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1. INTRODUCTION

Data-flow machines are multiprocessors which execute
parallel program graphs rather than sequential
programs. The order of execution of the nodes in the
graph (or instructions) is determined by the availability
of their operands rather than the strict sequencing of
instructions in a von Neumann machine. Consequently
the program statements are executed in a non-deter-
ministic manner, and concurrency is obtained if more
than one node executes at the same time. Figure 1 shows

F=(A*B+C*D)E

Figure 1. A data-flow graph.

a sample data-flow graph for an arithmetic expression
and Fig. 2 shows a model for the hardware required to
execute such data-flow programs. In this hardware, the
program graph is distributed to the processing elements
so that the computation of A*B can proceed at the same
time as C*D. The results of any computation are sent
from the processor which holds the source node to the
processor which holds the destination node. When the
results arrive at the destination processor they wait in
the matching unit until all of the operands for the
destination node are ready before the next result is
computed. Thus the addition is performed when both
A*B and C*D have been computed and division is
computed once the addition has completed.

There are currently two main classifications for data-
flow architectures, static and dynamic. The static scheme
was first proposed by Dennis,”# and has been used by
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Figure 2. Hardware model for the data-flow machine.

various research architectures such as TI’s DDP° and
the LAU architecture.'® The dynamic scheme is used
in Arvind’s research group at MIT,>* at Manchester
University,'? the DDM architecture® and the EDFG
system.'* In the static data-flow model only one token
(or instruction operand) is allowed on a program arc at
any time. In the dynamic model many tokens are
allowed on arcs, and their order is determined by special
tag fields. A good overview of these architectures can
be found in Ref. 15. A data flow machine being built at
Royal Melbourne Institute of Technology around an
architecture originally devised by Egan!® at Manchester
University is a hybrid between the classic static and
dynamic architectures. The hybrid attracts the advan-
tages of both schemes and avoids most of their dis-
advantages.

This paper describes the classic architectures together
with their strengths and weaknesses, and then describes
the hybrid solution. Some simulation results are pre-
sented together with the future plans for the project.

2. DYNAMIC AND STATIC
ARCHITECTURES

In the static data-flow architecture program instructions,
or nodes, execute when all of the operands, or tokens,
appear at their inputs (e.g. two input nodes require two
tokens before the node executes). The ordering of the
tokens on the arcs can be guaranteed by constructing
the data-flow graph so that only one token can exist on
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any input at a time. Because a node can only have one
input waiting there is no advantage in placing the node
on more than one processor, as it cannot execute more
than one computation at the same time. Thus, program
graphs are statically allocated to the real processors,
and the destinations are statically coded in the graph.
Static architectures work well for processing “sets” of
data which are streamed through the graph, because
the data is output in the same order that it is entered.
For any single “data set” the amount of parallelism is
basically limited to the width of the program graph. If
data values are fed back into the graph then the number
of nodes active concurrently may exceed the graph
width. More concurrency can be extracted when multi-
ple data sets are introduced because a processor can start
work on the next piece of data when it has completed a
computation.

The hardware required by the static model is quite
simple. Because an instruction can only have one out-
standing operand, the matching unit only needs to retain
which operand is waiting and the value. When the
other operand arrives the match can occur. The main
disadvantages of the static architectures are that it can
be difficult to construct the graph to guarantee one-
token per arc restriction. The one-token per arc require-
ment can be achieved by balancing the arc lengths in
the program graph and inserting sequencing code in
conditional expressions.? The amount of parallelism in
a static architecture is severely restricted because the
only way to achieve more concurrency than that dictated
by the width of the program graph is to introduce
multiple data sets. Another problem with those
machines which statically allocate the graph to pro-
cessing elements is that because nodes are permanently
assigned to processors, a particular processor may
attract an unequal share of the work load. There is no
possibility of dynamically distributing the work load
across the machine. This problem is not apparent on all
static machines. The parallelism on these machines is
further restricted because a sending node cannot trans-
mit a result until the receiving node is ready to accept
a new token. This has the effect of halving the number
of active processors, because only alternate levels of the
graph can be active at any time. A modified form of the
static architecture has been used in the NEC dataflow
chip. In this machine a small number of tokens may be
queued on the inputs of nodes. The queues solve the
problem of a sending node being unable to compute a
result whilst a destination node is busy. However,
because the queues are quite small, they can overflow
and block computation as in the static scheme.

In the dynamic model every token holds a tag field,
which determines the sequence number of the token.
An instruction may have multiple tokens waiting for
matching on an arc, and they are only removed and the
instruction executed, when the token with the correct
tag value arrives at the other arc. The addition of tags
alone does not increase the concurrency in a data-flow
graph as it is still limited to the width of the graph and
the number of concurrent data sets. However, because
a node can have more than one token waiting at a time,
it may be sensible to allow more than one invocation of
the node to execute at a time, each with a different set
of data. Thus if two sets of tokens arrive for a node in
a dynamic architecture and can match simultaneously

then two processing elements can be occupied. In a
static data-flow machine they would be forced to execute
sequentially. This feature is called loop-unfolding, and
can increase the amount of parallelism in a data-flow
machine significantly above the width of the graph. In
fact, loop unfolding may produce so much parallelism
that it exceeds the number of real processors and much
of the advantage is lost. Loop unfolding also helps to
distribute the work load because a given node may
execute on more than one processor. When a token is
produced the destination processor is calculated dynam-
ically, usually by applying a hashing function to the tag
field. Nodes can only execute if there is a copy of
the graph, or relevant part, held, at the destination
processor. Thus it is necessary to duplicate the program
graph across the processors or a subset of processors.

The addition of tags to tokens makes matching much
more complex and time consuming. Thus, the cost of
the large amounts of parallelism is a much more complex
matching unit, which can increase the cost of each
processing element over the static scheme. The amount
of network traffic may also increase as the token need
to carry tag information. A major disadvantage of the
dynamic model is that data may be output in any order
and must be resorted if ordering is important. This
resorting may add a considerable overhead to the com-
putation. Thus in cases when pipelining is the most
important form of parallelism and there is little loop
unfolding or feedback, as in many real world control
problems, the dynamic architectures have the added
complexities of tagging and untagging, the increased
network traffic and the resorting of data. For example,
each iteration of a loop in a dynamic machine must
include tag generation code, even if the loop has a
data dependency in it that forbids loop unfolding. This
overhead is not present in the static model.

The architecture described in the next section allows
efficient execution of pipelined data sets, without the
disadvantaged of one-token per arc, and the high degree
of parallelism obtained in dynamic schemes, without
the necessity of always tagging data.

3. THE HYBRID ARCHITECTURE
3.1 Combining Static and Dynamic Architectures

The hybrid architecture allows more than one token per
arc by having two different modes of operation. In the
first, tokens may be queued on an arc for a particular
node, and are executed in the order that they were
placed on the queue. If there is a queue of tokens on
one arc of a two input node, and a token arrives at the
other input then the head of the queue is removed and
the node executed. This arrangement is similar to the
classic static architecture, but allows more than one
token per arc by providing queues. The queues must be
large enough for the probability of queue overflow to
be small. Thus, nodes should never be blocked from
transmitting results because a destination queue is full.
In this mode tokens do not carry any tagging infor-
mation. In the second mode, tokens may be tagged
and “heaped” at a particular input until a token of a
matching tag arrives at the other input. This is identical
to the dynamic scheme. In this mode tokens must con-
tain tag values which distinguish the different data sets.
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Furthermore, tokens with the same tag value may be
queued on an arc. Thus, it is possible for a computation
to generate a new tag value and place it on many tokens.
This provides a combination of a queued static model
and the purely dynamic scheme. These combinations

are shown in Fig. 3.
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Figure 3. Hybrid architecture.

The allocation of the graph to the processing elements
is done in two ways. It can either be allocated to pro-
cessors with any given node appearing on only one
processor, or the node can be copied and the copies
allocated to multiple processors. If the machine is exe-
cuting a section of code using the static-queued model
then only one copy is required. In this case the nodes
are allocated to processors using a uniform random
probability distribution. Whilst this may not achieve
optimal graph placement, it is much simpler than cal-
culating optimal or even sub-optimal placements. This
random placement has been shown to perform well,
especially if the graph is large (see the activity plots
later in this paper). If the dynamic tagged scheme is
used it may be necessary to duplicate the graph on many
processors to achieve the required concurrency. When
a token is created as a result of a node firing, the
destination address is calculated by hashing the tag field.
This has the effect of randomly distributing the work
to the processors and balancing the workload. The
allocation scheme is specified by the programmer by the
choice of control constructs when the graph is coded.

Providing both data-flow models achieves the advan-
tages of both. If the programmer wishes to flow “sets”
of data through the graph then no tags will be added to
the tokens. There are a number of advantages with this
approach. First, the cost of maintaining and manipu-
lating tags is removed. Thus, loops which have data
dependencies in them, which prevent loop unfolding,
may be coded without tag generation logic. The queues
preserve the loop ordering even if the data has some
initial tag value when it enters the loop. Second, the
network traffic is reduced because the tag need not
be transmitted. Third, the matching function becomes
relatively easy, and even a simple implementation of
matching store yields predictable, scalable and accept-
able performance. Fourth, unlike the dynamic model,
the data does not need to be resorted when it emerges

from the graph, and may be used directly. Because the
architecture allows more than one token per arc it is
not necessary to balance arc lengths in the graph as in
the pure static case. However, some additional code
may still be necessary to ensure correct sequencing of
conditional expressions. Also no interlocks are nec-
essary between the sending node and the destination
node. The addition of queues allows a sending processor
to compute results and send them even if the destination
processor is busy and has a queue of pending tokens.
A further advantage of the queued static model is that
it makes the implementation of ordered token streams
easier, because the elements of the stream remain in
their intended order.!-!” The implementation of streams
on dynamic machines is much harder because the stream
order can only be maintained by tagging each stream
element with a unique value, and including code which
examines the tag before the stream is processed. Unlike
the static model, the hybrid architecture allows token
tagging and loop unfolding if it is required.

3.2 An Implementation Strategy

The advantages of combining the two conventional
models can be illustrated by considering the techniques
necessary in order to build a matching unit. Two main
tables are required, the hash table and the token table,
as shown in Fig. 4. The token table is used to hold the
tokens until their partners arrive. The hash table is used
to point to various chains of tokens in the token table,
and is large enough to hold one entry for each node of
the graph held in the processor.

I I [

oken info | synonym | next Q[ lastQ ]
I |

L [ [ 1

> I [ ]

opl op2
-

hash table token table

Figure 4. Tables required for the matching unit.

The matching unit interprets the hash table in two
ways. If the incoming token does not contain a dynamic
tag field then the requested node number is used as an
index into the hash table. In this case the hash table
entry points to the head of a queue of tokens for the
particular node for each operand. If there is a chain for
the opposite input of the node, then the head of the list
is removed and the node is executed. If there is not a
chain present, then the incoming token is placed on the
end of a queue for the particular operand, by following
the tail pointer in the token. In this way tokens may be
matched with a fixed cost related to the time required
to read the hash table and add or remove an entry from
the token memory.

If the incoming token contains a tag field then the
hash table cannot be directly accessed. In this case the
tag is hashed against the node number to produce an
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index into the hash table. The head pointer is inter-
preted as a pointer to a chain of synonyms which all
hash to the same entry. A separate queue of synonyms
is searched for the required node and tag field. If a
token with the required node and tag field is found then
it is used as the head of a queue and is consequently
removed. If a synonym is not found, then a new queue
is started as in the static case. The performance of the
retrieval and insertion operations using this scheme is
governed by the effectiveness of the hashing function
and the hash table occupancy. If the table is sparsely
occupied and the hashing function yields a uniform
distribution then the performance is likely to be accept-
able. However, it is difficult to choose a hashing function
which will give predictable performance for different
token loads. Thus the dynamic scheme will almost cer-
tainly perform worse than the static scheme. These costs
have been modelled in the simulations shown in Section
5.

4. CURRENT EXECUTION ENVIRONMENT

The architecture described above is being implemented
and assessed by three different techniques. First, a
discrete even based simulator has been available for
some time and is used to produce some of the simulation
results shown in the next section. The simulator models
a multiprocessor configuration down to the functional
unit level and provides statistics such as the queue sizes,
waiting times, matching store overheads, token traffic,
processor activity, etc. The major problem with the
simulator is that it can only execute small problems
because of the time stretch involved. The simulator
currently executes about 1000 nodes per second on a
small 68000 based workstation.

The second level of support is currently nearing com-
pletion and involves a multiprocessor hardware
implementation of an interpreter for the architecture.!!
This system is constructed from a number of Motorola
68000 based microprocessor boards connected via a high
speed multistage switch. The microprocessors include a
modest amount of memory, hardware queues for hold-
ing pending tokens and a copy of the data-flow inter-
preter. The hardware can be configured in two ways.
The first allows each logical processing element of the
data-flow machine to be constructed from one 68000
board. In this case the emulator uses one 68000 to
perform token matching and node function execution.
The second configuration allows each logical processing
element to be constructed from two 68000 boards, one
performing the token matching functions and the other
performing the node function execution. The second
scheme is applicable when the matching times and the
execution times are the same order. This scheme then
provides a pipelined effect. If the function execution
times dominate then the matching processor becomes
idle and the first configuration gives better hardware
utilization. The current hardware is further described
in.! Based on a prototype processing element, each

processor executes about 12000 node functions per -

second. The complete hardware will have 16 processing
elements, giving a performance of about 200,000 node
functions per second. The 68000 processors are currents
being upgraded to 68020’s with 68881 floating point co-
Processors.

The main advantage of the multiprocessor emulator
over the simulator is that it allows the execution of
larger programs. However, the node execution rate is
still too slow to provide a high speed data-flow processor
competitive with other von Neumann machines. Thus,
the third level of support will be a hardware based
processing element, matching store and structure store.
This stage of the project is still under development.

5. SOME SIMULATION RESULTS

In this section we examine the performance of a few
programs under the hybrid architecture and compare
these to the static and dynamic machine models. The
architecture is simulated taking into account the amount
of network traffic, the varying execution times for indi-
vidual nodes and the time taken to perform a match
operation. The simulations were based on the execution
times expected for the 68020 multiprocessor implemen-
tation of the machine with 128 processing elements. The
floating point computation times are for a 68881 co-
processor. The matching store retrieval times are set for
the performance expected from a well designed hash
table implementation.

A number of performance graphs are generated by
the simulator. Graph 1 shows the number of tokens in
the machine. The top trace shows the total number
of tokens in the communication network and queues
together with those stored in the matching store. Graph
2 shows the fraction of execution time devoted to the
function evaluation, queue read time, queue write time
and matching function. The queue read and write times
indicate the amount of time spent transmitting tokens
between processors. This graph clearly shows the
amount of time spent on the matching process in relation
to the other activities in the data-flow machine. Graph
3 shows the number of elements active at any time. The
bottom trace shows the minimum activity level during
the sampling period and the top trace shows the maxi-
mum activity level during the sampling period. The plot
in the right top corner of the graph sets shows processor
activity plotted against time for each processor in the
system. Each active processor is marked as a black
horizontal line. If the processor is inactive then white
space is shown. The processor number is held on the Y
axis and time along the x axis. This plot is particularly
useful for evaluating the workload distribution algor-
ithm because ‘hot-spots’ show as black areas on the
graph.

The simulation results presented are for the following
programs:

Program Name
Fast Fourier Transform with 32 data sets FFT
Fast Fourier Transform using dynamic tagging

and 32 data sets SFFT

Iterative trapezoidal integration using loop ITR
Trapezoidal integration using single

recursion — dynamic tagging RTR
Iterative trapezoidal integration using double
recursion TR

The program FFT is a simple fast Fourier transform
program which is written as a flow-through graph. Data
is introduced at the top of the graph and the results are
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extracted from the bottom. The program makes use of
queuing on the graph arcs to distinguish different data
sets, thus it is possible to push more than one data set
through the graph. Consequently, providing sufficient
datasets are entered to fill the graph, the amount of
parallelism is determined by the static width of the graph
multiplied by the depth of the graph.

The program SFFT implements the same algorithm
as FFT, but uses shared subgraphs rather than one
large graph. Consequently, the data must be tagged to
separate different data sets which share the same code.
Below we summarize the relative performance of these
two programs:

FFT SFFT

Total Execution Time in
seconds

Time breakdown
Time spent on function

0.037 secs 0.054 secs

evaluation 27% 17%
Time spent writing tokens to

network 22% 23%
Time spent reading tokens

from network 23% 24%
Time spent matching tokens 28% 35%

The relative performance of these two programs dem-
onstrate when the static queued data-flow model is
appropriate. Because the tokens do not need to be
tagged in FFT a simple matching process is used. The
SFFT program uses shared sections of code, and thus
the data must be tagged to distinguish the different
instantiations of the code. The extra network traffic and
more complex matching process, together with a larger
graph (because of the inclusion of tagging operators)
means that the program runs 68% slower than FFT.
The static model with queuing can offer superior per-
formance for programs which are inherently flow-
through in nature. It should be noted that these pro-
grams do not show the cost of resorting the data after
the computation has completed. Also, the mix of two
operand instruction to single operand instructions is not
the same in the two programs. Because SFFT has more
single operand instructions than FFT, fewer instruction
require matching in SFFT, and thus the cost due to
matching is deflated. The combination of these two
factors means that the disparity between SFFT and FFT
execution times should be even larger than shown.

The relative performance of TR, RTR and ITR dem-
onstrate when the tagged dynamic mode is appropriate.
Their performance may be summarized by the following
table:

TR ITR RTR

Total Execution Time in 0.028 0.115 0.324
seconds

Time breakdown

Time spent on function 20% 32% 23%
evaluation

Time spent writing tokens to  25% 25% 25%
network

Time spent reading tokens 26% 26% 26%
from network

Time spent matching tokens 29% 17%  26%

The ITR program implements a trapezoidal inte-
gration on a normal probability distribution function by
iteratively moving from the start point to the end point
of the integration. Because the algorithm is sequential
there is very little parallelism. RTR is the same program
coded using recursion instead of the loop in ITR. This
program contains no more parallelism than ITR, but
has the added cost of the tagging and recursion, and
thus takes much longer to execute. TR, however,
implements the integration by recursively dividing the
interval in half until the interval converges to a single
point. Whilst this program carries the tagging and recur-
sion overheads as RTR, the algorithm is O(log n) and
thus executes much faster than either ITR or RTR.
Also, the amount of parallelism which can be exploited
is very high. These programs demonstrate that the cost
of tagging the data plus the recursion overheads can be
absorbed if a good parallel algorithm is used. It is worth
noting that ITR only needs 16 processors while TR
needs eight times that number. The speedup, however,
is less than five times.

6. CONCLUSION

The architecture has been used to execute a number of
other programs which require both static and dynamic
models. These include object recognition programs
using a laser range finder [16], a robot manipulator
control, digital filter and logic simulation problems.
The hybrid architecture is able to provide an efficient
implementation because it allows both data-flow models
to coexist.

The simulations illustrate that the hybrid architecture
attracts the advantages of both conventional models.
The emulation facility being constructed should allow
much larger programs to be executed and traced, which
will allow the scheme to be applied to some “real world”
problems. In order to determine the effectiveness of
the overall architecture, the project is undertaking a
number of real application studies. These include:

® Using simulated annealing algorithms for optimal
building layout.

® Robot trajectory planning algorithms

® Timetable computation algorithms

® Some experimental expert systems

® High speed digital logic simulation

® Real time computer generated imagery
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