On Languages, Models and Programming Styles

MARIAN PETRE AND R. WINDER

Department of Computer Science, University College London, Gower Street, London WCIE 6BT

In this paper, we attempt to clarify both the terminology used to classify programming languages and the nature of the
classification itself. We feel that the current terminology and classification as captured in the literature is out of
balance with the way that subject programming languages are used. We consider the accessibility of the computational
model and the importance of the implementation language and suggest that a re-appraisal in this context will produce
a better characterisation of both the programming language styles and their labels.

Received June 1988, revised December 1989

1. INTRODUCTION

‘When I use a word,” Humpty Dumpty said, in rather
a scornful tone, ‘it means just what I choose it to
mean — neither more nor less’.
‘The question is,” said Alice, ‘whether you can make
words mean so many different things.’
‘The question is,” said Humpty Dumpty, ‘which is to
be master — that’s all.’

Through The Looking Glass, Lewis Carroll.

In any discipline, ideas and terminology proliferate
together. Unfortunately, the relationship of one to the
other is not always clearly defined; labels and
expressions infiltrate common parlance often before
their meanings are precise, so that discussions are ill-
founded and ambiguous. Computer science is no excep-
tion; terminology covering programming paradigms —
even the use of ‘paradigm’ — is disputed.

In this paper, we try to clarify the nature and usage
of programming languages in order to understand the
qualities driving classification. Viewing coding as a
translation process, we consider the accessibility of the
models between which translations must be
accomplished. Hence, we examine the computational
models which underlie programming languages and con-
sider at what level — language surface or implemen-
tation — computational mechanisms are evident and
at what level algorithmic decisions are defined. This
examination guides our re-appraisal of the terminology,
starting with our notions of ‘specification’ and
‘program’, and culminating in a series of questions which
highlight the significance of ‘imperative’ and ‘declara-
tive’. We find that, in this formulation, the languages
form a continuum, and we present a simple map.

1.1 Terminology

We start by giving the following short, ‘garden variety’
definitions as a base for our examination:

Imperative: Imperative languages express sequences of
operations required to achieve a calculation. These lan-
guages are ‘state-oriented’; they imply an underlying
machine manipulated explicitly by a programmer’s com-
mands.

Declarative: Declarative languages emphasise what is
to be calculated rather than how the calculation should

proceed. How the calculation is performed depends
on the implementation, which embodies algorithmic
information not found directly in the language. A dec-
larative program is a statement of constraints on the
solution which can be read ‘declaratively’ as a descrip-
tion of the solution set. These constraints coerce the
algorithmic engine embedded in the language
implementation to produce a solution or set of solutions.

‘Imperative’ and ‘declarative’ are the major classes
on which we focus our appraisal. The following terms
govern sub-classes or styles, and their meanings are less
problematic:

Procedural: A sub-class of imperative languages, pro-
cedural languages incorporate language constructs for
modularising source code in the form of procedures or
functions which are called with parameters and which
return control to the caller.

Object-Oriented: A sub-class of imperative languages,
object-oriented languages view computation as inter-
action among active data objects. All data are objects,
all objects are treated uniformly, and all processing is
done by passing messages among objects. Each object
embodies operations defined for it, and ‘control’ takes
the.form of requests (‘messages’) sent to data objects
to transform themselves. Data abstraction is sustained,
and the internals of objects are hidden. Similar objects
can be grouped in a hierarchy of classes, with classes able
to ‘inherit’ common attributes form their superclasses.

Logic: A sub-class of declarative languages, logic pro-
gramming languages provide constructs for defining
atomic relationships among values by asserting facts and
rules about them in the form of ‘implications’ in which
at most one conclusion derives from the conjunction of
zero or more conditions. The logic used is of first order;
the clauses that constitute a program are mutually inde-
pendent but cannot be treated as objects in their own
right. Programs are ‘interrogated’ to elicit truths about
individuals and their relationships. The engine for
‘resolving’ and ‘unifying’ these relationships is wholly
within the language implementation. Programs generate
sets of answers, not necessarily single answers. Seri-
alisation of the set generation is usually handled by the
user interface.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 173

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

MARIAN PETRE AND R. WINDER

Functional: A sub-class of declarative languages, func-
tional languages specify output as a function, in the
mathematical sense, of the input. These languages are
‘value-oriented’; there is no implied state and hence
no changes of state or ‘side-effects’. These languages
incorporate ‘referential transparency’; the value of a
function is determined solely by the values of its argu-
ments, so a function called with the same arguments
will always yield the same values.

Applicative: Treated here as a synonym for ‘functional’,
this term emphasises that effects are achieved by
composing functions and applying them recursively.
This term is used elsewhere as a stricter label the sense
of ‘purely applicative’; that is, referential transparency
is maintained for all expressions.

1.2 Computational Model

Underlying all programming is some notion of a
machine. However a solution is pursued, the vehicle is
the computer. Abstraction from specific machine opera-
tions — the evolution of high-level languages — has made
it possible to characterise different models of com-
putation compatible with actual processing. Embodied
in each language is such a computational model, a view

of the actions and interactions by which solutions are
achieved. Moreover, some of the structure originally
imposed at the hardware level — actually ‘wired in’ - is
now provided within language implementations, so that
the machine-level model is simpler, and sophistication
is introduced in the computational models underlying
high-level languages. We will examine our terminology
for languages in terms of the distinctions or similarities
among the embedded views of the computational world.

Between conception and computation are
translations; of strategies to code, of source code to
machine code, of instructions to actions. The intro-
duction of levels of abstraction, i.e., intermediate
models, implies additional translations. These are intro-
duced to bring the model of computation closer to the
user by reducing the translation distance between the
top layers of translation. In compensation, the trans-
lation distance between underlying layers — between the
language implementation and machine instructions —
lengthens. In fact, in recognition of the improvements in
language technology, machine instructions have become
more rudimentary. Less structure is imposed at the level
of machine instructions, making the hardware more
amenable to the imposition of various computational
models, with the consequence that the machine lan-
guage is even further from the user. The lengthened

Computation Conception
1. In the beginning, there was machine code:
(eorenerancancennens Machine...................) N 1\ 1111 N)
2. Assembly language provided a computational model closer to the programmer.
(venrenrencencronnes Machine...................) (Assembler) (ieceeeerrirernnniernneenenns Mindccoeiieieiennncnnenenns)
3. The high level languages further reduced the user-end translation distance:
(eevrenrennrecennens Machine...................) (Assembler) (Compiler) (.....cccoeeruu.... Mind...................)

4. Attempts were made to make the hardware simpler but without changing the boundary between hardware and software. An extra
level was introduced: microcode programs were held in ROM and called firmware:

6. The current RISC idea is a return to the simple hardware of 4 but requiring the compiler to provide the sophistication for the

user; there is no manufacturer-supplied-software level:

7. The above are all compilation models. There are also interpreters which are software machines, programs that act like hardware

computers:

Figure 1. Translation distances

174 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

ON LANGUAGES, MODELS AND PROGRAMMING STYLES

translation gap is bridged by the high-level language
compiler. Figure 1 shows these changes of translation
distance over time.

The priorities of programming language development
are clear: the translation distance from the user mind
to the user language must be minimised; the rest is
technology. The distance of the hardware model from
the user is irrelevant, as long as a translation path which
preserves semantics exists from the user’s computational
model to the machine model. It is the translation dis-
tance between the top layers — between the user’s per-
ception of the language model and the computational
model embedded in the language — that is critical.

Efficacy of programming depends on the continuity
of translation between these top layers and so is con-
cerned not only with how well the model captures com-
putation but also with how accessible the model is
to the user. In order for programs to succeed, the
programmer’s perception of the model must reflect the
language with some accuracy.

Some tolerance is required in this discussion. The
perimeter of a language is not strictly defined, and so
the underlying computational model, although stable
in principle, has blurred edges. Mechanisms such as
procedure and data abstraction define new words
which become part of the language. They enable exten-
sions to a language in the language, which confuses the
borders of both language and model.

Moreover, a program implies a model which is related

to the language’s computational model. A program
selects from the language model in the sense that it
exercises only portions of the model. Yet it also extends
the model of computation by composing and defining
new items using language constructs.

Thus, it is not a single computational model which
governs effective programming, but the interactions of
several. The compatibility of the model embodied by
the program, the model inherent in the language, and
the programmer’s perception of both of these are issues
of translation distance.

2. CHARACTERISATION OF MODELS
UNDERLYING STYLES

Our willingness to classify languages (i.e., to exercise
the terminology under discussion) implies that we
acknowledge some commonality of models among lan-
guages of a style or class, even if we reject that those
computational models are equivalent. Thus, models
inherent in languages considered declarative share
characteristics not found in models embodied in imper-
ative languages, and so on. For the purposes of this
discussion, we will treat a style as having an inherent
computational model which is the general distillation of
attributes shared by models underlying the languages
of the style.

2.1 The Imperative Model

The imperative computational model is reflected by the
notion of the von Neumann machine, which was for
many years the model for all digital computers. The
basic von Neumann machine has two components: a
memory and a single processor. Programs, like all other
data, are stored in memory, from where they are

retrieved for execution for the processor. The processor
performs two sorts of functions: it can access any mem-
ory location to retrieve or modify the contents, and it
can execute instructions, which exercise its simple logic
operations, one at a time in a sequence defined by the
program. Thus, memory and a single processor combine
into a model of a global environment which undergoes
incremental changes.

The imperative model incorporates these von Neum-
ann machine characteristics in the notions of assign-
ment, state and effect. Values are assigned to variables,
which are seen as ‘boxes’ whose contents are mutable.
Procedures operate by modifying their parameters or
global variables. Hence, the machine comprises objects
(variables) which can change over time. Collectively,
the values of the variables at a given time describe the
state of the machine. This model of operation by change
of state and by calculation and alteration of variable
values, yields the notion of ‘computation by effect’.

Under this model, algorithms are conveyed as a
consequence of changes of state. The subject languages
contain explicit control structures for guiding the flow
of execution.

The closeness of this computational model to the
hardware model is a matter of evolution. Programming
languages began as strings of machine-specific binary
codes corresponding to individual machine operations.
These machine language instructions comprised two
parts, resembling the von Neumann model: operation
code and memory location. Next, the assembly lan-
guages introduced mnemonics to represent the binary
instructions and removed the need for programmer
control of storage locations but necessitated translation
of this symbolic code into machine code and ‘assembly’
of the variously stored program components (sub-
routines). Although some mnemonics represented more
than one machine instruction, translation remained
mainly 1:1. The so-called high-level languages
abstracted from assembly language, becoming machine
independent and incorporating composite constructs.
These languages require more sophisticated translation
(‘compilation’) from their portable form into machine-
specific code. These high-level languages, as abstrac-
tions from machine codes, still reflect basic machine
operations. Developments of structure and style reflect
the consideration of programming languages in their
own right instead of as versions of machine code, that
is, as mere extensions of hardware.

This closeness of language to machine model is
reflected in practical ways, e.g., the good control
afforded by many imperative languages over machine
aspects such as memory allocation and 1/O. However,
the strength of correspondence means that imperative
languages embody hardware-based restrictions, so that
pragmatics may intrude upon expression. It may be
impossible to express structures whose bounds are not
defined or whose characteristics may change at run-
time.

2.2 The Declarative Model

The declarative model is divorced from the von Neum-
ann machine, from explicit sequential control, from
state and from what John Backus! labelled ‘the von
Neumann bottleneck’ — assignment. This is a model of

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 175

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

MARIAN PETRE AND R. WINDER

‘computation by value’. Functions, rather than causing
the ‘effects’ of modifying parameters or variables, return
values. Data items are immutable; there is no sense of
updatable memory accessible by instruction.

There is no sense of instruction, instead there is a
‘script’ which defines what is to be computed. The
manipulations by which this objective is achieved are
not explicitly part of the model. Indeed, David Turner?
introduced the term ‘script’ for the programs written in
his functional languages to emphasise that such pro-
grams were qualitatively different from their imperative
counterparts.

Distance from machine operations is achieved by
declarative languages at the cost of certain practicalities,
those which govern performance. Input/output can be
awkward, and matters such as garbage collection and
efficiency cannot be addressed directly by the pro-
grammer. What is gained in exchange is release (in
concept and notation) from some hardware-based
restrictions, so that it is possible to express explicitly
structures which potentially cannot be evaluated. This
useful conceptual freedom is said to facilitate reasoning
about strategies without pragmatic clutter.

The interpreter adopts the burden of pragmatism. It
intervenes to constrain the program into conformance
with the underlying (imperative) machine model, so that
what is declaratively conceived becomes imperatively
computable.

3. DECLARATION IMPLIES
SPECIFICATION

The crux of the distinction between declarative and
imperative languages is the ‘declarative reading’
afforded by the former in addition to, or instead of,
the operational reading provided by the latter. The
declarative reading epitomises the shift of emphasis of
‘program’ from prescription of operations to be per-
formed, to definition of the objects to be computed,
that,is, from computer behaviour to solution properties.
The intention, in the terms used in the declarative
programming literature, is ‘to separate logic from con-
trol components,”so that the solution logic or properties
can be investigated thoroughly without commitment to
a particular realisation and without reference to the
behaviour of the machine. ‘Control’ or computational
issues governing machine behaviour are handled within
the language implementation. The declarative reading
of the program is essentially a solution specification.
The literature treats ‘specification’ as related to but
distinct from the ‘program’ that results from it. ‘Speci-
fication’ is taken to mean characterising what the solu-
tion entails, whereas ‘program’ means determining how
the solution is to be reached. It seems as though dec-
larative programming blurs the distinction between
specification and program. Rather, the alignment of
declarative program with specification reflects the dis-
alignment of declarative program and imperative
program; it is the use of the term ‘program’ which has
lost precision. The consequence of ‘separating logic
from control’ — of relegating control of computation
from program to language implementation — is that the
declarative language implementation injects infor-
mation not in the program. Whereas an imperative
language compiler does a reasonably direct translation

between program and machine instructions, a dec-
larative language translator disambiguates the program
and chooses among possible realisations. In declarative
programming, operational or algorithmic decisions are
not avoided but are deferred to the language implemen-
tation.

Just as the declarative program is not complete with-
out the language implementation, the language surface —
the bits of language visible as lexicon and syntax which
are used by the programmer — does not reflect com-
pletely the computational model underlying the
language. Since imperative programs are explicitly a
list of instructions, where syntactic units correspond
roughly to psychological ones, imperative languages
imply the computational model in the syntax. In
contrast, aspects of a declarative model are inaccessible
from the syntax and reside solely in the implementation.
The ‘declaration’ alone cannot anticipate behaviour or
performance; it has no ‘hooks’ into acutal computation.

Declaration, by nature, excludes algorithm: the ‘pro-
cess or rules for (esp. machine) calculation . . .” How,
then, can we characterise languages that bear both a
declarative and an operational reading? Clearly, pro-
grams in these languages entail more than declaration;

they must contain some expression of algorithmic intent. :

3.1 Levels of Information

It is possible to view these issues in terms of an approach
to programming, so that classification reflects successive
levels of information captured in a complete program.
In this view, the programmer considers a problem and
establishes the properties of its solution set. Methods
for actualising the solution are appraised, and some
strategy is elaborated. The programmer then fits the
algorithm to the framework of control employed by the
machine.

Consider as an analogy, the problem: ‘Find me an
aardvark’. Under the above view, the searcher first
asks: ‘What is an aardvark? That is, what constitutes a
solution? An aardvark is a nocturnal mammal, native
to the grasslands of Africa, with long ears and snout,
that feeds on termites. Next the searcher asks: ‘How
can I find an aardvark?’ That is, what strategy produces
the solution? To find an aardvark, its habitat must
be identified and located, its spoor distinguished and
followed until an individual is found. Finally, the
searcher expresses the strategy in terms of the available
‘machinery’, in this case, acquiring funding, making
arrangements for visas, transportation, guides and so
on.

Each stage of the approach adds a level of infor-
mation, so that the progression can be viewed as a shift
of orientation from solution specification to solution
pursuit, or as an incremental translation that gradually
constrains intention into conformance with operation.
With respect to terminology, this view emphasises the
continuity from declaration to instruction, so that the
questions guiding language classification are: How much
of the computational model is explicit in the language
surface? Where is the transition from specification to
instruction undertaken? Is the solution critically depen-
dent on the language implementation?

Under this view, languages bearing both declarative
and operational readings occupy a logical middle ground

176 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

ON LANGUAGES, MODELS AND PROGRAMMING STYLES

between declaration alone and machine control. They
express both the solution space and algorithmic intent.
Programs in such languages are specifications that
inform execution; in the continuum between speci-
fication and program, these may be called executable
specifications. The computational models underlying
these languages are partially hidden; the general algor-
ithm is available in the code, although it employs mech-
anisms concealed in the language implementation.

3.2 The Need to Reason about Behaviour

If we accept that declaration implies specification and
excludes algorithm, how appropriate is the category
‘declarative language’ for languages which afford both
declarative and operational readings? Does calling them
‘declarative’ obscure their nature, emphasising that they
have a declarative reading at the risk of implying that
they have only a declarative reading?

The value of executable specifications (which enhance
declaration with algorithmic information) lies in the fact
that, just because a language may reduce the degree to
which a user must conform to the underlying machine
and may hide matters of machine control, doesn’t mean
that all keys to program behaviour are expendable.
Actually, there are computational issues (including
aspects of efficiency) that are critical to the programmer,
so that reasoning about algorithm behaviour is part of
reasoning about the solution. A specification that admits
only a declarative reading is in this sense incomplete.

Further, the issue extends beyond what the language
affords, to how it is used. In a local, informal survey of
functional programmers, we found that their typical
approach is process-oriented. Although these pro-
grammers recognise and defend the declarative seman-
tics, all agree that they exercise the operational
semantics as well. Typically, they write their programs
algorithmically and discuss them in operational terms.

We give an example drawn from experimentation,
where (not unusually) the programmer demonstrated
his operational use of the functional language Miranda
by exploiting his knowledge about a discrepancy
between the language definition and the implementation
used: although the order of evaluation of guards is not
defined in the language, the implementation causes a
textual order evaluation. The example function deter-
mines whether a given year is a leap year or not:

leapyear x = True, x mod 400 = 0
= False, xmod 100 = 0
=True, xmod 4=0
= False, otherwise

The definition is clearly intended as an ordered
sequence; indeed, if the evaluation occurs in any other
order, the function probably gives an incorrect result.
Further, there is a hint of operational bias in the lan-
guage design; the ‘otherwise’ implies a final catch-all.
Only when all others have been tried and failed, choose
this one.

Even with the more orthodox version, where all
guards are mutually exclusive:

leapyear x = True, x mod 400 =0
= False, x mod 400 = 0 & x mod 100 = 0
=True, xmod 100 =0& xmod 4=0
=False, xmod 4=0

the guarded definitions are read as a sequence, perhaps
with a tendency towards the if-then view, and the whole
definition is read as a process of testing to determine
which result is appropriate.

It may be worth noting that there is a process bias
even in mathematical discussion, as in a formal proof.
Whereas the mathematician recognises that all relation-
ships hold at once (i.e., recognises the declarative nature
of the proof), it is usual to read the proof as a process.

3.3 Declarativeness and the Accessibility of the
Computational Model

The declarative reading is a by-product of hiding por-
tions of the computational model in the implementation
so as to shift the emphasis of ‘program’ from solution
strategy to solution specification. Those languages
which also afford an operational reading, admit the
expression of algorithmic intent so that less is hidden in
the implementation and more of the computation is
available at the language surface. The basis of the
distinction between declarative and imperative lan-
guages (and hence the appropriate basis for classifi-
cation) lies in the significance of the particular
implementation, that is, in where the computational
model resides and in the closeness of the computational
model to the language surface.

We propose that the directness of accessibility of the
computational model (the degree to which it is reflected
in the language surface) is the important dimension for
classifying languages. It is more instructive to treat
‘imperative’ and ‘declarative’ as poles on a language
class continuum than as strictly distinguished categories.

We have accumulated a set of related questions that
draw out the relative placements of languages along
this imperative—declarative continuum: how great is the
translation distance between the language that the pro-
grammer sees and the computational model that makes
it executable? How hidden is the computational model?
Where is algorithmic intent introduced? How difficult
is it to deduce the principal computational mechanisms
from the language surface? How complex are the com-
putational mechanisms provided in the language
implementation? The more important the language
implementation, the greater its role in providing algor-
ithmic information and realising the program, the far-
ther the language is along the continuum toward the
declarative extreme.

4. THE CONTINUUM OF LANGUAGES

In this section, we explore this continuum of languages
by reviewing critical features of a few popular pro-
gramming languages. We show where these languages
are sited on this continuum and present some examples
coded in the various languages to highlight our
argument. For the examples, we have chosen the prob-
lem of calculating the factorial of a number. The
examples illustrate, in the shift from imperative to dec-
larative style, the withdrawal first of explicit control and
then of algorithmic information, leaving the injection
of such information to the implementation.

Before offering the examples, we should point out
that factorial is only defined for non-negative integers.
Also, in many implementations, there will be restric-

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 177

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

MARIAN PETRE AND R. WINDER

tions caused by the finite range of computer numbers.
For instance, our C solutions work only if the result is
less than the maximum unsigned integer the machine
will hold.

FORTRAN: FORTRAN is about as close as a high-
level language can get to assembler; it has few varieties
of control structure, few data types, and poor data
structuring tools. FORTRAN is definitely an iterative,
imperative language; recursion is not permitted. FOR-
TRAN is strongly typed but allows variables to be
declared implicitly by usage on the left hand side of
an assignment. FORTRAN treats functions as distinct
from data items.

Factorial: A FORTRAN solution.

integer function factorial (number)
integer number
integer loopcounter, totaliser
if (number .1t. 0) then
factorial = 0
return
endif
totaliser = 1
do 10 loopcounter = 2, number
totaliser = totaliser + loopcounter
10 continue
factorial = totaliser
return
end

C: Cis a flexible imperative language that affords good
machine control, including input—output, good data
structuring features, and (to a certain extent) higher
level features, such as the construction of higher-order
functions. C is a typed language, but there are many
exceptions and faults. C supports recursion and pointer
manipulation. In consequence of the range of expression
offered, much C code is resistant to machine veri-
fication. Also, C programming depends heavily on the
construction and use of good libraries.

Factorial: An iterative solution in C (a decidedly imper-
ative solution):
unsigned int
factorial(number)
unsigned int number ;
{
unsigned int result = 1;
unsigned int count ;
for (count = 2 ; count <= number ; count+ +)
result *= count ;
return result ;

}

Factorial: A recursive solution in C (which looks more
like a functional program):

unsigned int

factorial(number)
unsigned int number ;

return (number = = 0) ? 1: number * factorial(number
=1);

Although the above solution appears ‘functional’, con-
trol remains explicit in the ‘return’ statement.

LISP: LISP is a language based on function evaluation
but which employs imperative constructs to control the
process of expression evaluation. The list is its essential
data structure. There are good function abstraction
features but poor data abstraction features. Modern
variants of LISP, e.g., Scheme, have introduced much
stronger type checking and also lexical scoping of names
to help in the production of modular software.

Factorial: A recursive solution in Scheme:

(define (factorial x)
(if (= x 0)
1

(* x (factorial (— x1))))))

Making use of the ‘setq’ (in Scheme ‘set!’) feature, the
iterative solution can also be coded, but most LISP
programmers would use the above functional algorithm.

Miranda: Miranda is a strongly but implicitly typed
functional language with good pattern matching facili-
ties. Functions use recursion and guarded commands.
It also has implementation features such as tail recursion
and lazy evaluation which programmers often use
explicitly to make scripts cause efficient execution.
Unfortunately, input—output is achieved using functions
which are not referentially transparent.

Factorial: A Miranda implementation (definitely func-
tional) based on guarded commands:

factorial x = 1 ,X=0
= x* factorial (x — 1), otherwise

An alternative Miranda implementation (equally func-
tional) based on pattern matching:

factorial 0 =1
factorial (x + 1)= (x + 1) * factorial x

The first implementation in Miranda, whilst functional,
exhibits control features directly. The guards force
explicit choice between the options available, and this
is exhibited explicitly. Selection is hidden in the second
Miranda example. The mechanism of selection is pat-
tern matching; the implementation chooses the relevant
part of the definition of factorial by a mechanism not
explicit in the code. The programmer is responsible for
writing mutually exclusive patterns, hence the ‘(x + 1)'.
If this is not the case, an implicit rule, such as textual
ordering, is invoked, so that the program can be
executed. We consider this latter implementation of
factorial more concise and more declarative.

PROLOG: PROLOG is inspired by first order predicate
logic. The major computational controls lie within the
PROLOG implementation, whose computational
model is unification. Backtracking is also required, as
the essential feature of unification is searching. PRO-
LOG has many control features for the programmer
(for example, the cut operator) which allow the pro-
grammer to intefere with the searching of the implemen-
tation for particular pieces of software. Further, the
user interface supplies implicit control of the program

178 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

ON LANGUAGES, MODELS AND PROGRAMMING STYLES

and, inscrutably, governs input-output. Procedure call
facilities to other languages are usually provided. The
order of rules is important to control; PROLOG systems
always search rules in textual order. Also the and oper-
ator ‘,’ provides sequencing. For example, all values
must already be known before they can be used in
an ‘ig’ expression; the order of the comma-separated
expression in the example is critical.

Factorial: Perhaps the only the implementation in PRO-
LOG:

factorial(0, 1).
factorial(X, F):- XP is X — 1, factorial(XP, FP), F is X * FP.

This example highlights a number of hidden control-
oriented features:

(1) The unnecessary PROLOG variable ‘XP’ appears
because PROLOG does not allow expressions as
parameters to functions.

(2) All arithmetic expressions must be evaluable, i.e.,
must contain no unknowns. This leads to the nec-
essary feature that, although ‘,” is the Boolean and
operation, it also provides sequencing: the predicate
on the left must be dealt with before the predicate
on the right.

(3) There are two assignment predicates: ‘=" and ‘is’.
The difference between the two is that the ‘is’ predi-
cate forces evaluation and assignment immediately,
whereas with ‘=" it may be delayed.

Obj: Obj is a executable subset of Clear. Obj speci-
fications are written with the knowledge that the order
of statements is important to the underlying implemen-
tation; statement order determines search order for the
underlying term re-write system. Obj specifies functions
in terms of their inputs and outputs and their relation-
ships to other functions. Specification statements may
use recursion and guarded commands.

The following Obj specifications assume an object Nat-
ural, defining the sort ‘nat’ and the functions ‘suce’, ‘pred’
and ‘mult’ and including an object Boolean, defining the
function ‘not’.

Factorial: An Obj specification using guarded state-
ments:

obj Factorial/Natural

ops
factorial: nat —> nat
vars
n: nat
eqns
(factorial(n) =1 if (n==0))

(factorial(n) = mult(n, factorial(pred(n)))if not(n = = 0))

jbo
Factorial: An Obj alternative using pattern matching:

obj Factorial/Natural
ops
factorial: nat —> nat
vars
n: nat
eqns
(factorial(0) = 1)
(factorial(suce(n)) = mult(suce(n), factorial(n)))
jbo

VDM: VDM is a specification language based on predi-
cate logic which captures specifications in terms of pre-
and post- conditions. A computational model is defined,
and VDM specifications can be made executable. How-
ever, the specification itself makes no statement about
how the function is implemented, only about the state
of the computation before and after the function has
been executed.

Factorial: A VDM specification:

factorial: N— N
pre-factorial(n) = TRUE

post-factorial(n,r) Lr=n!
It is important to note here that the definitions of
the predicates are statements in mathematics, not in a
computer language. In particular in this example, the !
(factorial) symbol is the mathematically defined one.

Z: Z is a specification language based on set theory. It
is a mathematical system for reasoning about things for
which no computational model has yet been
constructed, although we understand such a thing is
possible. Z specifications are captured in terms of pre-
and post- conditions rather like VDM.

Factorial: A Z specification:

| factorial: N— N

factorial 0 = 1
VneENn>0e
factorial n = n * factorial (n — 1)

Clear: Clear is a mathematical system for reasoning
about things based on universal algebra. This speci-
fication language includes constructs considered math-
ematically sound and useful but for which a
computational engine cannot be defined. Therefore,
only a subset (Obj) of this language can be made excut-
able.

Figure 2 presents a map, siting these example lan-
guages on the continuum between ‘imperative’ and ‘dec-
larative’.

The specification languages (Clear, VDM, Z, OBJ)
are concerned with solutions rather than with com-
putation. They are based on models formalised in math-
ematics. These models are not really available at the
language surface but must be learned elsewhere.
Further, since they are concerned only with the outcome
of computation, these borrowed models are incomplete;
usually they do not embody strategies to drive the
computation. The languages can be made executable
by the addition of some computational model. Hence
the user must apply his or her own additional com-
putational information, or, to enable execution, the
model as interpreted and embedded in the language
implementation must be enhanced (e.g., by combining
set theory with some set resolution mechanism) or con-
strained in order to construct a computation engine.
Such enhanced models are usually complex and dif-
ferent from the models inherent in the language.

The Z specification given above can be shown to
be satisfied by all the language implementations. The
specification, in this form, describes neither the time/

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 179

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

MARIAN PETRE AND R. WINDER

imperative declarative
¢t -—————— - — e, ——— - - - —
FORTRAN C LISP Miranda PROLOG Obj 4 Clear
vDM
Introduction of hidden
computational mechanisms (e.qg.
L—p pattern matching) implies gradual
separation of surface language
model from execution model.
» un -
conventional excutable
imperative/declarative
barrier

Figure 2. The continuum of languages.

space behaviour nor the efficiency of the implemen-
tation. Therefore the specification cannot help us choose
between implementations.

As with the specification languages, Miranda, LISP
and PROLOG are based on a computational model
distinct from the von Neumann machine, i.e., lambda
calculus and first order predicate logic. Unavailable at
the language surface, these models can nevertheless be
learned from other sources without necessitating forays
into language implementation details. Confusion may
arise however, where the borrowed model has been
adapted for use in the language, and the mechanisms
which drive computation may still be obscure.

5. CONCLUSION

The declarative philosophy, as expressed in the litera-
ture and reflected in current terminology, is, we believe,
mis-oriented. The basic difference between program-
ming styles lies in the hiding of the computational
model. The distinction between imperative and dec-
larative, so evangelistically touted, is not exclusive but
gradual, and the characterisation of both terminology
and classification, reoriented in this way, is more power-
ful and more satisfying. Moreover, it emphasises that
programmers will not be freed from implementation

details until language designers provide comprehensive,
workable reasoning models of their languages, models
which accommodate reasoning about program behav-
iour.

6. ACKNOWLEDGEMENTS

We would like to thank John Campbell, Nigel
Chapman, Paul Otto and Karen Paliwoda for con-
versations which helped to clarify many of the ideas in
this paper.

REFERENCES

1. John Backus, Can Programming Be Liberated From The
von Neuman Style? A Functional Style And Its Algebra
Of Programs. Communications Of The ACM21, pp. 613—
641 (1978).

2. Robert Kowalski, Algorithm = Logic + Control. Com-
munications Of The ACM22, pp. 424-436 (1979).

3. D. A. Turner, Miranda: A Non-strict Functional Lan-
guage With Polymorphic Types, in Proceedings Of The
IFIP International Conference On Functional Program-
ming Languages And Computer Architecture, Springer
Verlag Notes In Computer Science — 201, Nancy, France
(1985).

180 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

¥20Z I4dy 01 uo 1senb Aq 96658¢/€ L L/Z/SE/e1ome/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

