo 1senb Aq 218G8¢/E€ L/Z/ce/aIome/|ufwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

M. O. JOKINEN

above. Let iy, . . ., i, be the order of the components in
the memory. The call can be compiled into the following
code:

code(e;;)
code(f;;)
code(e)

code(f;)

code(e;,)

code(f;,)

If some formals f; yield environments with more than
one binding, it may be necessary to permute the com-
ponents of the environment after evaluating all invo-
cations (f; ¢;). For example, if f, returns an environment

with identifiers “a” and “c” and if f, returns an environ-
ment with identlﬁers “b” and “d”, the call

tuplef[fl’fZ][el;eZ]

can be compiled into the following code (assumlng
that the components of environments are stored in an
alphabetical order):

code(e,)

code(f,)
code(e,)

code(f,)
code for swapping the “b” and “c” components

Data transfer instructions can often be reduced by leav-
ing empty holes in the stack when the values of com-
ponent formals are evaluated.

4.2 Optimization by symbolic evaluation

More complicated formals can often be reduced into
simpler ones by symbolic evaluation. The resulting pro-
gram may then be susceptible to the optimization tech-
niques discussed above. From the semantics of the
language, the following evaluation rules can be derived:

1. By definition, clause (proc e;=>e;)e; can be
reduced to use e, e; in e,. Invocations of standard
procedures can be evaluated using their defining
equations.

2. Clause (if true then e, else e,) reduces to e, and (if
false then e, else e,) reduces to e,.

3.Clause (case e in fi>e,,...,f,>e, else
fa+1> €y41) reduces to (use f; e in e;), where f; is
the first such formal that (f;e) does not fail. If all
invocations (f;e) fail, the case-clause reduces to
(e; abort). In the latter case the clause e can be
eliminated if the compiler can conclude that e has
no side effect. Note that the actual value of the
clause e need not necessarily be known.

4. Clause (use env(x;=e,...,x,=e¢,) in e) can,
under certain conditions, be reduced by substltutmg
the occurrences of x; with e; in e; the substituted
e replaces the use- clause ThlS reductlon rule can
always be applied if clauses ¢; have no side effects.
But even if e; does have a side effect, the substitution
is legal if x; occurs in e exactly once. The freedom
in the evaluation order of the components of a
use-clause makes the rule both simpler and more
general. If left to right evaluation were guaranteed
in use-clauses, an additional constraint would be
required: identifier x; can be replaced by e; in e

only if there is no subclause in e that precedes the
occurrence of x; and may have a side effect. This
additional constraint is actually satisfied in most
cases that occur in practice, but the compiler may
have difficulty in verifying it.
This rule, in combination with rule 1, may lead to a
nonterminating sequence of reductions. Application
of the rules should therefore be restricted by suitable
heuristics.

5. The first component of a serial clause (e;; e;) can
be moved into the front of a structured clause in the
following cases:

[....(e15€2),...]

proc(e;; e;) > e3

(€15 €3) e3

es(e;; €)

env(...(e;; €) =es3,...)
use(e;; e,) in e;

if (e;; e;) then e; else e,
case (e;; e;)ine;; > e, . ..

4.3 Formals as macros

1Y Wouy pepeojumo

Implementation of the language defined in section 2 i§
complicated since the compiler must be prepared fom
runtime type checks and dynamic binding even thouglg
they may be seldom actually used. The implementatior
must also provide an alternate representation fof
dynamic environments and an exception mechanisnt
for abort-clauses. Dynamic binding and runtime typé&
checks may also be incompatible with other desuablé
features in the design of new languages.

These problems can be avoided if formals are treateé‘é
as macros that must be evaluated completely at compllé
time. Different keywords can be used to dlstmgmsli%
compile-time clauses from runtime clauses. Fog3
instance, compile-time clauses could begin withS
keywords #if, #proc, #case etc. Macros are evaluatecﬁ
using the rules discussed in the preceding section. Sinceg
some features of the language are of little use at compllé;’;
time and others at runtime, semantic restrictions can be\n
added to facilitate implementation. The list of restr1c~<
tions might include the following:

1senb

@ The identifiers bound by env1r0nments must beo
known at compile time. This restriction implies statlc_\
binding. >

® Type checks must be evaluated at compile time=.
except when a runtime type check is exphcltly\’
requested with a case-clause.

@ Failures are not propagated at runtime. In other
words, execution of an abort-clause at runtime is a
fatal error.

@ Standard procedures atomf, nullf and fconcat are
available only at compile time.

@ Variable assignments are available only at runtime.

There are many additional details to be filled — for
instance, there are several possible ways to define the
type inference rules. Discussion of these decisions would
require much space and is beyond the scope of this
article. However, there is one potential problem that
deserves a note, namely the termination of macro eval-
uation, which is undecidable in the general case. An
additional restriction is therefore necessary if ter-
mination of compilation is to be guaranteed. Analysis

138 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

PARAMETER TRANSMISSION ABSTRACTIONS

of example formals reveals that recursive formals tend
to have tuples as arguments and either the length of the
tuple or the length of one of its components usually
decreases at each recursion level. Termination of
macros can be guaranteed by requiring that a macro can
be called recursively only if the size of the argument
- decreases on each recursion level, size being defined by

size((xy,.. ., x,)=n+1+ size(x;)
i=1

size(x) =1 if x is not a tuple

5. CONCLUSIONS

Most parameter transmission mechanisms, implicit con-
versions, pattern-based parameter binding and
optional, repeatable and variable-type parameters can
be defined as special cases of an abstract parameter
transmission mechanisms, where the formal parameter
part of a procedure is a mapping from the set of argu-
ments into the set of environments. Abstract formals
can be implemented efficiently in most cases that are of
practical interest.

Acknowledgements

The author wants to thank Prof. Reino Kurki-Suonio
and Prof. Ralph-Johan Back for their helpful comments.

REFERENCES

1.

10.

. H. Stoyan,

Specification for Computer Programming Language
Pascal. International Organization for Standardization,
Switzerland (1983).

. B. Stroustrup, C++ Programming Language. Addison-

Wesley (1986).
Lisp-programmierhandbuch. Akademie-
Verlag, Berlin (1978).

. V. R. Prasad, Variable number of parameters in typed

languages. Software — Practice & Experience 10, 507-517
(1980).

. G. Ford and B. Hansche, Optional, repeatable and vary-

ing type parameters. SIGPLAN Notices 17:2, 41-48
(1982).

. O.-]. Dahl, B. Myrhaug and K. Nygaard, Common Base

Language. Norwegian Computing Centre (1970).

. P. Wegner, On the unification of data and program

abstraction in Ada. Proceedings of the 10th conference on
Principles of Programming Languages 257-264 (1983).

. D. Gelenter, S. Jagannathan and T. London, Environ-

ments as first class objects. Proceedings of the 14th con-
ference on Principles of Programming Languages 98-110
(1987).

. R. Burstall and B. W. Lampson, A kernel languége for

abstract data types and modules. Proceedings of the
International Symposium on Semantics of Data Types.
Sophia-Antipolis, France, 1-50 (1984).

A. van Wijngaarden et al., Revised Report on the Algor-
ithmic Language Algol 68. Springer-Verlag (1976).

Announcements

10-13 SEPTEMBER 1990

SWISS FEDERAL INSTITUTE OF
TECHNOLOGY, ZURICH

Joint Conference on Vector and Parallel
Processing

CONPAR 9%
VAPP IV

The past decade has seen the emergence of
the two highly successful series of CONPAR
and of VAPP conferences on the subject of
parallel processing. The Vector and Parallel
Processors in Computational Science meet-
ings were held in Chester (VAPP I, 1981),
Oxford (VAPP II, 1984) and Liverpool
(VAPP 111, 1987). The International Con-
ferences on Parallel Processing took place in
Erlangen (CONPAR 81), Aachen (CON-
PAR 86) and Manchester (CONPAR 88).
The format of the joint meeting will follow
the pattern set by its predecessors. It is
intended to review hardware and architecture
developments together with languages and
software tools for supporting parallel pro-
cessing. Another objective of the conference
will be to highlight advances in algorithms
and applications software on vector and par-
allel architectures.

It is expected that the programme will
cover:

@ languages/software tools
@ hardware/architecture
@ algorithms/software

@ applications

Also special sessions will be devoted to
the field of application and/or programming
language specific architectures; i.e.
machines, where performance has been
gained through limiting the field of appli-
cations, or systems designed according to a
joint optimization of programming language
and architecture.

Other topics of special interest are:

@ performance analysis for real-life appli-
cations

@ testing and debugging of parallel systems

@ portability of parallel programs

@ paradigms for concurrency and their
implementation .

The conference should appeal to anyone
with an interest in the design and use of vector
and parallel machines.

Exhibition and Posters
An exhibition will be organized of:

@ vendor products
@ current research work and noncommercial
system prototypes

related to the conference theme.
Poster sessions will be organized.

For further information contact:

Prof. Dr. Helmar Burkhart, Institut fiir
Informatik, Universitit Basel, Mittlere
Strasse 142, CH-4056 Basel, Switzerland.
Tel: +41 61 449967. e-mail: burkhart
urz.unibas.ch

6-8 JUNE 1990

Eurographics Workshop on Object-Oriented
Graphics, Konigswinter, Federal Republic of
Germany

Aims and scope

Object-oriented methods are proving to be
particularly applicable to computer graphics—
in formulating new graphics standards and in
dynamic graphics and human-computer inter-
action. Specific computer graphics problems
have also resulted in a critique of the object-
oriented paradigm.

Venue and fee

The workshop will be held at Konigswinter
near Bonn, on the Rhine. The fee will be
around DM 700, including accommodation,
meals, evening boat excursion and reception
at Birlinghoven Castle. Student participants
without access to other funds could be sub-
sidised.

Co-chairmen

Peter WiBkirchen (GMD) and Edwin Blake
(CWI).

Information

Requests for information should be sent to
the workshop secretary:

Ms. Marja Hegt, O-O Graphics Workshop,
CWI, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands. Tel: +31 20 592 4058. Fax:
+31 20 592 4199. Email: marja@cwi.nl
(uucp).

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 139

¥20Z I4dy 01 uo 1senb Aq 218G8¢/E€ L/Z/ce/aIome/|ufwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

