ACLE: a Software Package for SIMD Computer Simulation

O. G. PLATA,J. D. BRUGUERA, F. F. RIVERA, R. DOALLO aND E. L. ZAPATA
Department of Electronics, Faculty of Physics, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain

This paper describes ACLE (Array C Language Emulator), a software package comprising an ACLAN-to-C translator
and a library of simulation routines enabling the execution of programs written in ACLAN to be simulated on a
conventional sequential computer. Array C LANguage (ACLAN) is a machine-independent programming language that
extends C by endowing it with structures for programming array processors. ACLAN was successfully proven by
developing many parallel algorithms for hypercube computers. An algorithmic solution for mapping algorithms onto

these computers is explained.

Received July 1989

1. INTRODUCTION

The fundamentals of parallel programming are familiar
to experienced programmers because most of the basic
operations are part of today’s sophisticated uniprocessor
operating systems. Nevertheless, some methodologies
are unique to parallel programming. The basic challenge
that confronts the parallel programmer is how to trans-
form the structure of the program at hand so that it
matches the structure of the parallel computer that will
run that program. To map a problem onto a parallel
architecture, the programmer must first divide the prob-
lem into segments that will execute in parallel, and then
determine how the processors will communicate and
synchronize with one another.

According to Howe and Moxon,' the key to pro-
gramming a parallel problem is determining the granu-
larity, or level of parallelism which indicates how much
computing each processor can do independently in
relation to the time it must spend exchanging infor-
mation with other processors. A coarse-grained appli-
cation can be divided into logical parts made up of long
independent processing sequences, with little synch-
ronization or communication. On the other hand, in the
fine-grained application, fewer instructions are executed
between communication steps.

In this paper, we describe ACLE (Array C Language
Emulator), a simulation package for executing ACLAN
programs on sequential computers. ACLAN (Array C
LANguage) is an array processor programming
language, and we analyze the algorithm embeddability
problem on hypercube computers.

2. THE PARALLEL PROGRAMMING
LANGUAGE

ACLAN,? an array }Jrocessor programming language,
has been based on C° because of C’s power, popularity,
portability and combination of the structured pro-
gramming features characteristic of high-level languages
with the provision of low-level operators and data types.
There are two kinds of executable statements in
ACLAN, scalar and parallel instructions. Scalar instruc-
tions process universal data or control program flow;
they are executed in the control unit (CU) of the array
processor and their form in ACLAN is just the same
as in C. Parallel instructions which process the data

ojumoq

distributed among the processing elements (PEs) of thes
array, or the distribution of these data, are executed ind

C.

the PEs, and are written using ACLAN extensions tog
3

>
In most extensions of sequential languages for parallel5

processing, such as Actus,* Actus-2,° Latin,®

VectorZ

C,” Vectran,? Parallel Pascal® or Fortran 8X,!? parallel3
instructions are introduced by defining vector data typesg
and modifying the existing sequential operators andz
syntactic structures so as to handle vector variables; theo
location of the variables in memory is controlled by the?
compiler, not by the programmer. In consonance withS

C’s low-level features,

ACLAN handles parallelg

execution by introducing new low-level operators and=.
data types allowing optimal programming of algorithmsg
in which runtime or occupied memory are critical factorsz

to optimize.!!-1?

For example, operators are provided which control®

RAAYE]

local (intra-PE) and inter-PE data transfer, and thez
programmer can specify the PE registers or local mem-
ory locations in which data are to be stored. In spite of@

this low-level capability, ACLAN

is completely\l

machine-independent. This independence is based OHO'
the virtual array processor concept. Table 1 shows the@

basic parallel structures of ACLAN.

2.1 Declarative statements

The declaration syntax and meaning of the program

ludy Q1 uo1sen

o

variables depend on the context. Variables used exclus- =

ively in scalar instructions and hence only in the CU
(called scalar variables), can have any of the types
allowed by standard C. Variables that are used exclus-
ively in parallel instructions, and which therefore refer
to PE local memory (parallel variables), are declared
in the virtual array processor in accordance with the
restrictions that will be discussed in Section 3.1.1.
Hybrid variables are the third kind of variables and
are used in both scalar and parallel instructions. They
represent universal data stored for economy in the CU
and broadcast when necessary to the PEs, and their
declaration is restricted to the basic data types, char,
int, float and double (together, where appropriate, with
the adjectives unsigned, short and long), since it is PE
registers of these types that must receive them.

194 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

ACLE: A SOFTWARE PACKAGE FOR SIMD COMPUTER SIMULATION

Table 1. Basic parallel structures of ACLAN

Symbol Meaning Explanation

1= Local assignment Data transference between memory components
belonging to the same node.

= Local interchange Data swapping between memory components
belonging to the same node.

<— Remote assignment Data transference between memory components
belonging to directly connected nodes.

<——> Remote interchange Data swapping between memory components
belonging to directly connected nodes.

<== Central assignment Data transference from host to nodes or
viceversa.

J:/ Bit operator Extract a bit or range of bits. (// means
optional).

in:/:/ Set operator Check if a value is in a certain range.

Parallel register Identification of the index of the node.
neigh(] Predefined vector Identification of the interconnection functions.

2.2 Parallel executable statements

Parallel instructions in ACLAN are composed of two
fields and conform to the following general syntax,

action {mask};

where the mask field is an optional expression and the
action field represents the action to execute. Each PE,
in parallel with the rest of the PEs, first evaluates the
mask field, if present; if the mask is present and evalu-
ates to zero the PE inhibits itself, otherwise the PE
performs the action.

Expressions in ACLAN are basically similar to C
expressions, though with certain logical restrictions and
the provision of two extra operators. The allowed vari-
ables are limited to parallel and hybrid ones. The
allowed operators are a subset of standard C operators,
as follows, (), !, , - (unary), + (unary), *, /, %, +, -,
<< >>, <L <=,>,>=, == 1= &, , ! && and
\ 1, together with the bit operator (./:/, where // means
optional), used to extract a bit or a range of bits from
an integer operand, and the set operator (in : /:/), used
to check whether the value of a specified expression is
in a certain range. For example, if a PE has the local
memory structure of figure 2, the expressions A.5:1 and
MASK]1.3 extract the value contained in the register A
from the bit 5 to the bit 1 (bit 0 is the LSB) and the
most significant bit of the register MASKI, respectively.
#.0 returns 0 in even PEs and 1 in odd PEs (the symbol
is used to represent the logical identification register
of the PEs). The expression R in 3.6:24 tests if the
content of the register R belongs to the real range
[3.6,24] and the expression # in 0:10:2 evaluates to 1 in
the first six PEs with even logical indexes.

The memory components involved in a parallel action
are specified by means of a multiple (parallel)
expression. A multiple expression, that can return sev-
eral values, is an expression (with the above mentioned
restrictions) that can contain one or more multiple oper-
ands. A multiple operand is a local memory component
(parallel variable) with a number of specified dimen-
sions lower than the number declared, and/or with one
or several dimensions ranging from two limits. These
limits are specified as follows

initial_limit : final_limit : increment

where final_limit and increment are optional (by default,
initial_limit and 1 are taken as values for final_limit and
increment, respectively). For example, if the matrix
T110][20] is part of the local memory structure, then the
multiple operands T, 7{3] and 7[*][11] represent the
complete matrix, its fourth row and its twelfth column.

2.2.1. The action field of parallel instructions

All the actions specified by parallel instructions consist
of value assignments. There are three kinds of actions,
local assignments involving only the memory com-
ponents of a single PE, remote assignments (routing
assignments) transferring data among local memory
components of different PEs, and central assignments
involving data transfer among the CU and the PEs in
either direction. In the examples that will follow in this
section, we consider that the PEs have the local memory
structure shown in figure 2 (see definition in Section
3.1.1.).

Local assignments. These assignments are expressed by
means of the local operator :=, which assigns the value
of a parallel expression to a local memory component,
and the local swap operator :=:, which exchanges the
values of local memory components. Examples of valid
local assignments include

R := (RAM[4] & 7 + S)*exp(h-3);
and
RAM[2] :=: S {#.0 && # ! = 1};

where h is a hybrid variable broadcast by the CU and
exp() is an ALU operation of the PEs. The second of
the examples is only executed by PEs with odd logical
indexes except PE 1. The local action

RAM([0:249] := RAM[250:499];

makes a copy of the second half of the local RAM and
stores it in the first half (all PEs execute this action with
their local RAMs).

Remote assignments. The remote (routing) assignments
are expressed by means of the one-way routing operator

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 195

¥20Z I4dy 01 uo 1senb Aq 82059¢/76L/S/€E/e101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

O. G. PLATA et al.

(- and the two-way routing operator (——). With the
first operator, each PE evaluates a parallel expression
and stores the value(s) in the data transfer buffer,
whence it(they) is(are) sent to one of its neighbouring
PEs identified by an interconnection function. The two-
way routing operator expresses the swapping of the
contents of local memory elements belonging to dif-
ferent PEs (but neighbours). The interconnection func-
tion that expresses the communication lines used in
a message transference is specified by means of the
predefined vector neigh[]. For example, neigh[3] indi-
cates that we use the interconnection function of number
3 (see definition of the interconnection network in Sec-
tion 3.1.2).

As an example, consider a 6-dimensional hypercube
network that is defined by assigning to the inter-
connection function number & the communication lines
along the k-th dimension. The one-way routing assign-
ment

RAM(neigh[0]) <—— RAM {!#.0};

makes a copy of the local RAMs of all the even PEs on
the local RAMs of all the odd PEs (PE 2* sends its
local RAM to PE 2*i + 1, for i=0,1,...,31). If the
mask is missing, then the even PEs interchange their
local RAMs with the odd ones (PE i with PE i + 1).
This last action can also be expressed by means of the
two-way remote action

RAM(neigh[0]) <——> RAM {!#.0};

Central assignments. Central assignments are rather
more complicated, and are specified by means of the
single central assignment operator <= =, that is used
both to load local memory from the CU (distribution)
and to report to the CU from local memory (recol-
lection). As an example of the former use, consider a
hybrid variable declared in the CU as follows

short int data[10][499];
The following central action of distribution,
RAM <= = data;

Virtual
array = f-—-—=-
processor

tries to distribute the data matrix on the RAM local
vectors of all the nodes. This is to say the content of
data[0][0] is sent to PEO and stored in the RAM[0]
element. The next value, data[0][1] is sent to the same
node and stored in the RAM[1] element. The end of
the distribution action is controlled by the receiver
variable. Therefore, the content of data[9][499] is sent
to PE 9 and the next action is to send again the content
of data[0][0] but to PE 10. In general, the content of
datali][j] is sent to PE i and PE i + 10 and stored in the
RAM][j] element.

The mechanism and control of data transfer in the
reverse direction, from the PEs to the CU, is similar.

3. THE SIMULATION PACKAGE

The simulation package ACLE (Array C Language,
Emulator) allows a program written in ACLAN to b&
executed on a sequential computer. It consists basically
of a translator, a library of simulation routines and %
virtual array processor block (see Figure 1). A sourcé
program written in ACLAN, which in an array pro%
cessor would be completely stored in the CU or part of>
the program in the CU and the rest in the PEs, is
converted by the translator into a standard C program
a process parameterized by the virtual array processor
During translation, statements declaring scalar an

hybrid variables are left unchanged, except that a tablé>
of hybrid identifiers is constructed, while parallel vari;c;
ables declared as part of the processors definition are3
treated by conventional compiler methods during pro<
cessing of this block. Scalar executable statements are>
also left intact, while parallel executable statements ares
analysed lexically and syntactically and replaced by calls3
to the library routines simulating the particular action2
involved in the statement.

3.1 Virtual array processor

oc/vel/ciee!

For efficient array processor programming, the pro-
grammer must have the possibility of direct control overa
intra-PE operations and local memory and inter-PES

«Q

Library of
______ Simulation
, Routines

¥20Z Iudy Q1 uo1sen

-->8 ACLAN-to-C C (seq.)
ACLAN - ———> Translator |======- > object ——

source
program

ACLAN compiler

Array processor
-_—— machine language
object code

program

C compiler

Sequential computer
machine language <me
object code

Figure 1. Structure of ACLE

196 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

ACLE: A SOFTWARE PACKAGE FOR SIMD COMPUTER SIMULATION

communications. The programmer will in fact work with
a conceptual scheme of the inter-PE communication
network and the intra-PE structures that are accessible
to him. This conceptual scheme constitutes a virtual
array processor. In order to allow programs to be written
which can be run on any machine, the programmer
can define the virtual array processor he has in mind.
Therefore, if the programmer wants to implement
ACLAN on a particular array processor, he only needs
to define the virtual array processor with the specific
features of the array processor in question (apart from
the machine-dependent ACLAN compiler).

3.1.1 Intra-PE definitions

Intra-PE definitions are of two kinds, definitions of local
memory (including internal registers) and definitions of
ALU operations. All PEs are assumed identical, so
there will be just a single set of each kind.

Local memory definition. Local memory is defined by
specifying, for each required memory component, an
identifier associated with a data type indicating the kind
of values to be held in the component. The programmer
manipulates local PE memory by working with the
appropriate identifiers. The local memory definitions
conform to the syntactic rules of C.

In this section, we define all the local memory com-
ponents required for each PE, which comprise registers
(single-value storage elements) and arrays (storage
elements comprising multiple values of the same data
type, destined to hold the data distributed to the PEs
for processing and which are presumably implemented
by means of the local random-access-memory). Given
the level at which we are working, the only data types
allowed are char, int, float, double — all optionally
together with the adjectives unsigned, short or long
(with the same restrictions as in C) — and the new
data type bit (as each identifier is bound to a memory
element, the only admissible storage class is external,

which is accordingly assumed by default and need not
be specified). Bit allows a memory element of a given
number of bits to be defined. This data type is useful for
defining mask and flag registers by means of declarations
such as

bit MASK, CCR[12], COMPMASK:6;

which specifies a single-bit mask register (MASK), an
array of 12 single-bit registers (CCR) and a 6-bit mask
register (COMPMASK). Note that in practice the only
difference between

bit VAR:n;
and
bit VAR|[n];

(the former of which defines a single n-bit register and
the latter an array of n single-bit registers) is that the
latter allows access to a specific bit by means of an array
index (e.g. VAR[i]), whereas the former requires the
ACLAN bit operator.

Figure 2 illustrates the local memory structure of a
possible conceptual PE together with the corresponding
declaration of its components. Since the syntax of array
dimension definitions allows for multi-dimensional
arrays, the RAM component could equally have been
defined, for example, by

short int RAM([10][50];

where RAM([i][j] is the physical element number
(50*i + j). Though unrealistic as regards the physical
nature of the memory component, this kind of definition
is useful if the data to be distributed fall naturally into
separate groups (such as the columns or rows of a
matrix). Note that neither the logical identification
register (LIR), whose contents identify the PE, nor the
data routing register(s) DTR need to be specified. To
refer to LIR, ACLAN instructions use the special iden-
tifier #, but the syntax of routing instructions is such as

MASK?2

MASK3

CMK

int A, B;
short int C, RAM[500];

bit MASK1:4, MASK2:2, MASK3, CMK|[3]:5, CCR[7];

float R;
double S;

Figure 2. PE local memory definition

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 197

¥20Z I4dy 01 uo 1senb Aq 82059¢/76L/S/€E/e101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

O. G. PLATA et al.

to avoid any need for explicit mention of DTR registers.
ALU definition. ALU requirements are specified by
defining each of the operations as a C function. No extra
syntax is involved, and a number of basic operations
included as ACLAN operators do not need definition
because the translator treats them as valid ALU opera-
tions when found in parallel instructions.

3.1.2 Inter-PE communication definition

Aninter-PE communication definition begins by declar-
ing the maximum number of PEs required. ACLAN
programs will be able to work with any number of
nodes, but always less than the number declared in this
section. This is to say, we can restrict ourselves to any
subarray without redefining the virtual array processor.
The required inter-PE communication network is speci-
fied by defining a number of interconnection functions
(IFs). An IF returns, for each PE index, the PE index
of one of its neighbours (directly connected PEs). Each
IF is identified by means of a name and a number. While
the number characterizes the IF, the name can identify
one IF or a group of related IFs. In the first case, we
have nominal or directly indexed IFs, and in the second
case we have indirectly indexed IFs. The actual cal-
culation of an IF is performed by a C function referenced
by the IF name. The IF identification number is used
as a reference index by the ACLAN routing statements.

#16

IFO(node) = bit_0(node);
IF1(node) = bit_1(node);
IF2(node) = bit_2(node);

IF3(node) = bit_3(node);

long bit_0(pe)
long pe;
{ return(pe " 1); }

long bit_1(pe)
long pe;
{ return(pe " 2); }

long bit_2(pe)
long pe;
{ return(pe " 4);}

long bit_3(pe)

long pe;

{ return(pe " 8);}

(a)

#16

IFi(node) = hypercube(i, node), i in 0:3;

long hypercube(i, pe)
short i; long pe;
{ return(pe " (1<<i));}

(b)
Figure 3. Hypercube interconnection network definition

(a) Directly indexed definition,
(b) Indirectly indexed definition

The use of the two forms of the network definition is
illustrated in Figure 3, which specifies the inter-
connection network of a 16-node hypercube
computer.'* As we can realize, the indirectly indexed
IF declarations specify the identification numbers by
means of an indexing variable, whose range of possible
values is specified in the same way

indexing_var in initial_value: final_value :increment

The indirectly indexed definition is specially suitable for
declaring interconnection networks with a high degree
of symmetry, such as a hypercube network, or networks
that can be reconfigured by the programmer. For
example, the Massively Parallel Processor (MPP),'*
composed of 16384 PEs distributed in a 128*128 square,
has an array communication topology similar to the
Illiac IV; each PE communicates with its nearest neigh
bour (up, down, right and left). This network can be2
reconfigured, because the edges of the square can beg
left open or else, the opposite edges can be connected
to each other. The top and bottom edges can either bes’
left open or be connected, each PE with its opposite PEZ.
of the same column, and the right and left edges haves
four states of connectivity, open, cylindrical, open splrafi
and closed spiral. Figure 4 shows a possible deﬁmtlongg
of this network. If the network is completely left open,cD
we must use the IFs of identification numbers 2, 3, 42
and 5, and if the top and bottom edges are connectedg
and the right and left edges are connected as an openO
spiral, we must use the IFs of numbers 0, 1, 8 and 9. S

#16384

IFi(node) = MPPup(node,i), i in 0:2:2,
IFi(node) = MPPdown(node,i), i in 1:3:2;
IFi(node) = MPPleft(node,i), i in 4:10:2;
IFi(node) = MPPright(node,i), i in 5:11:2;

long MPPup(pe,i)

long pe; short i;

{ if (i) return((pe — 128) % 128);
return((pe <128) ? pe : (pe — 128)); }

long MPPdown(pe,i)

long pe; short i;

{ if (i ==23) return((pe + 128) % 128);
return((pe > 16384) ? pe : (pe + 128)); }

202 Iudy 01 uo 1senb Aq 810998/176L/S/SE/SIO!UE/IU[WOO/

long MPPleft(pe,i)

long pe; short i;
if (i == 10) return((pe — 1) % 16384);
else if (i = = 8) return((pe >0) ? (pe — 1) : pe);
else if (i ==
return((pe&127) ? (pe — 1) : (pe + 127));
return((pe&127) ? (pe — 1) : pe); }

long M PPright(pe,i)
long pe; short i;
if (i == 11) return((pe + 1) % 16384);
else if (i == 9) return((pe <16383) ? (pe + 1) : pe);
else if (i ==
return((pe&127
return((pe&127 ==

==127) ? (pe — 127) : (pe + 1));
127) ? pe : (pe + 1)); }

Figure 4. MPP interconnection network definition

198 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

ACLE: A SOFTWARE PACKAGE FOR SIMD COMPUTER SIMULATION

3.2 Simulation routines

The sequential translator contained in ACLE uses a
library of simulation routines to translate the ACLAN
source program into a sequential C object program.
The translator substitutes, in particular, each ACLAN
parallel executable statement for a sequential C code
routine that simulates the parallel statement. While the
ACLAN parallel statement expresses an action that is
executed by means of a certain group of PEs, the above
mentioned sequential routine expresses the very same
action, this time executed by the same group of PEs but
one after the other. This is to say, the implicit parallelism
associated with the ACLAN statement is transformed
into a loop whose index moves along the logical identi-
fications of the group of PEs that execute the action.

Now, we will see the sequential codes generated by
the translator for the three kinds of parallel statements.
In the examples that will follow, we will work on the
basis of a hypercube array processor (see inter-
connection network in figure 3) but having the PE local
memory structure shown in figure 2. The local parallel
statement is the easiest one to be translated into a
sequential statement because there is no interaction
among PEs neither among PEs and CU. For example,
the unidirectional local statement

RAM[184]:= A + 3*B;

is substituted by the simulation code

for (_node_ = 0; _node_ < NumPrc; _node_ ++)
RAM([_node_][184] = A[—node_] + 3* B[_node_],

where NumPrc is a predefined integer variable that is
initialized to _NumPrc_, the number of PEs declared
in the inter-PE definition section of the virtual array
processor, but its content can be modified at execution
time by the programmer. Note that each local memory
component is redeclared with an additional dimension
bound to _NumPrc_. The interchange local statement

R:=:5;
is translated into the statement

for (_node_ = 0; _node_ < NumPrc; _node_ ++)
{—tmpuvarr_ = R[_node_];
R[_node_] = S[_node_];
S[—node_] = _tmpuvarr_;}

If we use multiple parallel operands and a mask, the
sequential C code is more complex. For example, the
local statement

CCR[1:6:2] := CMK.2 {#.0};
is substituted by the code

for (_node_ = 0; _node_ < NumPrc; _node_ ++)
if (_bitop_(_node_,0)){
—k0_=1;

I0=0;

—continue_ = 1;

while (_continue_){
CCR[-node_][-k0_] =

bitop(CMK[_node_][-I0_],2);

—kO_ = (_kO_ + 2 > 6)?1:(_k0_ + 2);
if (_k0_ == 1) _continue_ = 0;
10— = (10— + 1> 2)?0:(_I0_ + 1);
if (0~ == 0) _continue_ = 0;}}

where the call to the macro _bitop_ replaces the bit
parallel operator (.). Similar macros are used to simulate
the operations represented by means of the bit and set
ACLAN parallel operators.

The next one as regards complexity of translation is
the remote parallel statement. In this case, there are
message transferences among PEs. For example, the
unidirectional remote action

RAM(neigh[t]) <—--2*RAM {MASKI.2:3};
is transformed into the statement

for (_node_ = 0; _node_ < NumPrc; _node_ ++)
if (_bitrop_(MASK1,2,3))

{I0_=0;

continue = 1;

while (_continue_){
routbufl[_node_][-10_] =

2*RAM|[_node_][-10_];
I0 = (_I0_ + 1> 499)?0:(_I0_ + 1);
if (_I0_ == 0) _continue_ = 0;}}
for (_node_ = 0; _node_ < NumPrc; _node_ ++)
if ([bitrop_(MASK1,2,3))

{_neigh_ = _neighbour_(_node_,(short) ?);

—kO0_=_I0_=0;

continue = 1;

while (_continue_){
RAM([_neigh_][-k0_] =

—_routbufl_[_node_][-I0_];

kO = (_kO_ + 1 > 499)?0:(_k0_ + 1);
if (_k0_— = = 0) _continue_ = 0;
I0 = (LI0_ + 1> 499)?0:(_J0_ + 1);
if (0_ == 0) _continue_ = 0;}}

where the data transference from the sending PEs to
the corresponding reception PEs is carried out in two
stages,

® first, a reading process, where the data is trans-
ferred from all the non-masked PEs and stored in
a temporal buffer, and

® second, a writing process, where the data, read
from the buffer, is placed in all the reception PEs.

For each node, the corresponding reception PE is
calculated by means of predefined ACLAN function
neighbour(), whose body depends on the .inter-
connection network definition. In the case of the hyper-
cube network (see figure 3 (b)), this function is defined
as follows,

long _neighbour_(node, index)
long node;
short index;

if (index >= 0 && index <= 3)
return ((long) hypercube(node, index));
return(—1);

A similar two stage mechanism is used for the bidi-
rectional remote statement. In this way, the action

A(neigh[2]) <——> A;
is translated into the statement

for (_node_ = 0; _node_ < NumPrc; _node_ ++)
{—routbufll_[_node_] = A[—node_];

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 199

¥20Z I4dy 01 uo 1senb Aq 82059¢/76L/S/€E/e101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

O. G. PLATA et al.

—neigh_ = _neighbour_(_node_,(short) 2);
—routbufl2_[_node_] = A[_neigh_];}

for (_node_ = 0; _node_ < NumPrc; _node_ ++)
{—neigh_ = _neighbour_(_node_,(short) 2);
Al_neigh_] = _routbufil_[_node_];
Al_node_] = _routbufl2_[_node_];}

Note that this two-stage process is reduced to a one-
stage process if the left-hand side local variable of the
remote operator does not appear in the right-hand side
of it (nor in the mask).

The central parallel statement represents the most
difficult one to be simulated because it expresses the
interaction among the CU and a certain group of PEs.
For example, if the CU has two hybrid variables de-
clared as follows

short int data[200][10];

then the central action of distribution (loading)
RAM([100:200] <= = data[*][4] {A in —3:16};
is substituted by the statement

10_=0;
for (_node_ = 0; _node_ < NumPrc; _node_ ++)
if (_inop_(A[—node_],-3,16))
for (_i0— = 100; _i0_ < 200; _i0_ ++){
RAM[_node_][—i0_] = data[_I0_][4];
I0 = (=I0_+ 1) % 200;}

and the central statement of recollection (unloading)
data <== RAM {# ==6)| # == 10};
is translated into the statement

—node_ = 0;
—continue_ = 1;
while (!(_node_ == 6 ||, _node_ ==10) &&
—continue_){
—node_ = (_node_ + 1) % NumPrc;
if (_node_ = = 0) _continue_—-;}
if (—continue_){
—i0_=0;
for (_/0_ = 0; _J0_ <200; _I0_ ++)
for (_J1_=0; _11_<10; _N_ ++){
data[__lO_][_ll 1= RAM[_node_][_lo_]
—i0_ = (L0_ + 1) % 500;

if (_i0— = = 0){
—node_ = (_node_ + 1) % NumPrc;
while (!(_node_ == 6 || _node_ = = 10))

—node_ = (_node_ + 1) % NumPrc;}}}

4. MAPPING ALGORITHMS ONTO
HYPERCUBE COMPUTERS

In general, the programming of concurrent computers
can be approached in two ways, the ab initio design of
new parallel algorithms without reference to sequential
algorithms for the problem to be solved; and the adap-
tation of existing optimal sequential solutions to con-
current architectures. In the case of problems whose
sequential algorithms are very irregular or possess
strong logical ordering, it is likely that the ab initio
approach may be able to yield parallel algorithms that
perform better than those resulting from direct adap-
tation of existing sequential solutions. There are never-
theless many other problems whose regularity allows

development costs to be saved by adapting existing
sequential algorithms.

Three kinds of order may be distinguished in a
sequential algorithm, the local order imposed by data
dependence, i.e., by the fact that some operations use
intermediate results that must be obtained before those
operations can be performed; inessential sequencing
imposed merely by the fact that a sequential Von New-
mann machine is being used; and semi-logical ordering
in which the nature of electronic processors means,
for example, that the accumulation of a sum of many
numbers must take place of an addend, but without
there being any logical priority among the addends.
Parallel processing can speed computation to the extent
of removing inessential sequencing and minimizing the
effects of semi-logical order.

A g-dimensional hypercube computer is a machine
of O = 29 processors interconnected like the vertices o
a g- d1mensxonal binary cube are interconnected by it
edges.!” Thus each processor PEr (r=0, 1m
2,...,0 —1) has unshared two-way communication®
links w1th the g processors PEr® (b=0, 135
2,...,q— 1), where r® is the number whose bmary3
representatlon differs from that of r only at bit b. %

As in other multiprocessor systems, the hypercube:
computer architecture is determined by the memory0
organization (shared or distributed), the degree of con%
currency (fine- or coarse-grained), the computing power?,
of each individual processor, and the scheme adoptedg
for the instruction flow (SIMD or MIMD). Referencen
16 shows various examples of commercial hypercub@
concurrent computers.

[one/|ulwooy

4.1 Design procedure

IE)

In view of the above, the adaptation of a sequential};
algorithm for parallel processing will involve the fol-\
lowing stages,

1451%

(1) Analysis of the sequential algorithm to identifyy
its nested loop dimensions, inessential loops ando
semi-logically ordered processes. o

(2) Partition of the hypercube dimensions into subsets;
associated with the inessential loops of theg
sequential algorithm. ‘i’—

(3) Distribution of the data arrays used in the algor-
ithm among the PEs in accordance with the chosen®
PE indexing and data distribution schemes.

(4) Construction of the parallel algorithm.

(5) Optimization of performance by optimizing thes
partition of stage 2.

5202 11dy

We have employed this procedure successfully for
the adaptation of numerous sequential algorithms for
parallel processing on hypercube computers. !>

4.2 ACLAN program example

We will present now, as an example, an ACLAN routine
for multiplying matrices of unrestricted size on h;/per-
cubes with an arbitrary number of dimensions.!

have chosen this example because although it is quite
simple it nicely illustrates the distribution of data (using
the cyclic scheme) and the principle that data distri-
bution should be determined by processing distribution,
not the other way round.

200 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

ACLE: A SOFTWARE PACKAGE FOR SIMD COMPUTER SIMULATION

We wish to compute C = |[c;], the N*L product
matrix of the N*M matrix A = [a;] and the M*L matrix
B = [by]. An elementary sequential algorithm for this
computation is the following (in C language),

ffor (i=0;i<N;i++)
for (k=0;k<L;k++){
Clillk] =0;
for (j=0;j<M;j++)
Cliltk] = Clil[k] + A[][1*BlA)[k]:}

The loop index set of this routine is an N*M*L array
of points, and we accordingly partition the g dimensions
of our 29-node hypercube in three gy, q,- and q,-
membered subsets (with ¢ = g, + q, + ¢,) that allow
the address r of each node to be represented by a vector
(ro, 1, r2), where r=r, + r 292 + r,2(01+92) We shall
associate ro with the rows of A and C (the i loop), r,
with the columns of A and the rows of B (the j loop),
and r, with the columns of B and C (the k loop). Each
node of address r will handle local submatrices LA, LB
and LC of dimensions n*m, m*! and n*/ respectively,
where n = [N/2%], m = [M/2%] and [= [L/29:]. We
have adopted the cyclic scheme of data distribution,
which means that the matrices are distributed as follows,

(a) Matrix A: Element a; is stored in position
([i/290], [j/291]) of the local submatrix LA in all
the 292 nodes for which r; = i mod 2% and r, =
mod 291,

(b) Matrix B: Element by is stored in position
([j/2917, [k/292]) of the local submatrix LB in
all the 290 nodes for which r; = mod 291 and
r, = k mod 29z,

(c) Matrix C: Element c; is stored in position
([i/290], [k/292]) of the local submatrix LC in
all the 291 nodes for which ry =i mod 2% and
r, = k mod 292,

The ACLAN parallel algorithm that calculates the
matrix multiplication on the hypercube is as follows,

void matrix_product(n, m, I, q2, q1)
long n, m, I; short g2, g1,
{ longi,j, k;
short ¢;
for (i=0;i<n;i++)
for (k=0;k<l; k ++)
LCli][k] := 0;
for (j=0;j<m;j++)
LCli][k] := LC[i(k] + LA[[j]*LB[jI[k];
for (t=q2;t<q2+ql;t++){
R1(neigh[t]) <—— LCJi][k];
LCli][k] := LC[i][k] + R1;}}

R1 is a general purpose register of the nodes. Each
node performs the sequential algorithm to multiply its
local submatrices, after which the resulting partial sums
of a;*by products are added during a round of data
transfers to obtain the final c,.

The complete program that uses the ACLAN algor-
ithm shown above, and which includes input/output
and data distribution and recollection actions, is the
following,

main()
{
/* Input Actions */
input_dimension_of_hypercube(&dim);
NumPrc = 1 << dim; /* Number of Nodes */
input_partition(&q[0], &q[1], &q[2]);
input_dimensions_of_matrices(&N, &M, &L);
mdim[0] = N; mdim[1] = M; mdim[2] = L;
/* Local Dimensions Calculation */
for (i=0;i<3;i+4++)
polli] = 1 << qli];
nmi[i] = mdim[i]/po2[i] + (mdim[i]%po2[i]?1:0

/* Cycli,c distribution of matrix A */
kO =k1=0;

for (p =0; p < NumPrc; p + =po2[2]

LA[0:nml[0]-1][0:nmi[1]-1] <==

A[kO:nml[0]*po2[0]—1:po2[0]][k1:
nmi[1]*pos2[1]—1;po2[1]]
=1:po2[1]{#.(dim—1):q[2] ==
p-(dim=1):¢[2]};

kl=(kl+1==po2[1])?0: k1 +1;

if (k1==0) k0=(kO+1==po2[0]) ? O :

kO + 1;}
/* Cyclic distribution of matrix B */
/* ... Similar to matrix A . .. */

/* Matrix Multiplication */

matrix_product(nml[0], nmi[1], nml[2], q[2], q[1]);
/* Cyclic recollection of matrix C */

kO =kl =0;

for (p0 = 0; p0 < po2[0]; p0 ++)

for (p2 = 0; p2 <po2|2]; p2 ++)

C[k0:nml[0]*po2[0]—1:po2[0]][k1:nmli[2]*po2[2] —1:

po22]|<==

LC[0:nml[0]—1][0:nml[2]—1]

{# == (p0 <<gq[1] + q[2]) + p2};

kl=(kl+1==po2[2])?0: k1l +1;

if (k1==0) k0O=(k0+1==po2[0]) ? 0 :
kO +1;}

/* Output Actions */
output_result_matrix(C);

Note that the current number of nodes of the target
machine is expressed by means of the NumPrc ACLAN
predefined variable.

If we want to execute the above mentioned program
on a sequential computer we need to use the ACLAN-
to-C translator described in section 3.2. Our matrix
multiplication program is translated into the sequential
C code shown in figure 5. In particular, figure 5 (a)
illustrates the C code corresponding to the cyclic distri-
bution of the matrix A, figure 5 (b) shows the C code
associated with the recollection of the matrix C, and
figure 5 (c) shows the code corresponding to the matrix
multiplication routine.

S. CONCLUSIONS

The simulation package ACLE has been developed
with standard C specifications®. Since the only external
routines it requires are a library of standard 1/O and
dynamic memory allocation functions, it is fully portable
to other machines.

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 201

¥20Z I4dy 01 uo 1senb Aq 82059¢/76L/S/€E/e101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

O. G. PLATA et al.

k0= k1 =0;
for (p =0; p < NumPrc; p + =po2[2] |
{ 10— = kO0;

1_=kl;

for (_node_ = 0; _node_ < NumPrc;_node_++)
if (_bitrop_(_node_,(dim — 1),q[2]) = = _bitrop_(p,(dim — 1),q[2]))
for (_i0_ = 0; _i0_ <= (nml[0] — 1); _i0_ ++)
for (_il_ = 0; _il_ <= (nml[1] — 1); _il_ ++){
LA[-node_][-i0_][-i1_] =
A[0_][11];
= (_11 + (po2[1]) > (nmi[1]*po2[1] — 1))?(k1):(_{1— + (po2[1]));
if ([1- == (k1
0= (—10— + (po2[0]) > (nml[O] P02[0] = 1))?(k0):(L0— + (po2[0])):}}
kl=(kl+1==po2[1]) 70 :
if (k1= 0)k0—(k0+1==p02[0])7() kO + 1;}

(a) Cyclic distribution of the matrix A

k0= k1 =0;
for (p0 = 0; p0 < po2[0]; p0 ++)
for (p2 =0; p2 <po2[2]; p2 ++)
{ _node_=0;
—continue_ = 1;
while ('(_node_ == (p0 << g[1] + q[2]) + p2) + p2)&&_continue_){
node = (_node_ + 1) % NumPrec;
if (_node_ ==0) _continue_ — ;}
if (_continue_){
i0=0;
il=0;
for (_I0_ = k0; _I0_ <= (nml[0]*po2[0] — 1); _I0_
= _I0_ + (po2[0]))
for (/1= k1; _l1_ <= (nmi[2]*po2[2] — 1); _I1_
= _1_+ (po2[2]){
C[0_][-/1_] = LC[—node_][—i0_][—i1_];
—il_=(Ll_+ 1> (nmi[2] = 1))?(0):(~il_ + 1);
if (Lil_ == (0)1
i0= (_10_ + 1> (nml[0] — 1))?(0):(=i0_ + 1);
if (_i0_ == (0)){
—node_ = (_node_ + 1) % NumPrec;
while (!(_node_ = = (p0 << q[1] + g[2]) + p2))
—node_ = (_node_ + 1) % NumPrc;}}}}}
kl=(kl1+1==po2[2]) ?20: k1 +1;
if (k1==0)k0=(k0+1==po2[0])?0: kO + 1;}

(b) Cyclic recollection of the matrix C

void matrix_product(n, m, I, q2, q1)

for (i=0;i<n;i++)
for (k=0 k<l; k ++)
{for (—node_ = 0; _node_ < NumPrc; _node_ ++)

LC[_node_][i][k] = 0:}

for (j=0;j<m;j++)

{for (_node_ = 0; _node_ < NumPrc; _node_ ++)
LC[—node_][i][k] = LC[—node_][i][k] + LA[—node_][i][j]* LB[—node_][j][k]; }

for (t=q2;t<q2+ql;t++)

{for (_node_ = 0; _node_ < NumPrc; _node_ ++)
{—neigh_ = _neighbour_(_node_,(short) t);
R1[_neigh_) = LC[—node_][i][k];}}

{for (_node_ = 0; _node_ < NumPrc; _node_++)

LC[-node_][i][k] = LC[-node_][i][k] + R1[—node_];}}}

(c) Matrix multiplication routine

Figure 5. Sequential C code for the matrix multiplication program

202 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

¥20Z I4dy 01 uo 1senb Aq 82059¢/76L/S/€E/e101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

ACLE: A SOFTWARE PACKAGE FOR SIMD COMPUTER SIMULATION

The new structures introduced in ACLAN constitute
a natural extension of standard C to parallel pro-
gramming and are sufficiently general as to make
ACLAN programs largely machine-independent. The
direct programming of local memory and inter-PE data
transfer make ACLAN especially useful in applications
in which local memory capacity or execution time are
critical. Most of the current parallel systems lack an
inherently parallel programming language. Generally,
these systems are programmed with a familiar sequential
language (such as Fortran, C or Pascal) which is helped
by means of a library of special functions that permit
use of the specific parallel features of the machine.
Some typical functions of this library are those which
specify transferences of information between different
nodes or which create or destroy processes. Obviously,
the great difference between the syntactic structures of
sequential languages and the parallel features of the
machine make this programming method hard and
error-prone. A parallel language such as ACLAN,
whose syntactic structures allow a direct expression
of the problem parallelism, eases the programming of
parallel systems since parallel programs can be
expressed in a natural way. One of the main drawbacks
of this new way of programming is that the user is forced
to think in parallel.

Recently, we have implemented ACLAN on the
NCUBE/10 hypercube concurrent computer and have
developed an ACLAN to C translator for it.!>!7 This
implementation allows us to program the NCUBE/10
system as an array processor. Now we are implementing
ACLAN on a transputer network.

REFERENCES

1. C. D. Howe and B. Moxon, How to Program Parallel
Processors. IEEE Spectrum, 24 (9) September, 36-41
(1987).

2. 0. G. Plata, ACLAN, A Parallel Language for Mul-
tiprocessor Systems (in Spanish), Ph.D. Dissertation,
Univ. Santiago de Compostela, Spain, February (1989).

3. B. W. Kernighan and D. M. Ritchie, The C Programming
Language. Prentice Hall, Englewood Cliffs, N.J. (1978).

4. R. H. Perrott, A Language for Array and Vector

10.

11.

12.

13.

14.

15.

16.

17.

Processors. ACM Transactions on Programming Lan-
guages and Systems, 1 (2), October, 177-195 (1979).

. R.H. Perrott, R. W. Lyttle and P. S. Dhillon, The Design

and Implementation of a Pascal-based Language for Array
Processor Architecture. Journal on Parallel and Dis-
tributing Computing, 4 (3), June, 266-287 (1987).

. D. Crookes, P. J. Morrow, P. Milligan, P. L. Kilpatrick

and N. S. Scott, An Array Processing Language for Tran-
sputers Network. Parallel Computing 8 (1-3), August,
141-148 (1988).

. K-C. Li and H. Schwetman, Vector C: A Vector Pro-

cessing Language. Journal of Parallel and Distributed
Computing 2 (2), May, 132-169 (1985).

. G. Paul, VECTRAN and the Proposed Vector/Array

Extensions to ANSI FORTRAN for Scientific and Engin-
eering Computation, in Proc. IBM Conf. Parallel Com-

puters and Scientific Computations Rome, Italy, March,
143-162 (1982).

. A. P. Reeves, Parallel Pascal for Parallel Computers,

Journal of Parallel and Distributed Computing 1 (1),
August, 64-80 (1984).

American National Standards Institute, Fortran 8X Ver-
sion 98 X3J3. New York (1986).

O. G. Plata, F. F. Rivera, A. L. Zapata and I. Benavides,
A Parallel Programming Language for Signal Processing,
in 1989 Int. Mediterranean Electrotechnical Conference,
Lisbon, Portugal, April, 261-264 (1989).

O. G. Plata, F. Argiello, J. D. Bruguera and E. L.
Zapata, An Array Processing Language for Real Time
Programming of Hypercube Concurrent Computers. IEE
1989 Sec. Int. Conf. on Software Engineering for Real Time
Systems, Cirencester, UK, September, 141-155 (1989).
C. L. Seitz, The Cosmic Cube. Communications of the
ACM, 28 (1), January, 22-33 (1985).

K. E. Batcher, Design of a Massively Parallel Computer.
IEEE Transactions on Computers, C-29 (9), September,
836-841 (1980).

E. L. Zapata, F. F. Rivera and O. G. Plata, On the
Partition of Algorithms into Hypercubes. Advances on
Parallel Computing, D. J. Evans, Ed., JAI Press, UK
(1990) (to appear).

T. Johnson and T. Durham, Parallel Processing: the Chal-
lenge of New Computer Architectures. Ovum. Ltd. Press,
London (1987).

O. G. Plata, E. L. Zapata, F. F. Rivera and R. Peskin,
An Array Processing Language for Message-Passing
Hypercubes. Advances on Parallel Computing, D. J.
Evans, Ed., North-Holland, Amsterdam (1990) (to

appear).

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 203

¥20Z I4dy 01 uo 1senb Aq 82059¢/76L/S/€E/e101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

