C.F.REYNOLDS*

Department of Computer Science, Brunel University, Uxbridge UB8 3PH

CODIL: The Architecture of an Information Language

This paper describes the CODIL information language in terms of an infinitely recursive model for poorly structured
information. This approach is significantly different from the established approaches to programming language and
database theory. The paper then shows how the model has been adapted to work efficiently in the existing CODIL and

MicroCODIL interpreters.

Received March 1987, revised December 1987

1. INTRODUCTION
1.1 General

Twenty years ago an unusual ad hoc approach was
proposed to tackle the problems of poorly structured
information. It was called CODIL, which stood for
COntext Dependant Information Language.?*® Such a
move was contrary to the trends of the time, which was
to move from the badly structured primitive data bases
of the 1960s towards highly formalised and well-
structured models, such as those proposed by Codd!
(1970). As a result the original CODIL research team
was disbanded. Since then the work has continued on a
small scale, with a complete software package being
written and tested on a wide range of applications.?- 8- 11-12

The recent upsurge in interest in knowledge bases and
expert systems reflects a realisation among the computing
fraternity that there are many problems which cannot be
adequately described in terms of well-structured rules
and data. During a period of convalescence the author
took the opportunity to see how the original CODIL
ideas might be updated, in order to present a range of
modern research ideas in a context suitable for use in the
school classroom. The result is a package, now being
marketed, called MicroCODIL.*3-!?

The choice of computer for implementing Micro-
CODIL was dictated by the very large numbers of BBC
microcomputers in British schools. The need to use a
small computer (for example 25K bytes of working
memory) led to a complete rethinking of the design. This
has led to a better understanding of the theoretical
model underlying the original CODIL proposals. This
model, and the way in which it has been adapted to
produce operational interpreters, forms the subject of
this paper. In some cases certain of the new concepts (in
particular ‘memories’) have not been implemented
because of the restrictive nature of the computer used.

1.2 The underlying philosophy

It is important to realise that the CODIL approach is
philosophically very different from that underlying pro-
cedural, functional or logic languages. In CODIL all the
complexity is in the ‘data’ being processed by a single
very simple but very general ‘decision making’ routine.
This contrasts with approaches which attempt to localise
the complexity in a set of ‘rules’ (of some kind or

* Address for correspondence: CODIL Language Systems, 33
Buckingham Road, Tring, Herts, HP23 4HG.

another) which operate on some kind of ordered atomic
‘data’ structure.

Of course, when it comes to actual operational tasks
this philosophical distinction may not be immediately
apparent. For instance it may sometimes be useful to
think about CODIL as a production rule based system®
or alternatively to use it as if it were a relational data
base.® These similarities simply reflect a convergence
caused by the nature of the task being performed. The
number of such operational similarities is legion and,
unless the nature of the convergence is discussed in
detail, it is easy to mislead by a casual reference. On the
other hand there are other areas where the differences
become particularly noticeable. For example the idea of
having a function with parameters identified by order is
totally alien to CODIL, which makes no assumptions
about the order of variables, or even whether they have
null or multiple values.

To allow the paper to concentrate on the structure of
CODIL, discussion of other approaches to computer
languages, etc., is only included when it will make a
positive contribution to understanding. For the same
reason detailed reference to earlier work on CODIL has
been kept to a minimum. For instance the implications of
a highly recursive approach were briefly examined some
time ago'® but were not followed up at the time due to
lack of resources. In particular this paper only briefly
mentions human factors or psychological modelling®
despite the fact that much of the motivation for the work
has been linked to observations on how non-computer
people think about information. These matters are more
appropriately covered in a separate paper.

It should be noted that all examples are written to
conform to the MicroCODIL syntax and do not
necessarily apply to CODIL. This is done for convenience
of the reader, who need not be aware of the changes that
have happened to the language over the years. The only
exception is in the use of ;” and *:’ as item separators to
allow multiple items to be shown compactly on a single
line — which is not done in MicroCODIL.

2. THE COMPLETELY GENERAL MODEL

The starting point for understanding CODIL is a highly
abstract but very simple model. It can be described in
terms of three definitions given below:

(1) An item is a logical collection of items.
This definition is infinitely recursive, and in any actual
implementation it must be terminated by introducing

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 155

¥20Z Yole 0g uo 1senb Aq 826G8€E/SS L/Z/SE 8101/ |ulWwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

C.F.REYNOLDS

some kind of atomic structure. There is no restriction on
what items an item may contain, and in particular an
item may contain itself. An item may consist of items of
a similar degree of complexity as itself or it may only be
decomposable into simpler (or more complex) items.

It should be noted that this approach has much in
common with a natural-language dictionary, where each
word is defined in terms of others with no escape! If a
word is found which is not so defined this is due to the
incompleteness of the dictionary, rather than evidence of
‘atomic’ words.

(2) A decison-making unit selects an item, and either
compares it with another item, or adds it to the latter item.

The decision-making process involves the stepwise
decomposition of an item, into its components, the
comparing of items, and the transfer of items. This may
be going on in parallel, but for any particular activation
there will be a single item whose component items
describe the current information context. Such an active
item is referred to as a memory. Each memory item will
itself be a component in a higher-level memory. It is clear
that the decision-making process must reflect the
recursive nature of items and memories.

(3) Anything that is valid anywhere, is valid everywhere.

This is really a consequence of the first definition. The
only objects in the system are items, and it is sensible to
treat items in a uniform way. At the same time it must be
realised that an item, or a group of items, must be able
to be used in ways which provide facilities which are
conventionally provided by components of very different
types. For instance a CODIL item may have to act as a
boolean function, program, subroutine, data value, label,
etc., depending on the context. In functional program-
ming terms CODIL items are very heavily overloaded.

Because of Godel’s theorem it should be realised that
there will be items which will not have an unambiguous
interpretation everywhere, and so the above statement is
also idealistic. A good example is the self-referential
item, x:='x+1, which is an assignment in command
context, always false as a condition, and infinitely
recursive as data.

3. RESOLVING THE ABSTRACT MODEL

In translating the abstract model into a practical working
system the following factors need to be considered.

Resolving the infinite recursions. It is impossible to
build a working system with the totally recursive
definition of an item. An ‘atomic structure’ has to be
introduced below which further decomposition is not
necessary. For the same reason there will be some highest
level memory which encompasses the whole system.

Functional capability. The abstract model contains no
facilities for input or output, arithmetic, etc. Such
facilities will need to be provided.

Psychological orientation. The system is designed for
human beings, rather than for electronic machines or
mathematically precise automata. As a result simplicity
and ease of understanding must be considered. These
factors have been discussed elsewhere.®

Optimisation for poorly structured information. The
highly recursive structure makes this approach par-

ticularly suitable for handling poorly structured in-
formation. (It should be noted that any well structured
problem can be considered as a subset of a more general
poorly structured problem which has been selected
because it conforms to certain convenient predefined
rules. There is therefore no reason why an information
system designed to handle a given class of poorly
structured problems should not be able to handle related
well structured problems. The reverse is demonstrably
not true.)

Modular construction. To maximise the ease of
implementation, understanding and flexibility a highly
modular structure is required. In particular there should
be as clean a separation as possible between the
representation of simple items, the structures within
which they are held, the decision-making procedures and
the functional packages. One of the major advantages of Y
this approach is that this can be done remarkably easilyé

ape

Efficiency. In any practical software gratuitous recur-
sion is to be avoided as this would significantly degrade >
the overall performance. This means that, for example,g
arithmetic is treated as a black box facility rather than=
attempting to model it within the design architecture.

4. TERMINOLOGY

This section defines the basic information structuring
terms and, where appropriate, relates them to con-
ventional computing technology, or to psychological
modelling as appropriate.

olwapeoe//:sdy

dno

4.1 Domain name

All information in CODIL is identified by a named S

domain and domain names are the only kind of name

allowed in the language.
In CODIL a name is simply the means of identifying
information, and the mechanism is independent of the o
type of information being addressed. Syntactically all &
names are equivalent and there are no formal distinctions
equivalent to those found in more conventional languages &
between, for example, procedure names, file names and €
variable names.

GS1/Z/EE/o101e/|ulwod/Wod

4.2 Items of information

An item of information is a representation of either:
(1) A domain
(2) A subset of a domain
(3) A property of a domain
(4) An operation on a domain

Items are the logical ‘words’ of the CODIL system,
and all information is stored as lists of items. Items
correspond to the logical ‘chunks of information’ of
psychological models.

Each item is identified with a domain name, a
representation of a member (or property) of that domain,
and some additional information on how the repre-
sentation relates to the domain. The typical item
corresponds to a variable and its value. For instance the
item UNIVERSITY = Brunel indicates that one is within
the domain UNIVERSITY and has selected a subset
containing a single member (or item value), Brunel. Such
items will be referred to as ‘simple items’. Another item

¥20¢ YdJeN O¢ Uo isd

156 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

‘CODIL’: THE ARCHITECTURE OF AN INFORMATION LANGUAGE

might be COUNTER (TYPE) = N6 which is used in
MicroCODIL to define a property of COUNTER, which
is that its values should be integer numbers of no more
than six digits. The representation of items involving
more general subsets, properties and operations will be
discussed later.

4.3 Statement

A statement is an unbranched list of one or more items

which describes a real or hypothetical situation.
If a statement consists only of simple items it can be
considered as being equivalent to a record consisting of
correspondingly named fields. Alternatively a statement
can be considered as being equivalent to a production
rule, in which all non-terminal items represent the
conditions for which the terminal item is to be applied.

There are no system-imposed constraints on the order
of the items in a statement or the domains from which
they are drawn. However there may be advantages to the
user and to the system in favouring certain task-specific
orderings. For this reason the ordering of items is usually
maintained, and items are explicitly numbered.

4.4 Memory

A memory is a statement which is currently being

examined by the decision-making process.
The main memory is referred to as ‘the facts’ and is
intended to correspond to the human short-term memory.
(In making this analogy it is important to realise that the
aim is to produce a memory structure which the user can
identify with. An accurate psychological model would be
unsatisfactory in operational terms because, for example,
it would sometimes lose information during inter-
ruptions!) In computing terms a CODIL memory can be
considered as an associatively addressed cache memory.

4.5 Construct

A construct is a list of zero or more statements which

Jjointly define a named domain.

A construct is a named list of lists of items — and as long
as this is how it appears to the rest of the CODIL system
its internal organisation is irrelevant. This is an extremely
important feature as it means that the way in which the
information is stored (both physically and logically) is of
no concern to the system as a whole. In MicroCODIL
there is a useful ‘shorthand’ for compressing constructs
by losing the duplicated leading items from adjacent
statements. This aids user comprehension while mini-
mising processing and storage demands.

The name of a construct is a domain name and may be
used as part of an item. This means that a construct may
contain items which represent constructs which may
contain items....It is even possible for a construct to
contain items which recursively refer to itself.

Depending on the use to which it is put, a construct
may be considered to be equivalent to a file of data, a
procedure or set of production rules, or a function
returning a probability (usually as a simple ‘true’ or
‘false’). However these distinctions are purely semantic.

4.6 Knowledge base

The knowledge base is the collection of constructs which
make up the task universe.
The knowledge base is equivalent to human ‘long-term
memory’ and contains all the information available to
the system. It can be considered as a high level memory,
in which the component items are the names of the
constructs.

S. THE CODIL ITEM STRUCTURE
5.1 Introduction

Before specifying all the elements of a CODIL item it is
useful to look at a simple example. The item UNI-
VERSITY = Brunel behaves as if it consisted of a lower
level memory containing:

DOMAIN = UNIVERSITY

VALUE = Brunel

SELECTOR = Set membership

LENGTH =6

TYPE = Alphabetic

ISA = ORGANISATION
where SELECTOR represents the ‘=’ symbol in the
original item, LENGTH represents number of bytes in the
value, and TYPE reflects the type of bytes which compose
the value. The ISA item is a property associated with
DOMAIN = UNIVERSITY which indicates that all items
in the UNIVERSITY domain are also in the ORGAN-
ISATION domain.

While such an expansion conforms to the theoretical
model it is undesirable, from a practical point of view, to
carry it out in such an explicit manner. In psychological
terms such activities are somewhat similar to the
processing of information in the sensory short-term
memories, where processing is carried out subconsciously.
There is good reason for thinking that, for the user’s own
good, such detailed processing should be hidden. From
the efficiency point of view introducing additional levels
of decomposition means significantly more recursion,

. which it would be desirable to avoid.

It was stated earlier that it is essential to bottom out
the recursive item definition at some point, and the
boundary described above seems to be the most
convenient level from both the user and the system point
of view. Thus items such as UNIVERSITY = Brunel
would be in the user-visible domain, while items such as
LENGTH = 6 are internal variables from a notional low-
level memory within the supporting software’s ‘black
box’.

In practice there must be methods of crossing this
boundary when required. The user needs indirect access
to domains such as ISA or LENGTH and such an
interface is provided by making the domain names
known to the system. Thus the length of a UNIVERSITY
item can be probed by UNIVERSITY (LENGTH) = 6?
while the relationship between the UNIVERSITY and
ORGANISATION domains can be defined by UNI-
VERSITY (ISA) = ORGANISATION.

Domain names, such as LENGTH, and ISA, which
have special meanings to the system software, are known
as system names. Items involving such names will, in
appropriate circumstances, be ‘expanded’ into a self-
contained module of code within the software, rather
than into collections of items.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 157

¥20Z Yole 0g uo 1senb Aq 826G8€E/SS L/Z/SE 8101/ |ulWwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

C.F. REYNOLDS

5.2 The component parts of an item

In this section the component parts of an item are
discussed in comparatively general terms, and for
arbitrary implementation details, such as the maximum
number of characters in a domain name, the reader is
referred to the appropriate reference documentation. It
should be noted that there are no context restrictions on
any of the features. In addition there is a series of
library routines which carry out basic functions on items,
when provided with the appropriate item addresses. This
is an essential part of the modular approach and means,
for example, that a high level module can ask if two items
are identical without even having to know the data types
supported by the software!

Item level. Items usually have a level number associated
with them. This relates to their position in a higher level
information structure, and is used for control purposes.

Item name. All items must have a domain name, and
this is the only explicitly required component of an item.
This name may be the name of a construct or a system
function.

Qualifier name. Any item may be qualified by another
domain name, which is written in brackets after the item
name. This indicates that the processing of the item must
be modified by applying an item from the named
domain. If an item is not explicitly qualified, a user-
defined default qualifier may be applied. It should be
noted that there are no type restrictions on qualifiers.
This means that a qualifier might be a numeric subscript,
a probability, a system name, a construct or be undefined.

Qualifier number. An explicit bracketed numeric
subscript may be associated with an item when it is
desired to select a single item from a statement by its
relative position. In addition a value may be dynamically
assigned by the system if automatic indexing is being
used.

Probability. All items have a probability value associ-

ated with them. This is explicitly shown if it has a value -

between zero and unity. By default all items with no
explicit probability assume the probability of unity, and
any item which acquires a probability of zero vanishes’
from the system.

Automatic indexing indicators. The symbols £ and @
are used to indicate that automatic indexing is to be
applied. When used they cause a suitable value to be
placed in the ‘qualifier number’. (Automatic indexing is
not discussed further in this paper.)

Expression indicator. A “:’ is used to indicate that the
item value is an expression to be dynamically evaluated
rather than a literal value. This will often involve
arithmetic but may be used as a pointer. For example
OWNER:= OCCUPIER indicates that whenever an
attempt is made to access OWNER the appropriate
properties of OCCUPIER should be used.

Item logic. Combinations of the symbols ‘ <’, ‘=",
and ‘ >’ are used to relate the item value with the parent
domain. On its own a ‘=" symbol indicates that the
value identifies a member of the named domain. The * <’
and ‘>’ symbols are used to delimit ranges.

Item value. In the current implementations item values
are limited to ASCII character strings, which can be
interpreted as numbers if their form allows.

Terminal punctuation. An item will normally have a
final *,” or .” associated with it. A full stop indicates that
the item is at the end of the statement in which it is held.

5.3 The alternative approaches

It is important to realise that there are some arbitrary
decisions in the above structure. The choices taken have
been shown to work but it is useful to look at some of the
alternatives.

The most fundamental relates to whether a particular
facility is to be treated as a primitive or not. For example,
should an arithmetic expression, currently represented
by a colon, be replaced by a named qualifier, suchS
as (EXPRESSION)? In the same way, should the2
(APPROX) facility be given a shorthand such as ‘ ~’? S

Because of the highly modular approach it should also &
be comparatively easy to extend the range of data typesd
CODIL can handle. In particular there is no conceptual =
reason why other types of information, for exampleé’
pictures or sound, should not be included as long as ans
appropriate type tag is included in the item, andg
appropriate input, output and processing modules are &
added to the system library.

6. CONSTRUCTS

Constructs are the means of holding information within &
the system. In logical terms each construct consists of >
zero or more statements, and each statement contains 2
one or more items. In practice there are no constraints on S
how the information is actually stored as long as it @
presents the correct interface. Any information structure ~
can be used as long as a suitable demon is constructed. A o

. . A
suitable demon should be able to respond to the following g
requests:

(a) Provide the next item from the current statement.

(b) Provide the first item from the next statement.

(c) Provide the next statement in toto.

(d) Indicate the end-of-construct condition as ap-

propriate.

(e) Accept a complete statement and incorporate it

into the existing statements on the construct.

In addition the demon may have access to information
in the currently active memory, which can allow
additional information to be communicated.

These rules provide a highly modular interface. The
decision-making process, and other support routines, do
not know, or need to know the actual logical or physical
structures needed to store the information. When an item
or statement is requested it does not matter whether it
comes from a ‘codil’ file, the keyboard, an array, a
relational data base file, a semantic network, or a
function which computes appropriate values and returns
them in item format. If the construct is logically indexed
with a ‘key’ the effect is to operate on the subset of the
construct relevant to the key. This may be done by
searching the construct, using indexes, or by using the
key as a parameter in a function call. When a statement
is written to a construct the demon may append it, insert
it in a logically suitable place, ignore it as a duplicate of

woo/wod°dno-olw

202 Yale 0z uo 1senb Aq 826G

158 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

‘CODIL’: THE ARCHITECTURE OF AN INFORMATION LANGUAGE

information it already has, increase a frequency count, or
even initiate a restructuring process. In the other direction
the demon does not need to know why it has been asked
to provide information or which routine has requested it.

The important thing to realise is that there is a
complete separation of responsibility between the main
processing routines and the construct demons. This
approach is essential when one is handling open-ended
problems, where the structure of the information to be
manipulated is not known in advance. This is in marked
contrast with conventional programming languages,
where much of the ‘action’ assumes a knowledge of the
structure of the information being processed.

A variety of construct types has been used in CODIL
and/or MicroCODIL, from data compressed formats in
the computer memory up to physically indexed clear-text
files. The order of the statements may dynamically

change using an ordering algorithm in the construct

demon, and some interesting learning models have been
tried. In each case the demon protects the decision-
making unit from ‘seeing’ the storage structure directly.

7. MEMORIES

Because the current implementations do not support
parallel processing, the hierarchy of memories of the
theoretical model becomes, for all practical purposes, a
stack. This can be considered as a zoned ‘last in first out’
list of items. The physical organisation of the stack is a
matter for the memories demon. If a request for
matching items is not satisfied in the current memory
zone it can continue the search in the next higher zone.
When items are found it returns a list of pointers to those
items. From the point of view of the user the main zones
are as follows.

System functions. If all else fails, and the domain name
corresponds to a system function, the logical address of
that function is returned. The available functions are
predefined when the software is loaded.

Constructs. The highest level dynamic memory consists
of all the constructs within the knowledge base. When
this memory is searched the type and logical address of
the construct is returned.

Item properties. These items represent the properties
associated with a domain name. For instance items such
as UNIVERSITY (ISA) ORGANISATION would be
held at this level.

Global items. These are a list of user defined items
which are permanent in that, once defined, they cannot
be deleted.

The facts. This is the main working memory, and is
notionally equivalent to human short-term memory. It is
organised as an associatively addressed list of items
which are ‘ garbage collected’ on a last in — first out basis.
By subtle modification of the addressing rules one can
get a range of sophisticated behaviours, including its use
as a recursive stack with local and global variables as
required.

Work item. In describing the item structure (Section
5.2) it was indicated that it was occasionally necessary to
look into a conceptually lower level to get information
on, for example, the length of an item value. There is

therefore a ‘dummy item’ available at the bottom of the
facts which is used to hold system generated items.

In addition to the main memory stack, described
above, there are several other memories which carry out
specific roles. The most important of these is represented
by the ‘TRACE’ window in MicroCODIL. This contains
copies of the items that have been recursively examined
to reach the current context. This window provides an
answer to the question ‘How did I get here’. Another
example of a supplementary memory would be the file
format descriptions associated with reading conven-
tionally formatted BASIC files into MicroCODIL.

8. THE DECISION-MAKING UNIT (DMU)
8.1 The basic approach compared

As seen by the user, the Decision Making Unit is
deliberately very simple. The basic process is to take two
lists of items and compare/combine them as far as this
is possible. If the system compares

1 PRODUCTCODE = 253,
2 QUANTITY > = 1000,
3 QUANTITY <5000,
4 UNITPRICE = 45.

as ‘criteria’ with
1 CUSTOMERNO = 12345,

2 PRODUCTCODE = 253,
3 QUANTITY = 2500.

in the ‘facts’ memory it needs little imagination to see
that the facts will be changed to:

1 CUSTOMERNO = 12345,
2 PRODUCTCODE = 253,
3 QUANTITY = 2500,
4 UNITPRICE = 45.

This operation can be compared with a simple production
rule:

PRODUCTCODE = 253; QUANTITY > = 1000;
QUANTITY < 5000; —— UNITPRICE = 45

or a COBOL statement of the kind:

IF PRODUCTCODE = 253 AND QUANTITY > =
1000 AND QUANTITY < 5000 MOVE 45 TO
UNITPRICE.

If we ignore the limitations of the Relational Data Base
in handling ranges the operation can also be considered
as a natural join between tuples selected from two
relations with the structures:

PRICELIST (PRODUCTCODE, QUANTITY, UNIT-
PRICE) 253 1000-5000 45

ORDER (CUSTOMERNO, PRODUCTCODE,
QUANTITY) 12345 253 2500

Such analogies must be handled with care. For
instance, a COBOL programmer would rarely write a
statement along the lines of the example given above.
Instead he would write a more general statement such as:

IF PRODCODE = PRODUCTCODE AND QUAN-

TITY > = MINQUANT AND QUANTITY < MAX-

QUANT
PRICE.

MOVE UPRICE TO UNIT-

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 159

¥20Z Yole 0g uo 1senb Aq 826G8€E/SS L/Z/SE 8101/ |ulWwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

C.F.REYNOLDS

CODIL can be used in the same way, but could be
significantly slower. This is because procedural languages
are optimised towards doing repetitive tasks, while
CODIL is optimised towards dynamic flexibility.

From these simple examples it is possible to make two
important observations, as follows.

In CODIL there are no syntax distinctions between the
two statements being compared. In this, it is similar to
the relational data base, and more general than pro-
duction rules or procedural languages such as COBOL.
The CODIL user is, of course, free to use some files only
as ‘program’ and some only as ‘data’ if this is appropriate
to his application.

In CODIL there is no requirement for the statements
to correspond to any semantic predefinitions. In this it is
more general than the relational data base or procedural
language approach. The CODIL user is, of course, free
to create constructs which conform to predefined
semantic rules if this is appropriate to his application.

8.2 A ‘minimally recursive’ DMU

At the heart of any CODIL interpreter is a ‘Decision
Making Unit’ or DMU which controls the comparison
of lists of items. This reads ‘criteria’ items from the
keyboard or the knowledge base, compares them with
the current contents of the facts, and initiates actions as
a result. The overall process is very simple and a non-
recursive flow diagram is shown in Fig. 1.

Normal entry point

|
|
|
v

[A] Select first
criteria statement

[1] Select next
-=--= FACTS statement

t
end of file |
I

|
|
|
v

[B] Select next _
criteria item

[H] Select next
criteria statement

<« ———

[C] Test for No

Test .. [G] Compare item False
terminal item

with FACTS items

A

.

|
| Yes
|
v

[D] Test for No

. [F] Move item
constructitem " >

to the FACTS

Y

|
: Yes
v

[E] Enter DMU
recursively

Figure 1. The decision-making unit — ‘minimally recursive’
flow diagram.

The DMU is normally entered at the point [A] with
items coming from the keyboard or a construct in the
knowledge base. The first statement is selected, and then
the first item within that statement [B]. This item is
expanded into its component parts, inserting default
values as appropriate. If the item is at the end of a
statement it is deemed to be true by definition [C]. If the
item is a construct [D] the DMU is re-entered recursively

[E] using the construct as a source of further criteria
items [A]. Otherwise the item is added to the Facts [F]. In
either case the next criteria item comes from the next
statement [H].

For a non-terminal item a comparison is made with
the items in the Facts [G]. If the comparison is true the
next criteria item is selected [B]. Otherwise the first
criteria item from the next statement is selected [H].

When the end of the criteria construct is reached the
DMU simply returns back to a higher level at [A].
However if the entry item at [A] involved a pair of
constructs in the form ‘constructl = construct2’ the
DMU was entered at [I] and in this case the facts are
updated with the next statement from construct2, and
the DMU is re-entered using constructl.

If the item being compared at [G] is a construct (i.e.
‘construct?’ or ‘constructl = construct2?’) the DMU is
re-entered but processing takes a slightly different route.
All items selected at [B] are compared at [G], and if a 3
terminal item is found to be true the process terminates &
and a ‘True’ is passed back to the higher level.

The above description is quite deliberately vague on a 3
number of points. For instance [H] selects the next =
criteria statement, but it is not explained how this is &
done. This ambiguity is quite deliberate for two reasons.
First of all the ‘next’ statement on the construct being 3
used is decided by the appropriate construct demon — 3

and hence it is not the concern of the decision-making

unit. Secondly the decision-making unit may impose
additional constraints. It is not proposed to discuss these 8
in detail in this paper but three main approaches have =
been tried.

(a) The next statement is the one which sequentially
follows the previous one if you list the construct. This
gives a ‘rule’ order equivalent to that used in procedural
languages.

(b) Only one ‘rule’ has been selected successfully.
Once this has happened the logical end of the construct
is reached.

(c) The first ‘new rule’ is selected. The search for the
next ‘new rule’ starts at the beginning of the construct.
The process continues until there are no new rules. This
gives a ‘rule’ order equivalent to that used in production
rule based systems.

This means the DMU can operate either as if it were
processing a sequential set of rules, or a set of production
rules, or various combinations of the two.

O
o]
2
3

ol p

apeoe//

¥20Z Yole 0z uo 1senb Aq 826G8€E/SS L/Z/EE 810/ |ulwoo/w

8.3 The item comparison process

When a criteria item is selected the memory demons are
asked for a list of items drawn from the same domain. At
the lowest level the value of each item in the list is
compared with the criteria item, while at a higher level
the results of the comparisons are correlated and a final
probability is returned. It is easiest to discuss the
comparison process in ‘bottom up’ order.

Matching an item list. The comparison process starts
with the DMU asking the memory demon for a list of
items which match the item name of the current criteria
item, either directly or through the ISA hierarchy. Given
this list the DMU first checks to see if there is a relevant
qualifier, for example (NUMBER), which can be satisfied
immediately. (In this case the NUMBER function

160 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

‘CODIL’: THE ARCHITECTURE OF AN INFORMATION LANGUAGE

replaces the list with a single entry referring to a
temporary item containing the number of items in the
original list.)

The DMU then scans the list comparing each item in
turn with the criteria item, using the process described
above. If any comparison is true the DMU treats the
criteria item as true, and in the same way one false item
on the list makes the criteria item false. If the end of the
list is reached and a true? item has been found the criteria
item is treated as true. This would happen, for example,
if you compared AGE = 30 as criteria with a range of
AGE > = 20; AGE < 40 in the facts memory. If the best
result is ‘undefined’ the criteria item is false.

If the item list is empty individual item comparisons
cannot take place, and the result is false, unless the
criteria item explicitly refers to the null set.

Comparing individual items. In MicroCODIL all item
values are held as character strings, but can be treated as
either real numbers or integers if they correspond to an
appropriate format. When comparing values (after
evaluating expressions if relevant) a numeric comparison
is performed whenever meaningful. Case distinctions are
ignored. Additional comparison functions are provided
for partial string matching and approximate matching
(near miss numbers or mis-spellings). Further such
facilities can be added in a modular fashion, and might,
for example, carry out phonetic matching, compare
dates, or map words such as ‘seven’ with numbers in
digital form.

When comparing items it should be realised that a
comparison between AGE > 30 and AGE < 20 should
be treated as false because there is no possible overlapping
value. Using a simple set-theoretic approach it is possible
to define a simple table look-up routine to handle all
possible combinations.

Conditional constructs and the fuzzy interface. If a
direct comparison between the criteria item and the
contents of the current memory is false, the DMU can
make two further attempts to try and get a true response.
If the criteria item corresponds to a construct the item is
recursively passed to the DMU in a conditional mode,
returning true if any single statement is true. Alternatively
an item qualified by a construct is processed in a similar
manner — with the construct being indexed by the criteria
item value. As this approach is recursive it provides a
flexible fuzzy interface.

Probabilities. The above discussion assumes that
probabilities are not being used (or more correctly that
all probabilities are unity). If probabilities are used the
DMU looks for the most probable result. If the found
probability exceeds a given threshold the item is true
(with the found probability being carried forward),
otherwise it is false.

8.4 Applying items to the facts

In Fig. 1 items are shown as being ‘applied’ to the
Facts. This term is used because items will fall into three
groups. The first group will change the contents of the
Facts Memory. The second group will change the
contents of other memories (or the names table, see later)
and the third group will be involved in output, which has
no direct effect on the main memory structure. Only the
first situation will be described here.

When an item is moved to a memory, and there is only
a single item matching by name, the existing item is
overwritten. This is equivalent to the action taken in
language systems that only accept single-value items. In
practice it is very important to keep this as the default,
and the system will only use multiple-item values if they
are specifically requested. If there are no matching items,
or multiple values are being used, the item is appended to
the end of the memory.

8.5 The fully recursive structure

In reality the power of CODIL is a direct result of the
way in which the modules which make up the DMU call
each other in a highly recursive network. These modules
are all no more than a few lines long and fall into the
following categories.

Basic sequence control. This module is concerned with
requesting the next item from the appropriate demon
and deciding which other modules to call. The module
either iterates when the item is false (for instance when
getting the next item from the keyboard), calls itself
recursively if the item is true, or calls other control
modules (which may again call it back at a deeper level
of recursion).

Processing. One module controls the ‘comparison’
process and another controls ‘actions’. Normally their
activities are self-contained, but they can recursively re-
enter the DMU if the items being processed have the form
construct, constructl = construct2 or item (construct) ...

Construct selection and repeating processes. Further
modules are used to select constructs and to control any
repeating processes. (This is equivalent to looping and
reading the next record in a conventional procedural
language.)

System functions. One module controls all calls to
system functions, wherever they originate. Some of
these functions, such as those concerned with back-
tracking, will re-enter the DMU at a deeper level.

9. THE SYSTEM FUNCTIONS

An item name can correspond to a predefined system
function. Normally an item with a system name will be
treated in an identical manner to any other item, but in
certain contexts, defined below, it will be used to trigger
a call to a precoded function. Such ‘system items’ can be
said to expand into some kind of ‘activity’ rather than
into smaller items. The relevant contexts are identified as
follows.

The value context (val). This is the simplest context in
that it is activated whenever the system requests a current
value for a named item. If the memory demon does not
find a matching item the relevant val’ system function is
used to generate a temporary item with an appropriate
value.

The command context (cmd). This context is used to
modify system parameters, and also to select display
windows. The only normal system word that corresponds
to a conventional explicit command in a procedural
language is EXIT.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 161

¥20Z Yole 0g uo 1senb Aq 826G8€E/SS L/Z/SE 8101/ |ulWwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

C.F.REYNOLDS

The compare context (cmp). This context is entered
when two item values are being compared, and the
criteria item has a named qualifier such as (APPROX) or
(LENGTH). Such system functions carry out non-
standard comparisons and indicate whether the values
are to be considered equal, and with what probability.

The parameter context (par). This is also activated
when items are compared, but before they are fully
decomposed into their component parts. Thus (NUM-
BER) is used to count the number of items with matching
names, while (LAST) restricts the system to looking at
the last item (if any) which matches the current items
name.

The expression context (exp). This is similar to the
value context except that it returns a property associated
with the item name.

The modifier context (mod). The kinds of activities
triggered by such items are very varied and a few
examples are appropriate. The first group correspond to
the ‘exp’ functions and are used to define properties such
as ISA. Two are extremely important. These are
(ACTION) and (CONDITION) and they are used to
define default qualifiers. For instance the item MELTING-
POINT (CONDITION) = APPROX ensures that all
unqualified comparisons involving MELTINGPOINT are
carried out using the approximate mapping function
identified by (APPROX). Such (ACTION) and (CON-
DITION) properties are transmitted along the ISA
hierarchical structure, and so can be made to apply
globally.

Other ‘mod’ functions superficially resemble con-
ventional procedural commands, and it is instructive to
see why an apparently unusual format is used. For
example CURRENTORDERS (LIST) gives the construct
the property of being visible on the display unit or
printer, while CURRENTORDERS (DELETE) will give
the construct CURRENTORDERS the property of being
deleted! The explanation is that in CODIL the emphasis
is on the information being processed (which happens to
have properties) while in command oriented languages
the emphasis is on operations (which happen to require
something to operate on).

The after context (aft). The after context occurs after
an item has been processed, but before the next item is
selected. It is particularly relevant for diagnostic pur-
poses, fuzzy matching and processing demons.

Further contexts are possible — particularly relating to
input and output but have not been implemented in
either CODIL or MicroCODIL.

10. THE NAMES TABLE

An important implementation feature of both CODIL
and MicroCODIL is the name table. This can be

REFERENCES

1. E. F. Codd, A relational model of data for large shared
data banks. Comm. ACM 13, 377-387 (1970).

2. International Computers Ltd. UK Patent 1,265,006 (1968).

3. D. Omrani, Some studies of the relational data base and
the CODIL language. Ph.D. Thesis, Brunel University
(1979).

considered as a kind of data dictionary which contains
all the domain names known to the system, together with
any associated properties and it is organised so that the
software can rapidly access the information it contains.
For system names the table contains information on the
contexts in which the name is active; for constructs it
contains information about where and how it is stored;
for other items it may contain information on properties
and defaults associated with the domain name. The ISA
pointers are extremely important as the software auto-
matically follows up the ISA chains in order to find the
current default properties for the current item.
Conceptually this information can be considered to be
held in high level memories, and is so described earlier in
this paper. However, the ‘data dictionary’ approach
means that all properties associated with domain names
are held globally. In MicroCODIL the advantages off
compactness and speed greatly outweigh any disadS
vantage from not having ‘local’ property definitions. 9
For future systems, implemented on more powerfu@
machines, there seems to be no reason why propertiess
should not be held in any memory, and be subject to ﬁ
‘last in first out’ regime.

11. CONCLUSIONS

This paper has described the conceptual background t®
CODIL in information processing terms, and has showr%
how the ideas have been implemented in CODIL and3
MicroCODIL. In doing so, many novel or unusuali
features of the approach have had to be passed over, andO
it is proposed to describe them in later papers. For3
instance there is much more that can be said about the«
handling of constructs and the construct demons; the2
subtleties of sequence control within the decision- makmgg;J
routines have only been hinted at; and the ‘global /local ™> N
aspects of the CODIL memories exhibit some veryZ
distinctive features. In addition a paper is planned whichg
looks at CODIL in human factor terms, and more are@
planned descrlbmg a wide range of applications. o

More work is necessary on the theoretical aspects ofg
CODIL. At the most general level there are no constramtsC
on the logical consistency of the information bemg——
processed This ‘freedom’ to be ambiguous or incon->
sistent is essential if the user is to model his mcompleteo
view of poorly structured information. On the others
hand the user may impose logical constraints at a levelS
appropriate to his task, and, given appropriate demons,
select storage structures which provide the appropriate®
support. It is quite clear that the recursive item model
cannot be adequately described by the more normal
theoretical approaches to programming languages and
data bases, and it is believed that some new mathematical
tools may have to be developed.

oDlwapeoe//:sdiy

4. C. F. Reynolds, CODIL: The importance of flexibility.
The Computer Journal 14, 217-220 (1971 a).

5. C. F. Reynolds, CODIL: The CODIL language and its
interpreter. The Computer Journal 14, 327-332 (19714).

6. C. F. Reynolds, An evolutionary approach to artificial
intelligence. Proceedings, Datafair '73 314-320 (1973).

162 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

10.

1.

‘CODIL’: THE ARCHITECTURE OF AN INFORMATION LANGUAGE

. C. F. Reynolds, A data base system for the individual
research worker. Proceedings, International Symposium,
Technology of Selective Dissemination of Information 1-8
(1976).

. C. F. Reynolds, G. Sutton and M. Shackel, Using CODIL
to handle poorly structured information. Proceedings,
Medical Informatics Europe, 465474 (1978 a).

. C.F. Reynolds, The Design and Use of a Computer

Language based on Production System Principles. Brunel

University, Technical Report CSTR/15 (1978).

C. F. Reynolds, A psychological approach to language

design. Proceedings, Workshop on Computer Skills and

Adaptive Systems, 77-87 (1978 ¢).

C. F. Reynolds, CODIL as an information processing

language for university use. JUCC Bulletin 3, 56-58 (1981).

13.

14.

15.

16.

17.

Tth International Online Information Meeting, 111-118
(1983).

C. F. Reynolds, MicroCODIL as an information tech-
nology teaching tool. University Computing 6, 71-75 (1984).
C. F. Reynolds, A microcomputer package for demon-
strating information processing concepts. Journal of Micro-
computer Applications 8, 1-14 (1985).

C. F. Reynolds, MicroCODIL Manual (and software).
CODIL Language Systems, 33 Buckingham Road, Tring,
Herts, UK (1986).

C. F. Reynolds, Human factors in systems design: a case
study. In People and Computers 111, edited D. Diaper and
R. Winder. Cambridge University Press (1987).

C. F. Reynolds, Introducing expert systems to pupils.
Journal of Computer Assisted Learning (in press) (1988).

12. C. F. Reynolds, A software package for electronic journals.

Wilkes Award

The Society is pleased to announce that the
Wilkes Award for 1988 has been won by
William Roberts for his paper ‘A formal
specification of the QMC message system’
which was published in the August 1988 issue
(Vol. 31, No. 4) of The Computer Journal.
Each year an Award Panel considers all those
papers, published in the previous year, where
one or more of the authors was under thirty
years of age at the time of submission. The
award is then made to the author(s), provided
they satisfy the age criterion, of the best paper
in that category.

The paper addresses two problems of com-
munication, that of the human communi-
cating with the computer and that of two
(or more) humans using a computer as the
medium through which to communicate with
each other. The problem with the first kind
of communication is that a computer will not
perform any task unless the task has first been
analysed thoroughly and described clearly
and then the description is communicated

unambiguously to the computer. The prob-
lem with the second kind of communication
is that, having created a physical link, the
user must be provided with a facility whereby
he can understand how to use the link without
having to search a plethora of incom-
prehensible manuals. This is called gen-
erating a ‘user friendly’ interface.

The objective of the paper is to create
an algebra for describing a computer system
formally and then to use this algebra to
describe the ‘Message System’ (a computer-
based mail and notice board facility) devel-
oped at Queen Mary College, London. From
the paper a reader can learn how to specify
formally a computer system and, at the same
time, how to design an easily used local
‘Message’ facility.

From an early start in computing at age
eleven, William Roberts graduated in Math-
ematics from Exeter College, Oxford in 1982.
At the same time as studying for his degree,
he was also deeply involved with a con-
sultancy who were developing commercial

microcomputer applications. In 1984 he
moved to Queen Mary College, London
where he first gained an MSc (with distinc-
tion) in Computer Science and then joined
a small, Alvey-funded research group. This
research led to the award-winning paper, and
at the end of funding he stayed at QMC with
responsibility for developing the Computer
Science Network.

Mr Roberts was one of twenty seven
authors who were considered for the award.
His paper was chosen because of the way in
which it shows so clearly how a new and
developing technique from computer science
can be used in a new and developing com-
puter application. The Wilkes Award, which
consists of a silver gilt medallion, was insti-
tuted by The British Computer Society to
mark the retirement of Professor M. V.
Wilkes as Professor of Computing Tech-
nology at the University of Cambridge, in
recognition of his pioneering work in both
computer hardware and software and his
unstinting efforts on behalf of the Society.

Announcement

23-25 JuLy 1990
UNIVERSITY OF LEICESTER, UK

International Workshop on Semantics for
Concurrency

The International BCS-FACS Workshop on
Semantics for Concurrency will take place on
23-25 July at the University of Leicester,
Leicester, UK, in the week following ICALP
90 to be held at the University of Warwick,
Coventry, UK. Leicester is conveniently
positioned in central England, and is within
easy reach of Coventry. Those wishing to stay
on after ICALP may obtain accommodation
for the days preceding the workshop at very
reasonable prices. During this time, there will
be an opportunity to join in a programme of
entertainment. The preliminary announce-
ment for the workshop has met with a very
encouraging response.

Semantics of concurrent systems is one of
the most vigorous areas of theoretical com-

puter science, but suffers from disagreement
due to different, and often incompatible, atti-
tudes towards abstracting non-sequential
behaviour. When confronted with process
algebras, which give rise to very elegant,
highly abstract and compositional models,
traditionally based on the interleaving
abstraction, some argue that the wealth of
contribution they have made is partially offset
by the difficulty in dealing with topics such as
fairness. On the other hand, the non-inter-
leaving approaches, based on causality,
although easing problems such as fairness and
confusion, still lack structure, composition-
ality, and the elegance of their interleaving
counterparts. Since both these approaches
have undoubtedly provided important con-
tributions towards understanding concurrent
systems, the workshop will concentrate on
what they have in common, rather than the
way they differ.

The workshop will incorporate a number
of tutorials, devoted to invited talks con-
centrating on giving an overview of major

approaches to concurrency. The invited
speakers will include: Prof. Robin Milner
(Edinburgh), Prof. Eike Best (Hildesheim),
Prof. Antoni Mazurkiewicz (PAS).

Topics will include (the list is not exhaus-
tive): mathematical models and notations for
concurrency including categorical and topo-
logical methods; non-interleaving and part-
ial-order semantics; distributed computation;
process calculae; behavioural equivalences;
behavioural properties of concurrent systems
including fairness; logics for concurrency;
real-time systems.

Organising Committee: Marta Kwiatkow-
ska, Mike Shields, Rick Thomas.

Address for information:

Dr. Marta Kwiatkowska, Workshop on
Semantics for Concurrency, Department of
Computing Studies, University of Leicester,
Leicester LE1 7RH, UK. Tel: +44-533-
523603. e-mailJANET: mzk@uk.ac.le.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 163

¥20Z Yole 0g uo 1senb Aq 826G8€E/SS L/Z/SE 8101/ |ulWwoo/wod dno-ojwepeoe//:sdiy wolj papeojumoq

