String Scanning in the Icon Programming Language

R. E. GRISWOLD

Department of Computer Science, The University of Arizona, Tucson, Arizona 85721, USA

As a consequence of the primary historical role of computers as a tool for numerical computation, most programming
languages have minimal facilities for string manipulation. This paper discusses some of the language design and
implementation issues involved in incorporating string scanning, analysis and synthesis facilities into a general-
purpose programming language and describes how they have been introduced in the Icon programming language.

Received January 1989

1. INTRODUCTION

Most programming languages have limited and rela-
tively low-level facilities for processing text — strings of
characters. This situation is partly a consequence of the
primary historical role of computers, which is dominated
by numerical computation. It also is the result of the
lack of a strong conceptual basis for string processing
prior to the advent of modern computers. While numeri-
cal computation has a long history and a vast body
of experience and notational conventions from which
programming language designers can draw, the manipu-
lation of textual data prior to modern computers was
limited and largely unsystematic. In other words, there
are few models for string computation upon which to
build programming languages. Nor has the architecture
of most computers provided much help.

Consequently, most programming languages have
minimal facilities for string manipulation, and these
facilities often are modelled after numerical com-
putation (such as operations on arrays of characters),
instead of providing more powerful facilities at a con-
ceptual level closer to the problem domains in which
string processing is important. This, in turn, has made
nonnumerical computation difficult and tedious, tend-
ing to limit the scope of problems that are attempted.

There were some early attempts to provide higher-
level facilities for string processing. COMIT [1], which
was motivated by early work on translating natural
language with computers, introduced the concept of
strings of textual objects (such as words) and contained
the germ of the idea of focussing attention on one string
at a time. COMIT also introduced the idea of patterns
to characterize string structure from which analysis was
driven. SCL [2] extended these ideas to using strings
of characters to represent mathematical expressions.
SNOBOL [3]introduced the notion of a string of charac-
ters as a data object in its own right (as opposed to an
array of characters) and provided a more uniform and
general characterization of string data and patterns.
SNOBOL4 went the additional step of treating patterns
as first-class data objects and providing operations for
constructing complex patterns out of simpler ones [4].
Other interesting approaches include SUMMER [5] and
features of some versions of LISP [6]. Nonetheless,
most commonly-used programming languages still have
relatively low-level and awkward string processing facili-
ties.

The Icon programming language [7] is a high-level,
general-purpose programming language with a large

repertoire of facilities for string processing. It includes
a hlgh -level string processing facility, called string scan-o
ning. This facility, which has its roots in SNOBOL4-§
style pattern matching, provides greater flexibility thano
earlier forms of pattern matching. At the same time, it%
is integrated with conventional forms of computation —.
something lacking in earlier programming languages [8].5
This paper describes string scanning and relateds
aspects of string analysis and synthesis in Icon. It also?
discusses some of the programming language design ancE
implementation issues related to these facilities. The
elements of Icon that are needed in the description of3
string scanning are reviewed here. However, a more’
thorough understanding of Icon [7] may be helpful 1r€
appreciating the subtler aspects of some of the3
examples.

2. STRING SCANNING

The design of string scanning in Icon is based on thel
long-standing observation that most kinds of strin
analysis can be cast in terms of a succession of com-o
putatlons on one string at a time. A string, called thes
subject, is the focus of attention during a string scannmg@;’f
operation. Different string scanning operations may, oﬁ
course, have different sub]ects

Another observation is that most string analysxg
operations can be cast in terms of the examination of?
the subject at a particular position. This position may3
be changed as a result of the examination — hence theR
term scanning. Usually the specific position is not itself>
of interest, but rather what is there and what is around™
it. This is analogous to climbing to the top of a hill tqg
get a better view of the surrounding countryside. The™
geographical coordinates of the top of the hill probably
are not important or even known; the important thing
is that it is a local high point. Similarly, in analyzing a
sentence, certain words and their relative positions may
be important, but their specific locations in the sentence
usually are not.

String scanning is based on a pair of implicit variables
that form a scanning environment: {subject,position}.
The subject normally (but not necessarily) remains fixed
during a string scanning operation, while the position
usually changes as the result of the analysis of the
subject. For example, the act of locating a particular
substring moves the position to where this substring
begins.

One consequence of this model is that string analysis

[onJe/ ulwoo/w

98 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

STRING SCANNING IN THE ICON PROGRAMMING LANGUAGE

operations usually can be written without any explicit
reference to the subject or position. This reduces clerical
detail and tedious arithmetic computations that are nec-
essary in lower-level forms of string analysis. It is no
more necessary to increment a pointer to get to a desired
substring than it is to count footsteps getting to the top
of a hill.
The form of a string scanning expression in Icon is

expr, ? expr,

where the evaluation of expr; produces the subject and
expr, does the scanning. For convenience, the
expression that does the scanning (expr, here) is called
the analysis expression although, as subsequent
examples illustrate, it is not limited to purely analytic
computations.

The position in string scanning initially is 1, which is
at the beginning of the subject. For example, in

term ? expr

if the value of term is “a*(b —c)”, the scanning environ-
ment in which expr operates initially is {“a*(b—c)”,1}.
The idea of scanning is illustrated by the function
move(i), which increments the position in the subject
by i and returns the substring of the subject between
the previous position and the new one. For example,

text ? while move(1) do
write(move(1))

writes the even-numbered characters in text. The func-
tion move fails (and does not change the position) if
the new position would be outside the subject. This
causes the loop above to terminate when the end of the
subject is reached.

Note that this analysis expression does not depend
on the value of text. The variable text itself is not
mentioned in the analysis expression, and all changes
to the position are implicit. This abstraction can be seen
more clearly if the analysis expression is encapsulated
in a procedure:

procedure write_even()
while move(1) do
write(move(1))
end

This procedure then can be called wherever it is needed,
as in

text ? write_even()

3. STRINGS IN ICON

Before describing string scanning in more detail, it is
necessary to understand how Icon treats strings. Strings
in Icon are sequences of characters. Characters them-
selves are not values in Icon and strings are not arrays
of characters. Instead, strings are values in their own
right. Strings may be arbitrary long and can be repre-
sented by literals within quotation marks or produced
by a variety of operations.

The concatenation of two strings produces a new
string, as in,

noun_ph := “The giant condor”
verb_ph := “seeks its nest”
sentence := noun_ph | “ ” | verb_ph | “.”

which concatenates four strings to produce the string
“The giant condor seeks its nest.”, which is assigned
to sentence. Itis worth noting that storage management
in Icon is automatic and it is not necessary to specify
how long a string may be.

Positions in strings are between characters, starting
at 1, which is the position to the left of the first character:

condor

rrr I
1234567

For convenience in referring to characters with
respect to the right end of a string, there are cor-
responding nonpositive position specifications:

c o n d o r

rr 1

-6 -5-4-3-2-10
In Icon notation, s[i:j] is the substring of s between
positions i and j. Substrings are specified by position
pairs. For example, if the value of bird is “condor”,
the value of bird[2:4] is “on”. Positive and non-positive
specifications can be mixed and the order of the posi-
tions are irrelevant: positions —3 and 2 specify the same

substring as 2 and 4, as do —3 and —5.

4. EXPRESSION EVALUATION

Icon has an expression evaluation mechanism with a
number of unusual characteristics that are centrally
important in string scanning.

Unlike most programming languages, the evaluation
of an expression in Icon may fail to produce a value.
This is illustrated by move(i), as described above, which
fails if the resulting position would be out of the range
of the subject. Similarly, a substring specification fails
if a position is out of range. Failure, not Boolean values,
drives control structures in Icon. As suggested above,
the while-do control structure terminates if its control
expression fails. Similarly, if an expression that pro-
duces the argument of a function fails, the function is not
called. Thus, write(move(1)) does not write anything if
move(1) fails.

An expression that does not produce a value is said
to fail, while one that produces a value is said to succeed.
It is important to understand that failure is a normal
aspect of expression evaluation in Icon, not the indi-
cation of an error. Failure is used to check bounds,
terminate loops, and generally as a mechanism for con-
trolling program flow.

Some Icon expressions, called generators, are capable
of producing more than one result. This is a natural
concept in string analysis. The location of substrings is
an example: The substring “0” occurs at two positions
in “condor”; 2 and 5. The function find(s) performs
this operation, generating the positions, from left to
right, at which s occurs in the subject.

A generator produces one value at a time, suspending
evaluation every time it produces a value so that it can
be resumed if another value is needed. If only one value
is needed from a generator, only one is produced. For
example if the value of bird is “condor”,

bird ? write(find(“0"))

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 99

¥20¢2 I4dy $0 uo 1senb Aq 20858¢/86/Z/€E /201 e/|ufwoo/woo dnoolwsapede//:sdiy Wolj papeojumo(q

R. E. GRISWOLD

just writes 2, even though there is another position at
which “0” occurs in bird.

Icon has several generators. For example, i to j by k
generates the integers from i to j in increments of k, and
Is generates all the one-character substrings of s.

The need for multiple values from generators arises
from goal-directed evaluation, in which suspended gen-
erators are resumed if they are contained in an
expression that otherwise would fail. This is illustrated
by

“condor” ? write(find(“0") = 5)

The first value produced by find is 2, which is not equal
to 5. The failure of the comparison operation (=) causes
find be resumed. It next produces 5, and the comparison
succeeds. Comparison operations produce the value of
their right operand, so 5 is written.

Icon has many generative expressions. Some, like
find, are used in string analysis. One generator of gen-
eral usefulness is the alteration control structure

expry | expr,
Alternation generates the values of expr; followed by
the values of expr,. Thus,

find(“0”) | find(“or")
generates 2, 5, and 5. Alternation can be used to provide
a sequence of arguments to find, as in

find(“o”
which generates the same results as the expression
above. Another example is

uorn)

line ? move(10 | 5)

In this example, move(10) is attempted first. If line is
not long enough, this fails and move(5) is attempted.

As mentioned above, if the evaluation of an argument
expression fails, the operation that needs the argument
is not evaluated. This provides a way of performing a
computation only if several expressions mutually
succeed. For example, in

complexpr,, expr,)

comp is only called if both expr; and expr, succeed.
The conjunction operation

expr; & expr,

provides another form of this kind of evaluation. This
expression succeeds (and produces the value of expr,)
only if both expr, and expr, succeed.

The need to test for mutual success occurs frequently
in string scanning. An eample is

bird ? (move(3) & find(“0"))

which succeeds only if bird contains “0” after position
3.

As indicated above, a generator suspends evaluation
when it produces a value. The concept of suspension is
important; it implies that the state of a computation is
preserved (such as the position in the subject where the
last substring was found) so that the computation can
be resumed (such as to search for the next position).

Procedures in Icon also can suspend and be resumed.
This allows programmer-defined generators in addition
to the built-in ones. Suspension from a procedure (as

opposed to returning, in which case the procedure call
cannot be resumed) is done with

suspend expr

The suspend expression suspends with the values gen-
erated by expr. Each time it suspends, a value is
delivered to the calling site. If the call of the procedure
is resumed, the next value generated by expr is
delivered, and so on. An example is:'

procedure Ic_vowel()
suspend !“aeiou”
fail

end

When the argument of suspend produces no more
values, evaluation continues with the next line. The
expression fail causes the procedure call to return with,
no value (the resumption at this point does not produce2
a result). Consequently, the values that lc_vowel()Z

enerates are “a”, “e”, “i“, “o0”, and “u”. Ford
g) 3
example, in o
o e 3

sentence ? write(find(lc_vowel())) 3

0

the value written (if any) is the first position, inS

(7]

sentence, of the first lowercase vowel, in alphabetical >
order..

S. MORE ON STRING SCANNING
Matching Functions

-
=
o
=3
=]
<)
g
o
=
3
[
<
2
8
o
=
g
]
=
o
(=}
&
g
Q
<
a
@
Q
=
=
o
(=
0

woo/woo dno’olwaped

matching function, since it returns the portion of thes
subject that is “matched” as a result of changing the o
position. There is another matching function, tab(i),5
which moves to position i in the subject (if possible)
and, like move(i), returns the substring of the subject
between the previous and new positions.

The argument of tab often is provided by a string
analysis function. For example,

0 uo 1sanb Aq Z08S8E/86/2/SE/B10!

sentence ? write(tab(find(lc_vowel())))

writes the initial substring of sentence up to the first
lowercase vowel.

The argument of tab also may be given as a non-
positive specification with respect to the right end of the *
subject. For example, tab(0) sets the position at the S
right end of the subject..

¥20¢ [Hay

Locating String Positions

There are several operations in addition to find that
produce positions in the subject, depending on the
characters it contains.

The operation =s succeeds and matches s (moves the
position past it) if s occurs at the current position in the
subject. For example,

bird ? ="eagle”

succeeds if the value of bird is (or begins with) “eagle”.

The function upto(s) generates the positions in the
subject at which characters in s occur. For example,
if the value of the subject is “condor”, upto(“on”)
generates 2, 3, and 5. Note the difference between find
and upto; the former generates positions of substrings

100 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

STRING SCANNING IN THE ICON PROGRAMMING LANGUAGE

while the latter generates positions of characters in a
set.

The function many(s) matches the longest possible
substring containing characters in s. In particular, it
fails if the character at the current position in the subject
is not contained in s.

It is important to note that functions like find and
upto produce positions, but the specific values of such
positions generally are not of interest; they usually serve
only to provide arguments to matching functions. For
example, if the value of letters consists of the upper-
and lowercase letters,

sentence ? while tab(upto(letters)) do
write(tab(many(letters)))

writes the “words” in sentence. The expression
tab(upto(letters)) matches up to the next letter, while
tab(many(letters)) matches the word.

On occasion it is necessary to know if the current
position has a specific value. The function pos(i) suc-
ceeds if the position is i but fails otherwise. For example,

. pos(0) succeeds if the position is at the end of the
subject. Note that positions 1 and 0 identify the begin-
ning and end of the subject. As such, the specific num-
bers are less important than the identification of extreme
points.,

Control Backtracking

Goal-directed evaluation, which may resume sus-
pended generators, causes control backtracking. That is,
if an expression fails and there is a suspended generator,
goal-directed evaluation causes evaluation to go back
the previous expression that suspended.

Expressions are evaluated from left to right, while
suspended generators are resumed in a last-in, first-out
fashion. Consider, for example, three expressions in
conjunction:

expr, & expr, & expr;

Suppose expr, and expr, are generators that succeed,
but that expr; fails. When expr, suspends, it is pushed
on a suspension stack. When expr, suspends, its state is
pushed on the suspension stack, so the suspension stack
has the form

< expr, < expr,

When expr; fails, the state information for expr, is
removed from the top of the suspension stack and expr,
is resumed with it. If it produces another result and
suspends, expr; is evaluated again. Since expr; failed
previously, it can succeed now only if it depends on
some external factor (such as a side effect of expr, or
the time of day). Assuming it fails again, expr,, which
is again on the top of the suspension stack, is resumed
again. This continues until expr, has no more results.
When it fails to produce a result, expr;, which now is
on the top of the suspension stack, is resumed, and so
on. The effect is cross-product evaluation with a depth-
first ‘search’ for alternatives.

Control structures, by their nature, interfere with
control backtracking. They provide the mechanisms
necessary to prevent an entire Icon program from being
mutually evaluated. They do this by clearing the sus-
pension stack of suspended generator state information.

For example, in
if find(s) then expr, else expr;

If find(s) succeeds, it suspends, but its suspended gen-
erator is discarded and expr, is evaluated. In fact, if the
suspended generator for find(s) were not discarded,
failure of expr, would cause find(s) to be resumed. The
effect would not correspond to the expected semantics
of if-then-else. Similarly, in

while expr, do expr,

If expr, or expr, suspend, their suspended state infor-
mation is discarded. See [9] for a more detailed descrip-
tion of the issues involved.

Data Backtracking

Matching functions also perform data backtracking.
When a matching function produces a result, it
suspends, even though it cannot produce another result
(there is only one way to set the position to a specific
value). If a subsequent expression fails, the suspended
matching function is resumed, at which point it restores
the position to the value it had prior to the initial
evaluation of the matching function. Thus, a matching
function reverses the change it made to the position if
that change did not lead to subsequent success in the
expression of which it is a part.

Data backtracking of the position in the subject
assures that alternative matches start in the same place.
For example, in

line ? (tab(10) & find(“or”)) | move(1)

if tab(10) is successful but find(“or”) fails, the resump-
tion of tab(10) restores the position to its previous value
(at the beginning of the subject) and move(1) starts at
the same position as tab(10) did.

The Result of Scanning
The result of the scanning expression
expr, ? expr,

is the result of the analysis expression expr,. For
example, the result of

text ? (tab(upto(letters)) & tab(many(letters)))

is the result of tab(many(letters)), provided that
tab(upto(letters)) succeeds; otherwise the scanning
expression fails.

If the analysis expression is a generator, the scanning
expression in which it appears generates its results. For
example,

line ? tab(1 to 10)

generates the initial substrings of line of length 0
through 9 (fewer if line is not at least 9 characters long).

Synthesizing Strings
As mentioned earlier, expr, in
expr, ? expr,

is referred to as the analysis expression only as a matter
of convenience. In fact, expr, may contain any kind

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 101

¥20¢2 I4dy $0 uo 1senb Aq 20858¢/86/Z/€E /201 e/|ufwoo/woo dnoolwsapede//:sdiy Wolj papeojumo(q

R. E. GRISWOLD

of computation. In particulaf, it often performs string
synthesis as well as analysis. For example, the following
procedure deletes everything but letters from a string

procedure only_letters(s)
result ;.= “* # start with empty string
s ? while tab(upto(letters)) do
result := result || tab(many(letters))
return result
end

Scanning Keywords

Although the scanning environment is implicit and it
usually is not necessary to make explicit reference to
the subject and position, these values are available
through the keywords &subject and &pos. For
example,

&pos :=

sets the scanning position to 1. This assignment is equiv-
alent to tab(1).
It also is possible to change the subject, as in

&subject := read()

which assigns the next line to the subject. Whenever
the subject is changed, the position is set to 1.

It usually is undesirable, as a matter of programming
practice, to refer to the subject and position explicitly.
However, the ability to reference the subject and posi-
tion explicitly is necessary when writing matching pro-
cedures to augment the built-in repertoire of matching
functions. Consider, for example, a procedure arb,
which matches zero or more characters:

procedure arb()
local pos
start := &pos
suspend &subject[
istart : &pos := start to *&subject + 1 by 1
&pos := start
fail
end

The argument of suspend produces a substring starting
at the original value of &pos. The end of this substring
(&pos), which starts at the original value of &pos
(producing the empty string first), increases each time
arb is resumed. If arb is resumed repeatedly, the
matched substring increases until the end of the subject
is reached, in which case the substring operation fails
and evaluation continues after the suspend expression.
At this point &pos is restored to its original value
(performing data backtracking in the manner of match-
ing functions) and arb fails.

Thus, arb() matches zero or more characters in order
of length. For example,

sentence ? (arb() & ="cats” & arb() =“dogs”)

succeeds if sentence contains the substring “cats” fol-
lowed by the substring “dogs”.

Procedures like this follow a simple model: saving
&pos, generating substrings of &subject obtained by
changing &pos, restoring &pos when there are no more
results, and finally failing. For example, arb can be

given a parameter that causes the matched substring to
be incremented by a specified amount:

procedure arbn(i)
local pos
start := &pos
suspend &subject|
start : &pos := start to *&subject + 1 by i
]
&pos := start
fail
end

For example, arbn(3) matches strings whose length is
an even multiple of 3.

Similarly, reversing the order in which positions
are generated provides a procedure that matches the
longest possible string first and works backward t&
shorter ones:

procedure maxarb()
local pos
start := &pos
suspend &subject|
start : &pos := *&subject + 1 to start by
]
&pos := start
fail
end

redundant here

6. MATCHING EXPRESSIONS

As described above, the term ‘matching’ refers to am
expression that returns the portion of the sub]ecii
between the positions before and after evaluation. Thée
examples of matching shown so far also perform datg
backtracking on the position so that alternative matchw
ing expressions start at the same position: if they fa11°°
they leave the position unchanged. 00

The two aspects of evaluation — (1) producing a poro
tion of the subject between successive positions and (2;E
performing data backtracking on the position — are;
logically separable. The former is useful for assuring
that results come from a ‘matched’ portion of the
subject. The latter is important in assuring that alternao
tive matches are performed independently.

Expressions that perform data backtracking aré.
referred to as state-maintaining. In terms of proX
gramming methodology the independence of thé&
alternative matches is of primary importance. It effec-
tively assures that matching is free of side effects with
respect to the matching process.

Because of control backtracking in goal-directed eval-
uation, state-maintaining expressions can be combined
in operations without interfering with the independence
of alternative matches. For example, if expr, and expr,
are state-maintaining expressions, then

LuOO/Luoo'dnoogwepeoe/ﬁduu WioJ} pepeojuM

expr, | expr,
and
expr || expr,

are state-maintaining.
The criterion for writing state-maintaining
expressions is simple: An expression is state-main-

102 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

-J

STRING SCANNING IN THE ICON PROGRAMMING LANGUAGE

taining if it does not contain control structures that
interfere with control backtracking. For example,

while tab(upto(letters)) do
tab(many(letters))

is not state-maintaining, since suspended generators are
discarded as described in Section 5. This, of course, is
exactly what is wanted in this situation.

It is worth noting that the criteria for composing state-
maintaining matching expressions are more stringent
than those for composing arbitrary state-maintaining
expressions. For example, if expr, and expr, are state-
maintaining matching expressions,

expr; & expr,

is state-maintaining. It is not, in general, a matching
expression: its result is the result of expr,, which is not
necessarily the entire portion of the subject matched by
both expr; and expr,.

7. PATTERN MATCHING

There are two ways of viewing a matching function such
as move(i): (1) as a function that moves the position to
i and returns the matched substring, or (2) as a ‘pattern’
that matches strings that are i characters long.

The first view is concerned by the process by which
scanning is performed. The second view is concerned
with the characterization of a set of strings (in technical
terms, a language).

In writing analysis expressions, the first view usually
is taken. That is, Icon programmers tend to focus on
the process by which the position is changed. The second
view, however, provides a higher level of abstraction;
it is more declarative, specifying ‘what’ rather than
‘how’. The declarative view is analogous to the concept
of ‘pattern’ in SNOBOL4 [10] and is an essential com-
ponent of languages like Prolog [11, 12].

Although the built-in matching and string analysis
functions of Icon are designed to specify how matching
is done, the higher-level, declarative ‘pattern’ view can
be used to advantage in programming. For example,
arbn(i) can be thought of in a natural way as a pattern
that matches all strings whose lengths are even multiples
of n. Note that although the process by which these
strings are produced is not important, the order in which
matches are attempted is important. The order resolves
the ambiguities that are inherent in pattern matching.
In this sense, patterns are part way between declarative
and imperative.

Since a pattern conceptually characterizes a set of
strings (usually infinite), it is analogous to a grammar
that provides a finite and structured characterization of
a set of strings that comprise a language. Consider
a simple context-free phrase-structure grammar that
describes the skeletons of a kind of nested parenthesized
lists:

@*[’HSEEHQP]
L—>,|,?|,2

? and ¥ are nonterminal symbols, vertical bars separate
alternative productions, and all other right-hand-side

symbols are terminal. Examples of strings in the lan-
guage for & are [,[]], [,.,,], and [[]]-

Such a grammar can be viewed in several ways. From
one view, it is a specification for a recognizer for the
corresponding language. From another view, it is pre-
scription for generating strings in the language.

There is an isomorphism between this grammar and
Icon matching procedures that illuminates some of the
concepts of pattern matching mentioned above. In this
isomorphism, nonterminal symbols of the left side cor-
respond to matching procedures that recognize strings
in the language. These procedures are obtained using
the following correspondences between right-hand-side
symbols in the grammar and Icon matching expressions:

@ terminal symbols correspond to literal matching
expressions

@ nonterminal symbols correspond to calls of matching
procedures

@ sequences of symbols correspond to the con-
catenation of matching expressions

@ alternation corresponds to alternation

A corresponding matching procedure consists of a sus-
pend expression whose argument is given by the cor-
respondences above.

For the grammar given above, the matching pro-
cedures are:

procedure P()
suspend (

procedure L()
suspend (

—_nn
-

(="" ‘ P()) |

(=" L)
fail

end

Thus, P() is a ‘pattern’ that matches strings in the
language for . For example.

string ? (P() & pos (0))

succeeds if string is in the language for % but fails
otherwise. (The expression pos(0) assures that P()
matches all of string; otherwise it would match any
initial substring from %.) This form of matching only
works, of course, if the grammar is free of left recusion.

This model of pattern matching illustrates the nature
of goal-directed evaluation mentioned earlier: recurs-
ive-descent, depth-first search with backtracking. This
method is not efficient for this kind of problem; its
value lies in its illustration of the close correspondence
between grammars and patterns. Such a ‘recognizer’
also is of limited interest. However, the model is easily
extended to parsers and translation. It also is possible
to express context-sensitivity by providing arguments to
matching procedures. See [7] for a discussion of these
possibilities..

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 103

¥20¢2 I4dy $0 uo 1senb Aq 20858¢/86/Z/€E /201 e/|ufwoo/woo dnoolwsapede//:sdiy Wolj papeojumo(q

R. E. GRISWOLD

8. THE MAINTENANCE OF SCANNING
ENVIRONMENTS

Scanning expressions are on a par with all other
expressions in Icon. Consequently, scanning
expressions can occur in conjunction, as in,

(expr, & expr,) ? (exprs; ? expr,)
Scanning expressions also can be nested, as in

(expr, ? (expr, ? exprs))

Procedures called in analysis expressions also can con-
tain scanning expressions, as in

expr; ? p()

where p itself contains scanning expressions. This situa-
tion amounts to dynamic nesting, and it occurs more
frequently in practice than the static form of nesting
shown above.

In order for such constructions to behave in a reason-
able way, Icon maintains multiple scanning environ-
ments. Scanning environments (and &subject and
&pos) are global with respect to procedure calls, but
they are local to scanning expressions.

Icon begins execution with the scanning environment:
{*", 1} (an empty, zero-length subject). When a scan-
ning expression is evaluated, it saves the current scan-
ning expression and creates a new one. If the scanning
expression fails, it restores the previously saved scan-
ning environment. If the scanning expression suspends,
its scanning environment is saved (since it may be
resumed) and the previous scanning environment is
restored. A scanning environment remains in existence
until its corresponding analysis expression fails or until
it is no longer possible to resume it. This occurs as
the result of control structures that discard suspended
generators.

Because of the possibility of scanning expressions in
conjunction as well as nested scanning expressions, the
structure connecting saved scanning environments is
best thought of as a tree, not a stack. (The same is true
of suspended generators.)

In general, the tree of scanning environments is
rooted in the scanning environment associated with the
initiation of program execution as described above.
There are two ways that the tree of scanning environ-
ments can grow. One is horizontally, as in expressions
such as

(expr, ? expr,) & (expr; ? expr,) & . . .
The other is vertically, as in expressions such as
(expry ? (expry ? (exprs ? (expry . . .))))

In horizontal growth of the scanning environment tree,
an analysis expression is suspended during the eval-
uation of a subsequent expression. In vertical growth,
before an analysis expression completes evaluation, a
scanning expression that is nested within it is evaluated.
Vertical growth usually appears in programs in the
form of matching procedures that themselves contain
scanning expressions, as mentioned above.

As an example, consider the evaluation of the fol-
lowing expression:

(“abc” ? move(2 | 1)) & (“defg” ? (tab(4) ?
move(1 | 2)))

Assuming that there is no other surrounding expression,
the evaluation of

“abc” ? move(2 | 1)

causes the scanning environment tree to become
)
l
{“abc"”,3}

When

“abc” ? tab(2 | 1)
suspends,

“defg” ? (tab(4) ? move(1 | 2))

is evaluated. The tree of scanning environments grows
horizontally. After the evaluation of tab(4), the tree is‘g

)
!
{"abc”,3} {“defg"” 4}

Evaluation of the nested scanning expression therS
causes the tree of scanning environments to grow ver=

1} POPEOJUM:

tically: 3
{Il Il’1} %:_

(]

{llabcll’3} {I’defg',’4} g

v o

{“def",2} b

o

If the expression above appears in a context that causesZ.
it to be resumed, as in S
((“abc” ? move(2 | 1)) & (“defg” ? (tab(4) ?=
move(1 | 2)))) & expr 2
where expr fails, then the expression move(1|2) is%
resumed and the last scanning environment is changed:S
©

e 2

{”abc”,3} {”defg”,4} %

l g

{ll defll '3} L(ED

Further resumption produces no new result for thisg
expression, resumption of tab(4) produces no newZ
result, the second scanning expression in the mutual;
evaluation produces no new result, and move(2 | 1) in2
the first scanning expression in the mutual is resumed.)
At this point, the scanning environment tree again has®
the form

1
)
{"abc”,3}

Note that two scanning environments were discarded as
the result of the failure of scanning expressions.

The second result for move(2|1) changes this
environment to

{ll ",1}
!
{uabcnlz}

At this point, the second scanning expression in the
mutual evaluation is evaluated again, and the tree of
scanning environments grows again in a fashion similar

104 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

STRING SCANNING IN THE ICON PROGRAMMING LANGUAGE

to that illustrated above. The tree of scanning environ-
ments reverts to a single root node only when all alterna-
tives in the mutual evaluation have been produced.

Note that all the nodes along the right edge of the tree
of scanning environments correspond to expressions
whose evaluation is incomplete and are ‘active’, while
all other nodes correspond to inactive expressions that
may produce another result if they are resumed because
of failure of expressions corresponding to nodes to their
right.

9. AMODEL OF SCANNING EXPRESSIONS

The internal mechanism for maintaining scanning

environments can be better understood by modelling

the scanning expression in terms of Icon procedures.
It is not possible to model

expry ? expr,

with a single procedure, such as Scan(expr,, expr,),
since in a procedure call, all arguments are evaluated
before the procedure is called. In a string scanning
expression, however, scanning environments must be
manipulated between the time of expr, is evaluated and
expr, is evaluated. The interposition of this manipu-
lation can be modelled using two procedures, in which
the scanning expression is mapped as follows:

expr, ? expr, — Escan(Bscan(expr,), expr,)

The order of evaluation is easier to see if the nested
procedure call is recast in suffix form, so that expressions
are written from left-to-right in the order they are evalu-
ated:

((expr,)Bscan, expr,)Escan

Thus, expr, is evaluated first, providing the subject and
the argument to Bscan, which manipulates scanning
environments. Next the analysis function expr, is evalu-
ated. The value returned by Bscan (which contains
information about scanning environments) and the
result of the analysis expression are arguments to Escan,
which also manipulates scanning environments.

In this model, an Icon record type is used to represent
scanning environments:

record Envir(subject,pos)

In Icon notation, if E is an Envir record, E.subject is
the subject of scanning and E.pos is the position in the
subject. The procedures are:

procedure Bscan(e1)
local OuterEnvir
OuterEnvir := Envir(&subject,&pos)
&subject := e1
&pos := 1
suspend OuterEnvir
&subject := OuterEnvir.subject
&pos := OuterEnvir.pos
fail
end

procedure Escan(OuterEnvir,e2)
local InnerEnvir
InnerEnvir := Envir(&subject,&pos)
&subject := OuterEnvir.subject
&pos := OuterEnvir.pos

suspend e2
OuterEnvir.subject := &subject
OuterEnvir.pos := &pos
&subject := InnerEnvir.subject
&pos := InnerEnvir.pos
fail

end

Bscan saves the current subject and position in Outer-
Envir and sets &subject to the value provided by its
argument. It suspends, returning OuterEnvir, which is
needed by Escan. By suspending, Bscan assures that
it will be resumed in the case of subsequent failure — in
which case it restores the subject and position from
OuterEnvir.

Escan is called with the record provided by Bscan
and the result of the analysis expression. Escan creates
another record to save the current subject and position,
restores the subject and position from OuterEnvir, and
then suspends with the result of the analysis expression
(which is the result of the entire scanning expression).
If Escan is resumed, it restores the subject and position
to the values they had when the analysis expression
completed. It also updates the outer scanning environ-
ment in case a subsequent expression, operating in the
context of the outer scanning environment, modified
that subject or position. Escan then fails, causing the
analysis expression to be resumed (if it suspended). If
the analysis expression did not suspend, or if it now
fails, the suspended Bscan is resumed. This corresponds
to failure of the entire scanning expression, so the
previous scanning environment is restored before Bscan
fails.

Note that expr, ? expr, is, itself, state-maintaining.
It performs data backtracking on both the subject and
the position.

These procedures show how scanning environment
are maintained internally in Icon. They do not account
for all possibilities. For example, a suspend expression
may occur in a scanning expression that is inside a
procedure. In this case the current scanning environ-
ment is saved and the previous one is restored. If the
procedure call is subsequently resumed, the process is
reversed. Icon also has control structures that cause
scanning expressions to be terminated in the middle of
analysis. See [13, 14] for more detailed descriptions.

10. CONCLUSIONS
String Scanning and Pattern Matching

The relationship between string scanning and pattern
matching is an important one. As mentioned above,
Icon focusses on the process of matching — string scan-
ning is inherently imperative in nature. By contrast,
SNOBOL4 patterns are inherently declarative in
nature. Icon, however, allows declarative charac-
terizations. The procedure arb() in Section 5 is a direct
analog of a SNOBOL4 pattern ARB. Both do the same
thing. However, SNOBOL4 patterns are not purely
declarative. They embody information about the order
of matching as described in Section 7. This information
is largely hidden in SNOBOL4. SNOBOL4 has built-in
matching functions, but there is no way to access them
directly.

Declarative characterizations are limiting in what they

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 105

¥20¢2 I4dy $0 uo 1senb Aq 20858¢/86/Z/€E /201 e/|ufwoo/woo dnoolwsapede//:sdiy Wolj papeojumo(q

R. E. GRISWOLD

can describe in the absence of imperative mechanisms.
SNOBOLA4, for example, provides no mechanisms for
providing programmer-defined matching procedures. A
SNOBOL4 programmer must get by with the built-in
matching functions as they are embodied in patterns.
In addition, SNOBOL4, with its declarative char-
acterization of pattern matching, has no direct, natural
way to perform other kinds of computation during pat-
tern matching. In string scanning, on the other hand,
all types of computation can be performed as needed
during the matching process.

Although Prolog [11] is not designed primarily for
string manipulation, its evaluation mechanism
resembles Icon’s in many ways. In particular, goal-
directed evaluation and generators have similar mani-
festations in Icon and Prolog. There are differences
between the two languages that are very significant,
however. While Prolog is declarative in nature, Icon is
imperative.The order of matching in Prolog is largely
hidden from the Prolog programmer and there is little
in the way of mechanisms to control it (‘cut’ being the
notable exception). In Icon, on the other hand, the
order of matching is strictly defined and there are many
(conventional and unconventional) control structures.
Both approaches have their merits.

The Concepts in String Scanning

The success of string scanning in Icon lies in the
concept of a scanning environment in which a subject
string being analysed is implicit, as is the position in
the subject at which attention is focussed. Matching
functions provide ways of changing the position and
also of producing portions of the subject that are of
interest. While specific positions produced by string
analysis functions are needed to drive the matching
process as arguments of matching function, these posi-
tions usually are not accessed explicitly.

Generators and control backtracking provide the
mechanism for searching for alternatives in com-
binations of matches. Data backtracking assures the
independence of alternative matches. The maintenance
of scanning environments in a state-maintaining fashion
allows multiple scanning expressions to be used in com-
bination.

Other Possibilities

Taken together, all of these features provide a simple
and powerful mechanism for analyzing strings. These
concepts, however, are not restricted to string analysis.

For example, a string synthesis facility can be desig-
ned along lines that are similar to those of string
scanning. Just as a subject string is implicit in string
analysis, an object string could be implicit in string
synthesis. In this case, the scanning environment might
have the form {subject,sposition,object,oposition}.
Here sposition is the position in the subject as before,
while oposition provides an insertion position in the
object string being synthesized. In such a facility, syn-
thesis functions are analogous to matching functions.
Experience with string analysis suggests that data back-
tracking for string synthesis (object and oposition)
should be concomitant with data backtracking for analy-
sis. The model of string scanning given in Section 9 can

be easily adapted to this view of string synthesis. There
are many other possibilities, including transformation
of a subject string by analysis and synthesis functions
working in concert. Such possibilities probably are best
explored by modelling them in terms of Icon procedures
as shown in Section 9.

Most of the fundamental aspects of scanning in Icon
are not tied to strings, per se. The concepts of scanning
environments, generators, goal-directed evaluation,
control backtracking, and data backtracking could
equally well be applied to the scanning of structures
such as lists and trees. This possibility already has been
explored with limited success [15]. The inherent prob-
lem with structure scanning is that structures are fun-
damentally more complex than strings. Strings are
simple — they are just sequences of characters with no
internal structure. The portion of a string between two
positions is itself a string, so that the concept of matching
is well-defined. In a structure, however, the portion
between two positions (such as the root and a leaf) is
not so easily interpreted as a substructure of the same
kind. For structures that contain loops, such as general
directed graphs, the situation is considerably more com-
plicated. Nonetheless, the value of the concepts from
string scanning suggest that it is worth exploring a facility
for structure scanning based on the same underlying
ideas.

Acknowledgements

The origins of string scanning in Icon lie in SNOBOL4
[10]. They are molded by the SLS programming lan-
guage [16, 17]. Many persons have participated in the
design and implementation of string scanning in Icon.
Dave Hanson, Tim Korb, Cary Coutant, and Steve
Wampler were major contributors. Ken Walker made
significant contributions to the method for maintaining
scanning environments and provided the material on
the tree of scanning environments and the procedures
for modelling string scanning.

The work described in the paper was supported by
National Science Foundation Grants MCS-8101916,
DCR-8401831, and DCR-8502015.

REFERENCES

1. V. H. Yngve, “A Programming Language for Mechanical
Translation”, Mechanical Translation 5, 1, 25-41 (1958).

2. C. Y. Lee and others, A Language for Symbolic Com-
munication, MM 62-3344-4, Bell Telephone Laboratories,
1962.

3. D. J. Farber, R. E. Griswold and I. P. Polonsky,
“SNOBOL, A String Manipulation Language”, J. ACM
11, 1, 21-30 (Jan. 1964). .

4. J. F. Gimpel, “A Theory of Discrete Patterns and Their
Implementation in SNOBOL4”, Comm. ACM 16, 2, 91—
100 (Feb. 1973).

5. P. Klint, An Overview of the SUMMER Programming
Language, in Conference Record of the Seventh Annual
ACM Symp. on Prin. of Programming Languages, 1980.

6. Proceedings of the Workshop on Pattern-Directed Infer-
ence Systems, SIGART Newsletter, June 1977.

7. R. E. Griswold and M. T. Griswold, The Icon Pro-
gramming Language, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1983.

8. R. E. Griswold and D. R. Hanson, “An Alternative to

106 THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990

dny wouy pepeojumoq

2

=
=
o)
Q

o1e/|ulwoo/wod dnoolwape

/9

w
w

udy 0 uo 1senb Aq Z08S8E/86/2/

¥20¢

STRING SCANNING IN THE ICON PROGRAMMING LANGUAGE

the Use of Patterns in String Processing”, ACM Trans.
Prog. Lang. and Systems 2, 2, 153-172 (1980).

9. J. O'Bagy, The Implementation of Generators and Goal-
Directed Evaluation in Icon, Doctoral Dissertation, The
University of Arizona, 1988.

10. R. E. Griswold, J. F. Poage and I. P. Polonsky, The
SNOBOL4 Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, second edition, 1971.

11. W.F. Clocksin and C. S. Mellish, Programming in Prolog,
Springer-Verlag, New York, 1981.

12. L. Sterling and E. Shapiro, The Art of Prolog, MIT Press,
Cambridge, MA, 1986.

14.

15.

16.
17.

of the Icon Programming Language, Princeton Univesity
Press, 1986.

R. E. Griswold, Supplementary Information for the
Implementation of Version 7 of Icon, The Univ. of Arizona
Icon Project Document IPD51, 1988.

A. J. Anderson and R. E. Griswold, Unifying List and
String Processing in Icon, The Univ. of Arizona Tech.
Rep. 83-4, 1983.

R. E. Griswold and D. R. Hanson, “The SL5 Procedure
Mechanism”, Comm. ACM 21, 5, 392-400 (May 1978).
R. E. Griswold, “String Analysis and Synthesis in SL5”,
Proceedings of the ACM Annual Conference, 1976, 410-

13. R. E. Griswold and M. T. Griswold, The Implementation

414.

Announcements

3-7 SEPTEMBER 1990

MONTREUX, SWITZERLAND
Eurographics’ 90

Images

Synthesis, Analysis and Interaction

The EUROGRAPHICS Association is 10
years old in September 1990. For the last
10 years, EUROGRAPHICS has served the
European research community in computer
graphics and its applications, through the
annual event, journal, workshop programme
and other activities.

In the past, EUROGRAPHICS confer-
ences have concentrated in the main on topics
traditionally associated with computer
graphics and human computer interaction.
EUROGRAPHICS '90 will continue to
address such topics.

For EUROGRAPHICS ’90, a new theme
of the conference will be the relationship
between image synthesis (traditionally the
domain of computer graphics) and image pro-
cessing and computer vision.

Itis now clear that there is overlap between
image synthesis and image analysis in both
techniques and applications. For example, as

. computer graphics is used more and more in
the visualization of scientific and engineering
computations, so it looks likely that image
processing techniques will be used to help
develop an interpretation of the experimental
results.

Tutorials, state of the art reports and
invited papers will address the relationship
between graphics and image analysis, at both
introductory and advanced levels.

Tutorials
3-4 September 1990
The first two days of the event will be devoted
to the tutorial programme. Tutorials will be
given by leading international experts and
will cover a wide range of topics offering an
excellent opportunity for professional devel-
opment in computer graphics, image pro-
cessing and related areas. The programme
includes both introductory and advanced
tutorials.

Each tutorial will occupy one full day. Lec-
ture notes will be provided for attendees.

Preliminary List of Topics

@ Introduction to Image Processing

@ X and NeWs Environments

@ Introduction to Ray Tracing and Radiosity
@ Image Reconstruction

@ Superworkstations for Graphics

@ Human Visual Perception

@ Intelligent CAD Systems

@ Free-Form Surfaces and CSG

@ Graphics and Distributed Environments

sz

@ Scientific Data Visualization
@ Computer Vision

.@ Traditional Animation: A Fresh Look

@ Computer Graphics for Software Engin-
eering

State of the Art Reports

5-7 September 1990

In parallel with the conference paper session,
a series of 1} hour reports on topics of wide
current interest in key fields will be given by
leading experts in the fields. These will serve
to keep attendees abreast of the state of the
art in these fields and will highlight recent
significant advances.

Preliminary List of Topics

@ Standardization in Graphics and Image
Processing:
Present and Future

@ Advanced Rendering

@ Object Oriented Design in Action

@ Digital Typography

@ Simulation of Natural Phenomena

@ Advanced Mathematics and Computer
Graphics

@ Interactive Graphics and Video Discs

@ Graphics-Education.

Conference

5-7 September 1990

Papers selected by the International Pro-
gramme Committee will present the most
relevant and recent developments in Com-
puter Graphics. The Conference Proceedings
will be published by North-Holland.

List of Topics

@ Graphics Hardware

@ Superworkstations

@ Hypersystems

@ Graphics and Parallelism

@ Distributed Graphics

@ Visualization Techniques

@ Animation and Simulation

@ Image Processing

@ Sampling Theory

@ Unwarping

@ Image Filtering

@ Image Representation

@ Computational Geometry

@ Modelling

@ Standards

@ Exchange of Product Data

@ Graphics for CAD, CAM, CAE

@ Human-Computer Interaction

@® Human Factors

@ Tool kits for UIMS and WMs

@ Presentation Graphics

@ Graphics in the Office

@ Graphics in Publication and Documen-
tation

@ Page Description Languages

@ Novel Graphics Applications

@ Graphics as an Experimental Tool

@ Graphics in Education

@ Integration of Graphics and Data Bases
@ Colour

@ Multi Media Graphics

Video and Film Competition

There will be a competition of computer-
generated videos and films, with prizes
awarded for the best entries based on cre-
ativity and technical excellence. Submissions
are invited for scientific and technical appli-
cations, art and real-time generated
sequences. Entries will be shown during the
conference.

Slide Competition

A competition will also be held for artistic
images and scientific and technical images
submitted on 35mm slides. Prizes will be
awarded for the best entries, and slides will
be shown during the conference.

The closing date for submission to both
competitions will be June 15, 1990. Entries
should be sent to the Conference Secretariat.
Rules for the competition will be sent to
people who apply to the Conference Sec-
retariat.

Montreux

Pearl of the Swiss Riviera

Montreux, Pearl of the Swiss Riviera, has
been chosen as the venue for Eurographics
’90. The Congress will be held in the Maison
des Congres, a fully equipped convention
centre built on the shores of Lake Geneva.

Sheltered by mountains, nestled in hills,
surrounded by forests and famous vineyards,
Montreux can seem far away from the world —
but it’s an hour by car or train from Geneva
(direct train connection between Geneva air-
port and Montreux).

For relaxing or working, Montreux is ideal,
with a mild climate all year round. Sports,
nightlife and history are here; a casino, a
jazz festival and the famous medieval Chillon
Castle. It has a 9,6 km lake side promenade
where palm trees and tropical flowers will
amaze visitors. Montreux ranks amongst one
of the most sunny areas of Switzerland, and
is protected from the cold winds by the Roch-
ers de Naye (2,042 m.) stretching up behind
Montreux from where there is a breathtaking
view of the whole Lemanic and Alpine
region.

For further information please contact:

Eurographics ’90, Conference Secretariat,
Paleo Arts et Spectacles, Case postale 177,
CH-1260 Nyon, Switzerland. Tel. (41) 22 62
13 33. Telex 419 834. Telefax (41) 22 62 13
34.

THE COMPUTER JOURNAL, VOL 33, NO. 2, 1990 107

¥20¢2 I4dy $0 uo 1senb Aq 20858¢/86/Z/€E /201 e/|ufwoo/woo dnoolwsapede//:sdiy Wolj papeojumo(q

