Correspondence

Dear Sir, The proof of Lemma 2 (p. 247)
seems to be incomplete, i.e. invalid; the
increasing of ¥y does not guarantee unity as
limit, only (as bounded by the sum being
always constant unity) some value between
zero and one as limit.

One has to show that (except 7 > 0 also
by conditions 2t} " < 1) the limit of all ¥, for
J <N tends to zero. (Otherwise one would
have proved that any Markov chain does not
cycle in the limit indefinitely, if only there
exists a state reachable from all others— which
assertion apparently is not true). Also I can-
not follow the statement concerning (18):

100

A o
1-#A-1=)
3

with 0 < Auwp, E; > 1 it tends to some value
not easy to be recognised when p— 1.

Yours faithfully

K. BROKATE

Rubezahlweg 20

D-725 Leonberg

Republic of Western Germany

right side is equal to and,

Combinations in lexicographic order

Dear Sir,

The standard method of generating all the

combinations of k™ order out of {1, 2, . . .,

N}, N = k, in lexicographic order is'-2

- to start with combination {1, 2, . . ., k}. If
an integer array A[1 . . N] contains the

generated combinations, then A[i]=i
initially;
- if combination A[1], A[2], . . ., A[k] is the

last one generated, then the next one in
lexicographic order is

A1), A[2],...,A[F- 1], A[F] +1,
A[F]+2,... A[F]+ k- F+1,

where F is the last position, where A[F] can
be increased by 1 and still in the last position
k .

A[F]+k—-F+1<N.

Thus, we have to look for the first position F
ink, k —1,... such that

A[FI<N-k+F.

This can be improved considerably by com-

plete removal of search®. If a combination is

generated, then there are two possible cases

only. If F is the position of the last ascent

(A[F] — A[F] + 1), then

- either A[k] = N in the combination gen-
erated. Then no further ascent in F is poss-
ible and as the next ascent position F — 1 is
to be used. If this new F equals to zero,
then there is no next combination;

- or A[k] < N; then the next ascent is to be
performed in position k and we set F=k
for the next combination to be generated.

The procedure given® can be simplified
further if we set on the first entry F:=1,
A[1]:=0. With N, k, F and integer array
A[1..] considered global the whole pro-
cedure becomes then

procedure LexComb;
var i: integer;
begin
A[F]:= A[F]+ 1;for i:=F+ 1to k do
Alil:=Ali - 1]+ 1;
if A[k] <N then F: = k else F:= F — 1
end;

by making use of Pascal language.

Yours faithfully

STANISLAV DVORAK
Tesla Roznov,

Roznov pod Radhostém,
Czechoslovakia

REFERENCES )

1. E. M. Reingold, J. Nievergelt and N.
Deo, Combinatorial Algorithms: Theory
and Practice. Prentice-Hall, Englewood
Cliffs, N.J. (1977).

2. C. J. Mifsud, Alg. 154, Combinations in
Lexicographic Order. Comm. ACM, 6,
p- 103 (1963).

3.S. Dvoidk and A. Musset, Basic in
Action. Butterworth, London (1984).

Dear Sir,

The article ‘A distributed algorithm for
mutual exclusion’ by J. M. Helary et al (The
Computer Journal, 31 (4), 289-295 (1988))
raises a couple of points which probably need
to be mentioned. Neither in Section 2 —
Assumptions, nor in any of the assumptions
in the remainder of the article is it made
explicit that all of the procedures of the algor-
ithm in one process must run on the same
processor if mutual exclusion is to be
achieved, the procedures can not take advan-
tage of a network node having multiple pro-
Cessors.

The stipulation is made in the article that
each of the procedures used in the algorithm
must be atomic. This takes care of the prob-
lem which would arise if the algorithm were
run on a single processor machine which util-
ized time slicing but does nothing to prevent
the failure of the algorithm were a number of
the procedures at one node to run con-
currently. In this latter case a process which
holds the token may enter its own critical
section (via enter_CS procedure, as
token_here is true) at the same time as it is
transmitting the token (via transmit_token
procedure, again as token_here is true), once
the process exits its critical section it will
again transmit the token (via exit_CS pro-
cedure) thus mutual exclusion will not be
supported and multiple tokens will have been
generated to circulate in the network.

188 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

It may be argued that the requirement that
each procedure is atomic implies they should
not run concurrently but this is not integral
to the definition of an atomic procedure and
thence should be stated explicitly.

As a lecturer I endeavour to get my stu-
dents to use meaningful data names in their
algorithms. These efforts are somewhat
undermined when I study articles such as this
one with the students and they want to know
what is meaningful about ‘elec’ and ‘lud’. If
these are meaningful in French could you
please give their English equivalents, at least
it will help the students feel they are not the
only ones who are subject to this type of
discipline.

Yours faithfully.

C. G. BURGESS

Dept. Computer Science,
Univ. Southern Mississippi,
S.S. Box 5106, Hattiesburg,
MS 39406, U.S.A.

Dear Sir,

It continues to surprise me that so many
people persist in using the so-called ‘classical’
method of performing two’s-complement-
ation on binary numbers whereas the modern
method is not only faster, but more accurate.

The classical method requires two stages:
a direct complement which involves changing
all 1 bits to 0 and all 0 bits to 1, followed by
adding binary 1 to the complemented num-
ber. It is the latter stage where most students
tend to introduce errors, especially where
multiple carries are involved.

The modern method, which I use daily in
my work, performs a two’s-complement in
one stage using the following algorithm:

1. If the number is zero (0), the comp-

lement is obviously zero.

2. Scan the binary number from RIGHT

to LEFT up to and including the FIRST
1 bit. Copy down the bits unchanged.

3. Complement the remaining bits.

For example, to two’s-complement the
number 0110100100, you would copy down
the first three bits on the right hand side of
the number, 100, unchanged and complement
the remaining seven bits to produce
1001011100.

This technique has the advantage that any
binary number of any length can be comp-
lemented as fast as it is written down.

Since I have not seen this technique docu-
mented in any computer related literature, I
would be grateful if you could pass on the
above information to readers of your journal.

Yours faithfully

STEVEN W. PALMER
Systems Programmer

L. J. Technical Systems Ltd,
Francis Way,

Bowthorpe Industrial Estate,
Norwich, NORFOLK NRS5 9JA

¥20Z I4dy 01 uo 1senb Aq 66098¢/881/Z/SE/2101e/|ulwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq



