A New Parallel Sorting Algorithm and its Efficient VLSI

Implementation

S. DEY AND P. K. SRIMANI*

Department of Computer Science, Southern lllinois University, Carbondale, IL 62901-4511, USA

In this paper we develop a new parallel algorithm for sorting which has a time complexity of O(log n) and requires
n?/log n processors. The algorithm can be readily mapped on an SIMD mesh connected array of processors which has
all the features of efficient VLSI implementation. The corresponding hardware algorithm maintains the O(Log n)
execution time and has a low O(n) interprocessor communication time.

Received November 1987, revised February 1990

1. INTRODUCTION

The advent of parallel architectures has prompted the
design of numerous parallel algorithms using various
models of computation. Most of these algorithms strike
a tradeoff between the reduction of time complexity
and the number of processors used. However, with the
recent advances in VLSI technology, it has become
technically possible and economically feasible to build
parallel computers with thousands of processors. This
hardware availability has made it possible to design
parallel algorithms cutting down the execution time as
the primary objective and then optimizing the number
of processors as a secondary objective. Also, more
emphasis is recently being placed on designing VLSI
implementable parallel algorithms rather than algor-
ithms using more theoretical models which are not
readily VLSI implementable. And when an algorithm
is to run on a chosen architecture, the total data com-
munication time needed by the algorithm becomes as
equally important a criterion to judge the complexity of
the algorithm as the inherent execution time of the
algorithm.

Because of its practical importance in the field of
computer science, there has been a flurry of research
efforts towards developing parallel algorithms for sort-
ing [7]. The serial tree selection sort algorithm can be
parallelized and executed on a (2n — 1) processor tree
machine in O(n) time.® Various sorting networks have
been proposed which implement Batcher’s odd-even
and bitonic sort algorithms,® illustrative of which is
Stone’s bitonic sorting network with n/2 processors
which requires O(log?n) time to sort n numbers.> These
network sorting algorithms have also been adapted to
the SIMD mesh connected model of computation,
requiring n processors and O(n) comparison and move
steps.” Kumar et al.'’ proposed an improved version of
parallel merging by which n? numbers, initially stored
in the local memories of n? processors organized as an
SIMD mesh connected machine, can be sorted in time
O(n) requiring a smaller proportionality constant than.’
More recently, VLSI implementable sorting networks
have been proposed where sorting is done in O(log n)

* Address for Correspondence: Pradip K. Srimani, Department of
Computer Science, Colorado State University, Ft. Collins, CO 80523,
USA.

time with O(n?) chip area, illustrative of which is the
VLSI network Proposed by Bilardi ez al.'> However, the
above network'? assumes that the words are restricted to
a size of (1 + €)log n (¢ > 0). It is also to be noted that
another O(log n) execution time algorithm was reported
in Ref. 14 which uses O(n log n) processors. But author
in Ref. 14 didn’t consider any implementation aspects
and the algorithm has not been shown to be VLSI
implementable. In fact the implementations described
in Ref. 12 use more or less the same concept as intro-
duced in Ref. 14.

Sorting algorithms have also been proposed for the
SIMD shared memory model. By using the fast merging
technique that he developed, Valiant’ showed that the
merge sort algorithm can be parallelized to execute in
O(log n . loglog n) time using n processors; however,
his comparison model is essentially theoretical and is
not VLSI implementable. Moreover, his model con-
siders only the time taken to perform comparisons,
and all other computational overheads including data
communication time are completely ignored. Hirsch-
berg’s bucket sort algorithm!! sorts n numbers in O(log
n) time using n processors. This algorithm also suffers
from drawbacks. The numbers to be sorted have to be
in the range {0..m — 1}, and to avoid memory contention
problems, m arrays, each of size n, are required. Then,
to accommodate duplicate numbers in the given
sequence, the time and processor requirements of the
algorithm increase to O(k log n) and n'* /¥ respectively,
where k is an arbitrary integer. Moreover, the SIMD
shared memory architecture is not a good candidate for
VLSI implementation, because of unbounded nature of
the memory connections needed.

In this paper, we develop a VLSI implementable
parallel algorithm to sort a set of n given numbers. Our
algorithm has a comparison time complexity of O(log
n) and requires n* [n/log n] processors. It can be readily
mapped on an SIMD mesh connected array of pro-
cessing elements* which has all the features of efficient
VLSI implementation. The hardware algorithm main-
tains the O(log n) execution time and has O(n) inter-
processor communication time.

In section 2, we present our O(log) algorithm along
with an analysis of its time and processor requirements.
In section 3, we map our algorithm on a SIMD mesh
connected array of n by [n/log n] homogenous pro-

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 241

¥20Z I4dy 01 uo 1senb Aq 05159¢/12/S/ee/eIome/|ufwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

S. DEY AND P. K. SRIMANI

cessors. The architecture resembles the Illiac-IV archi-
tecture® minus its end-around connections. It is also to
be noted that the proposed hardware algorithm can be
easily mapped on presently available real-life SIMD
array machines like MPP.'> We analyze the performance
of our hardware algorithm in terms of its execution time
complexity and its interprocessor communication time
complexity. Section 4 concludes the paper.

2. THE PARALLEL ALGORITHM SORT

We assume that the given set of n elements is stored in
an array A. We sort the elements in non-increasing
order and store them in array B. It should be noted that
the proposed algorithm works correctly even in presence
of duplicate elements. We present below the parallel
algorithm SORT which sorts the elements of given array
A in a non-increasing order, where array A may contain
duplicate elements. Throughout this paper, m is used
as a global constant set to the value [n}ljog n].

2.1 Algorithm SORT

Input: Array A of n elements;

Output: Array B, which contains the elements of A
sorted in a non-increasing order.

Data Structures: A, B = array [1..n];

COUNT = array [1..n,1..m];

1. begin

2. for i=1 to n do in parallel

3. begin

4. for k =1 to [log n] do

5. begin

6. x=(k—1).m;

7. for j = (x + 1) to min (n, x + m)

do in parallel
8. if A[i]<A[j] then COUNTJi,
j—x]:=
COUNTVi, j—x] + 1;

9. end;
10. for p =0 to ([log m] — 1) do
11. for k=27 + 1 in steps of 2°*! to m do in

parallel
12. COUNTi, k — 2°]:= COUNT]i, k] +
COUNT(i, k — 2],
13. B[i] :=0;
14. B[COUNTi, 1] + 1] := A[i];
15. end;
16. SCAN;
17. end.
Procedure SCAN;
pl. begin
p2. for p =0 to ([log n] — 1) do
p3. for i = 27 in steps of 2°*!
to (n — 1) do in parallel
p4. for k = (i + 1) to min {n, 27}
do in parallel

pS. if B[k] = 0 then B[k] := BJi];
p6. end;

We assume the existence of a function min(x, y) which
returns the minimum of two elements x and y. We give
below a brief description of the algorithm SORT. Lines

7-8 compare element A[i] with m (<[n/log n]) elements
of array A. Executing the loop 5-9 [log n] times enables
the comparison of A[i] with all the n elements of array

A and, at the end, COUNTi, q] gives the number of

elements which are greater than A[i] among the

elements (A[q], A[g+ m], A[q+2m], ...). Thus,

COUNTi, q] gives the total number, ¢, of elements of

array A which are greater than A[i]. This is done in lines
10-12, and then COUNT[i, 1] contains ¢. Line 14 puts
A[i] in B(t + 1] which is its proper position in a non-
increasing order of the elements of A. This entire pro-
cess is carried out in parallel for all the elements of A
(lines 2-15). However, since there can be more than
one element having the same value, more than one
element may be mapped to the same position of array
B. In general, if there are y elements with value v and
there are ¢ elements which have value greater than v,
then B[t+ 1] is set to v, and B[t+2], B[t+3],...,
B[t +y] remain unchanged (i.e. contain 0). For
instance, all the three elements with value 5 in array A
in Fig. 1 are mapped to B[4] (Fig. 2(a)) since each of
them has 3 elements greater than itself, and B[5] and
B[6] are set to 0. In this example, v is 5, y is 3 and ¢ is

P
81 5131518110011 1501112121
N I N I NS N N N A

L —

Figure 1a. The array A (n = 11).

| | | | | | | | |
llol18g8tolstolol3l21o0l110]l
] | | | I | |] | | | 1
(p=0 Yob Y4 VY A ¥, 4 ¥ 4
Figure 2(a)
| ! | | | | | | | | | |
l10l 8101 St1OLOI 31210111 01
1 L1 | | | | |] 1
(p=1 Yooy h Yoo h ot YA
Figure 2(b)
| | | | | | | | | | | |
lwl8l1 8151010131 21011111
1 1 | |] | | l | | L1
P=2 Voohsd byt
| | | | | | | | | | | |
l1ol 81 8151515131210l 1111
1 | | | | |] | | | |
(p=3) Yoh gy A
| | | | | | | | | | | |
lwol 81815151 513121211111
Jd] L1 1 | 1 | | | | l

Figure 2(c)

Figure 2. This shows the steps of procedure Scan on the array
B. (a) The array B at the start of procedure Scan. (b) The
array B after the first step (after p = 0). (c) The final array
B at the end of procedure Scan. '—>—' shows transfer of
data and its direction.

242 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

W)
o]
=
=3
o
o}
Q
@
Qo
=
o

3

¥20Z Iudy 01 uo 1senb Aq 05159¢/1¥2/S/ee/eIome/|ufwoo/wod dnorolwepeoe//:sdpy

A NEW PARALLEL SORTING ALGORITHM

At this point, the distinct elements of array A have
been arranged in array B in a non-increasing order.
However, the locations B[t +2] to B[t + y] need to be
filled up with the value v from B[t + 1], for any group
of y elements with the same value v. This is exactly
what procedure SCAN does. The operation done on
any chosen pair of elements, B[i] and B[k], is replacing
B[k] by B[i] if B[k] = 0. The pair of elements is chosen
as follows. At the p-th step, B[i] is operated in parallel
with B[i + 1], B[i +2],..., B[z], where z =min (n,
i +27), and this is done in parallel for all values of i =
2, (2r+20%Y),..., (largest value of i does not exceed
n — 1). After procedure SCAN has been executed, B
contains the elements of A sorted in a non-increasing
order.

Example: Fig. 2(a)-(c) trace the steps of procedure
SCAN. Figs. 2(a) and 2(c) show the array B at the
beginning and the end of procedure SCAN respectively.

2.2 Time and Processor requirements of algorithm
SORT

We first analyze the time and number of processors
required by the procedure SCAN. At each step p of the
outer loop, number of possible values of i is [(n — 1)/
2°*17, and for each value of i, maximum number of
possible values of k is 2. Thus at each step p of the
outer loop, the maximum number of distinct com-
putations that need be done is ((n —1)/2°*1)*2r =
[(n —1)/2]. Since all these computations are done in
parallel, [n/2] processors suffice to execute the loop
p3 — pS in unit time. This loop is executed sequentially
[log n] times, and hence procedure SCAN requires [log
n] time units and [n/2] processors.

Now we can analyze the time and processor require-
ments of algorithm SORT. In lines 7-8, an element A[i]
is compared with m elements of array A in unit time
using m processors. To complete comparing A[i] with
all the n elements of A, the above step is repeated
[logn] times. Consequently, the loop 4-9 takes
2 [log2n] time and m/2 processors. Elements of
the i-th row of matrix COUNT, COUNT]Ji, 1] to
COUNTi, m], can be added up in [log m] time, using
m processors (lines 10-12). Thus, an element of array
A is processed and placed in its proper position
in array B in (3 [logn] — [loglogn] +2) time
units using m processors. Since each of the elements of
array A can be processed simultaneously in this way,
lines 2-15 also take (3 [logn] — [loglogn] +2) time
and require n*m processors. Consequently, considering
the time required by procedure SCAN, algorithm SORT
takes (4 [logn] — [loglo% n] +2), or, O(logn) time,
and requires n*m or O(n”/log n) processors.

3. HARDWARE IMPLEMENTATION OF
ALGORITHM SORT

In this section, we map algorithm SORT on a suitable
VLSI architecture, maintaining the O(log n) execution
time and minimizing the interprocessor communication
time. We use an SIMD array of n* [n/logn] homo-
geneous processors with bidirectional interprocessor
communication links forming a mesh, as shown in Fig.
3. The array contains n rows and m (= [n/logn])
columns of processors. For notational convenience, we

3

-

i

Figure 3. Processor Organization for n = 4.

will refer to the j-th processor in the i-th row as P;.
Each processor P; has the following internal registers:
Ay, Xj, Y and Fy.

The processors are required to have the following
instruction set. As in SIMD array processors, each single
instruction is executed in parallel on a set of multiple
data as is mentioned below with each instruction speci-
fication. In the instruction specifications given below,
R,SR and DR are register parameters to specify a
Register, Source Register, and Destination Register
respectively, and these can be any one of the A, X,
Y or F registers of the processors. Similarly, NAME
represents an array parameter.

1. Load-horiz NAME (s,t):
for i = 1 to n do in parallel
for j =0 to (m — 1) do in parallel
if j < (t — 2) then {Y; < NAME[s + j]
Fj<1}
else F; < 0;
This instruction assumes that (¢ — s + 1), the number of
elements of array NAME to be loaded to the Y registers,
is not greater than m, the number of processors available
in each row. For a given value of s and ¢, this instruction
loads NAME[s], NAME[s + 1],..., NAME[t] to the Y
registers of processors Py, Py,..., P;,_;.,, respectively
and sets the F registers of these processors to 1, for
all i, 1si<sn. If m>(t—s+ 1), the Y registers of
processors P;,_ .5, P;,_si3,..., P;,, are unaffected,
and their F registers are set to 0, for 1 <i<n.
2. Load-vert NAME: X;<—NAME[i]; 1=i=<n,
l1=j=m;
This instruction loads NAMEJi] to the X register of
processor Py, l=si=n,1<j=m.
3.Clear R: R;j«<0,1=i=n,1=sj=m;
This instruction clears the contents of the specified
register R of all processors P, 1 =i<n,1=<j=m.
4. Compare: if X;<Y; then Y;<1 else Y; <0,
l=si=snl=sj=m;
The contents of X and Y registers are compared. If the
content of X is less than Y, then the Y register is set to
1, otherwise it is set to 0. This is done forall 1 =i<n,
l=sj=m.
5. Equal: if F;=1 then {if X; <>Y, then F;< 0},
l=si=n1=j=m;
If the register F is 1, then it is made 0 only if the contents
of X and Y registers are not equal, for all i, j.
6. Transfer (DR, SR): DR; < SR;, 1=i=n,
l=j=m;
This instruction transfers the contents of the specified
source register SR to the specified destination register
DR, in all the processors Pjforl=i=n,1=j=m;

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 243

¥20Z I4dy 01 uo 1senb Aq 05159¢/12/S/ee/eIome/|ufwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

S. DEY AND P. K. SRIMANI

7. Cond-Transfer (DR, SR): if F; = 1 then DR; < SR
l=si=snl1=sj=m;

If register Fis 1, then the contents of the specified source
register SR is transferred to the specified destination
register DR, in all the processors Py, for 1=i=n,
l=j=m.

8. Move-horiz (R, q):{R; <R
l=j=gq,

Foralli,jsuchthat1 =i =<nand 1 =j =g, this instruc-
tion moves the contents of the specified register R of
processor P; ;, , to the register R of P and then sets F;
to 1. Note that whenever this instruction is used, we
will have 2g = m. It is also to be noted that the execution
time of this instruction is g time units since any value
has to move via g processors to reach the destination
and then all the moves for different values of i and j are
done in parallel.
9. Move (R, q, j):
do in parallel

i

ij+q» Fl/(_l}v 1Si5n7

for i = g in steps of 2q to (n — 1)

Fx,/‘_--~ Tl Livyy ij >
where x = min (i + ¢, n);

For a given value of j, the content of the R register of
P is stored in the R registers of each of the processors
Pii1js Pivajs-- ., Py j, where x = min (i + g, n), and the
F registers of these processors are also set to 1. This is
done in parallel for i = g, 3¢, 5q,. .. etc. (largest value
of i should not exceed n — 1).

10. Add R: if F;=1 then Aj<—A;j+R;, 1=i=n,
l=j=m;

If register F is 1, then Register A is set to the sum of
the A register and the specified register R, for all i, 7
l=si=nl=sj=m

11. Inc: Aj<A;+1,1=si=n1=<j=m;

The contents of the A registers of all the processors P;
are incremented by 1, for 1 =i<n, 1<j<=m.

12. Storel (NAME, q): NAME[i] < X,;,, 1 <i<n;
This instruction stores the contents of the X registers of
the g-th column of processors in the corresponding
locations of the array NAME.

13. Store2 (NAME, q): NAME[A,)] < X,,, 1 <i=<n;
Here, the contents of the X register of processor Py is
stored in NAME[A,,]. This is done in parallel for all the
processors P, 1 =1 =n, for a given value of q.

Note that more than one processor may want to store
data simultaneously in the same location, say when
Ay ,=Ap, and il = 2. However, this instruction is
used in the following algorithm in such a way that
whenever more than one processor want to store in the
same location, all of them want to store the same value.
This is easily resolved by using a memory arbiter, allow-
ing arbitrarily one of these processors to write and
aborting the requests of the rest. Consequently, the
time required by this instruction is constant.

Having described the instruction set required by the
processing elements of the architecture, we now present
a hardware algorithm, which is, indeed, a mapping of
algorithm SORT on the SIMD mesh connected array
architecture. The set of n elements is initially stored in
the array AR1, and at the end of the algorithm, AR2
contains the elements sorted in a non-increasing order.
That is, arrays AR1 and AR2 correspond to arrays A
and B of algorithm SORT.

3.1 The Hardware Algorithm H-SORT:

0. begin

1. Clear X;

2. Storel (AR2, 1);

3. Load-vert ARI;

4. Clear A;

5. fork=1,m+1,2m+1,3m+1,...,

([log n] =1)*m + 1 do

6. begin

7. Load-horiz AR1[k, min(m, k + m — 1)]
8. Compare;

9. AddY;
10. end;
11. FIND-COUNT;
12. Inc;

13. Store2 (AR2, 1);
14. Load-vert AR2;

15. H-SCAN;
16. Storel (AR2, 1)
17. end.

Procedure FIND-COUNT;
la. for p = [m/2], [m/4], [m/8],..., 1 do

1b. begin

lc. Clear F;

1d. Transfer (Y, A);
le. Move-horiz (Y, p);
1f. AddY

1g. end;

Procedure H-SCAN;
2a. for p =2°,2',22,23,. ... 2(ken -1 go

2b. begin

2c. Clear F;

2d. Clear Y;

2e. Transfer (A, X);

2f. Move (A, p, 1);

2g. Equal;

2h. Cond-Transfer (X, A)
2i. end;

3.2 Description of algorithm H-SORT

We give below an informal description of algorithm H-
SORT. At first, the array AR?2 is initialized to 0 (lines
1-2). The elements of given array AR1 are loaded in
such a way that the X registers of all the m processors
of the i-th row of the processor array contain AR1[i],
1 =i=n (line 3). At the p-th iteration of the loop 5-
10, m elements of array AR2, AR2[(p — 1)*m + 1] thru
AR2[p*m], are loaded onto the m Y registers of the
i-th row, compared with the corresponding X registers
(i.e. ARI1[i]), and register Aj is incremented if X;; > Y,
(i.e. ARI1[i]>ARI[(p — 1)*m +j]), for 1=i=<n.
However, at the last step ([log n]-th step), less than m
elements may be left to be compared with AR1][i], and
consequently, the Add operation at line 9 is not executed
for all the processors. After execution of the loop 5-10
[log n] times, A; stores the same value as COUNTi,
J] does after execution of the loop 4-9 of algorithm
SORT. Thus, Aj, gives the total number, ¢, of elements
of array AR1 which are greater than ARI1[{], for
1 =i=n. This is done by procedure FIND-COUNT,
and after its execution A;, has this value ¢, for 1 < i < n.
Lines 12-13 perform the action of line 14 of algorithm

244 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

¥20Z I4dy 01 uo 1senb Aq 05159¢/12/S/ee/eIome/|ufwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

A NEW PARALLEL SORTING ALGORITHM

SORT, storing the distinct elements of AR1 in a non-
increasing order in the array AR2.

However, at this point, the duplicate elements should
also be placed in their proper places in the array AR2.
This is done by procedure H-SCAN which exactly simu-
lates the actions of procedure SCAN. Lines 2g-2h,
together with line 2d, simulate the action of line p5 of
procedure SCAN. It should be noted that at each step
of the for loop of procedure H-SCAN, the F registers
are cleared to prevent certain processors from executing
the Equal instruction in line 2f. Also, the propagation
of the data elements is done in such a way that at any
instant of time any communication link between any two
procesors need not pass more than one data element.
Hence, data from all the registers A;, for specified values
of i, can be routed to their destinations in parallel
without any data conflict and ensuring minimal com-
munication time. After [log n] sequential executions of
the loop 2b-2i of procedure H-SCAN, X, through X,
contain the elements of the given array AR1 such that
Xu=X;=...=X,,. Finally, line 16 stores the
elements X, through X, to the locations AR2[1] thru
Ar2[n]. Consequently, at the end of the algorithm H-
SORT, AR?2 contains the elements of the given array
ARI sorted in a non-increasing order.

3.3 Time Analaysis of Algorithm H-SORT

We analyze below the execution time as well as the
communication time required by the hardware algor-
ithm HKL. Let ¢, be the execution time of the Clear,
Compare, Equal, Add, Inc and Transfer instructions,
and let ¢, be the memory access time for the Load/Store
type instructions. Also, let ¢, be the data communication
time between any two adjacent processors. Then the
time required to execute the Move (R, q, j) and Move-
horiz (R, q) instructions is q.t, each.

We first compute the time required to execute pro-
cedure FIND-COUNT. Lines Ic, 1d and 1f require ¢,
time each, while line le requires p.t, time. Thus a single
execution of the loop 1b-1g requires (3¢, + p.t,) time,
and this loop is executed [log m] times. Consequently,
the time taken by procedure FIND-COUNT is 3 [log
ml.t,+ ([m/2] + [m/4] +...+1).t,, or, 3([log
m] .t,) + (m + log m).t, at maximum, where m = [n/
logn].

Next, we analyze the time required by the procedure
H-SCAN. Since lines 2c, 2d, 2e, 2g and 2h take ¢, time
each, and line 2f takes p-t, time, the total time taken by
the procedure is S [log n] .t, + 2(2°+2' + 22 +... +
2(Moen =Dy ¢ or, 5 [log n] .t, + 208 4,

We are now ready to analyze the time complexity of
algorithm H-SORT. Line 7 takes ¢, time and lines 8 and
9 take t, time each. The loop 5-10, which is executed
[log n] times, requires 2 [log n] .t, + [log n] .t, time.
Lines 2, 3, 13, 14 and 16 takes ¢, time each, and lines 1,
4 and 12 take f, time each. Considering the times
required by the procedures FIND-COUNT and SCAN,
the total time required by algorithm H-SORT is
S+ log nl. t,+ (3 +8log n] — 3 [loglog
nl) .t + ([n/log n] + 278" + [log n] — [loglog n]).t,.
Consequently, the execution time of the algorithm, as
given by the coefficients of ¢,, is O(log n), and the
interprocessor communication time, as given by the
coefficient of ¢,, is O(n).

It is to be noted that the this timing analysis is done
without assuming any particular ordering between
comparison-exchange time (so called execution time
of the algorithm) and the data communication time
between processors. Since the former has an O(log n)
complexity and the latter has an O(n) complexity, in
any VLSI implementation the communication time will
eventually dominate over the comparison-exchange
time as the number of elements, »n, grows. Hence from
user point of view for large n the limiting factor is the
propagation delay down the wires and not the latency
of the circuit elements.

4. CONCLUSION

We have described an O(log n) parallel algorithm to
sort a given set of n elements. We have also shown how
our algorithm can be easily mapped on an SIMD mesh
connected array of n*[n/log n] homogenous
processors. The execution time complexity of the equiv-
alent hardware algorithm is O(log n) and the inter-
processor communication time complexity is O(n). The
execution time complexity of O(log n) of our algorithm
is better than the time complexities of parallel sorting
algorithms proposed by Valiant,”> Hirschberg,!! Stone®
and Bentley and Kung.® In terms of execution time
complexity, our algorithm compares favorably even
with sorting algorithms which have used the SIMD-
mesh-connected model of parallel computation, like
Refs. 9 and 10, though they have a better com-
munication time complexity. Also, when compared to
algorithms which achieve the same O(log n) comparison
time complexity, our algorithm has the advantage of
having a better AT? (Ref. 1) value — O(n’log n) as
compared to O(n’log?n) of Ref. 12 and our algorithm
does not require the keys to be restricted to a size of
O(log n) as in Ref. 12. Moreover, the simplicity of the
underlying network topology required by our algorithm
makes mapping of the corresponding hardware algor-
ithm to existing array processors, like Illiac-IV, and
reconfigurable architectures, very easy.

We also want to make two observations before we
conclude. By VLSI implementation of an algorithm
we have meant in this paper implementation of the
algorithm on an architecture that consists of regular
interconnection of identical processing elements (PE’s).
The processing elements are simple devices capable of
doing a few simple operations and the empbhasis is on
the fact that all processing elements are identical. And
since the interconnection pattern among these pro-
cessors is regular, it will be possible to design chips or
wafers for the entire architecture at least for moderate
values of n with present day state of the art of
technology. On the other hand it is also possible to view
the architecture as interconnection of processors at the
board level constructed from chip components. Sec-
ondly we have used the term ‘SIMD machine’ in the
normally used sense of the term, i.e., a single instruction
is broadcast to all the PE’s simultaneously and the design
is orthogonally connected bidirectional with point-to-
point connections. This implies a central program store
and removes the need for a stored program at each PE
(Fig. 3 does not show the central program store and the
associated connections). The central program broad-
casts the same instruction to all the PE’s but depending

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 245

¥20Z I4dy 01 uo 1senb Aq 05159¢/12/S/ee/eIome/|ufwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

S. DEY AND P. K. SRIMANI

on different local data in the PE’s the results are
different; this is particularly true for the summation
and scan operations. The instruction set has been so
designed to depend on the actual values of the operands
at execution time and to do different things on different
data. It is also to be noted that the same central program
may be made responsible for initial loading of data to
all the processors and hence there is no need of global
memory connections for the load-store instructions. As
usual, we have not considered the time needed for
loading and storing in our analysis of the time com-
plexity of the algorithm (since they are not part of the
algorithm). Also if that is done by the central program,
that will mean only a constant time difference.

Our approach in developing the parallel algorithm
illustrates the difference between philosophies of
designing efficient sequential and parallel algorithms. It
may be noted here that sequential version of the pro-
posed algorithm will be very time-inefficient due to
the presence of many redundant operations. However,
redundant operations are sometimes welcome in design-
ing parallel algorithms, especially when the aim is to
reduce execution time at the cost of more processing
elements.

ACKNOWLEDGEMENT

The authors are grateful to the anonymous referees
for their detailed comments which greatly helped to
improve the clarity of presentations.

REFERENCES

1. C. D. Thompson, A complexity theory for VLSI, Ph.D.
Dissertation, Dept. of Comp. Sc., CMU (1980).

2. L. Valiant, Parallelism in comparison problems, SIAM J.
Comput., 4 (3), 348-355 (1975).

3. G. H. Barnes, The Illiac-IV computer, IEEE Trans. on
Comp., C-17, 746-757 (1977).

4. N. J. Flynn, Very high speed computing systems, Proc.
IEEE, 54 (12), 1901-1909 (1966).

5. H. S. Stone, Parallel processing with the perfect shuffle,
IEEE Trans. on Comp., C-20 (2), 153-161 (1971).

6. J. L. Bentley and H. T. Kung, A tree machine for search-
ing problems, Proc. of the 1979 Int. Conf. on Parallel
Processing, New York, pp. 257-268.

7. D. Bitton et al., A taxonomy on parallel sorting, ACM
Comp. Surveys, 16 (3), 287-318 (1984).

8. K. E. Batcher, Sorting networks and their applications,
Proc. of the 1968 Spring Joint Comput. Conf., Atlantic
City, N.J., 32, AFIPS Press, Reston, Va., pp. 307-314.

9. C. D. Thompson and H. T. Kung, Sorting on a mesh
connected parallel computer, Comm. ACM, 20 (4), 263
271 (1979).

10. M. Kumar and D. S. Hirschberg, An efficient implemen-
tation of Batcher’s odd-even merge algorithm and its
application in parallel sorting schemes, IEEE Trans. on
Comp., C-32 (3), 254-264 (1983).

11. D. S. Hirschberg, Fast parallel sorting algorithms, Comm.
ACM, 21 (8), 657666 (1978).

12. G. Bilardi and F. P. Preparata, A minimum area VLSI
network for O(log n) time sorting, /[EEE Trans. on Comp.,
C-34 (4), 336-343 (1985).

13. K. E. Batcher, Design of a massively parallel processor,
IEEE Trans. Comput., C-29, 836-840 (1980).

14. F. P. Preparata, New parallel sorting schemes, IEEE
Trans. Comput., C-27, 669-673 (1978).

Announcements

22—25 OCTOBER 1990

JERUSALEM, ISRAEL

The 5th Jerusalem Conference on Information
Technology (JCIT)
The Technologies of the 90’s

The 5th Jerusalem Conference on Infor-
mation Technology (JCIT) will take place on
22-25 October 1990. Like its four pre-
decessors in 1971, 1974, 1978 and 1984, the
conference will cover a broad range of topics
on computer technology and applications,
and will also explore the economics and man-
agement of the information industry. The
emphasis will be on the technologies of the
90’s.

JCIT is an international conference whose
goals are to provide a broad based forum for
the presentation of achievements and inno-
vative ideas in the various areas of infor-
mation technology. More than 40 countries
were represented at the previous JCITs and
an even larger participation is expected at
JCIT-5. An attendance of over 3,000 from
Israel and 600 from abroad, is anticipated.

The conference will provide an inter-
disciplinary environment for computer scien-
tists, engineers, users and managers to
exchange views and ideas, and discuss their
likely impact on the information systems of

the next decade.

The technical program will consist of
papers by prominent invited speakers, sub-
mitted papers, panel discussions and exhi-
bitions covering the state of the art.

Opportunities for the participants to
become acquainted with the achievements of
Israel as a fast developing country in the
computer and related fields will be made
available by means of an extensive inter-
national exhibit of computer hardware and
software products displaying new trends in
information technology. To this end, JCIT
will be held in conjunction with the 25th
National Conference of the Information Pro-
cessing Association of Israel, and the 21st
National Conference of the Israeli System
Analyst Association.

Conference Topics

Technology: Software and Hardware
Foundation of Computer Science
Computer Architecture
Hardware Design

Distributed Systems

Networks and Communications
Data Bases

Software Engineering

Operating Systems

Logic Programming

Logic of Programs

Reliability and Performance

246 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

Applications

Artificial Intelligence

Natural Language Processing

Computer Assisted Instruction

Graphics

Vision

Computers in Medicine

Computer Aided Design and Manufacturing
Office Automation

1. Conference chairpersons:

Y. Maor, IBM, Tel-Aviv, Israel.

A. Peled, IBM T.J. Watson Research
Center, Yorktown Hts., N.Y. USA.

2. Organizing committee chairpersons:

D.Z. Mittwoch, NCR, Tel-Aviv, Israel.

M. Gottlib, Bar-Ilan University, Ramat Gan,
Israel.

3. Program committee chairpersons:

I. Borovits, Tel-Aviv University, Tel-Aviv,
Israel.

Z. Manna, Stanford University, Palo Alto,
Calif. USA.

A. Pnueli, Weizmann Institute of Science,
Rehovot, Israel.

Secretariat:
Information Processing Association of Israel,
Kfar Hamacabia Ramat-Gan 52109, Israel.

¥20Z I4dy 01 uo 1senb Aq 05159¢/12/S/ee/eIome/|ufwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

