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This paper introduces, in a stepwise refinement manner, a new systolic array for solving simultaneous linear equations
AX = B, where A is an n x n matrix and B is an n x m matrix. Instead of using conventional matrix triangularisation,
our design is based on a generalised Gauss—Jordan elimination procedure. First A is transformed into a permutation
matrix P and B is transformed into a matrix Q. Tken X is computed by multiplying P" and Q. These two stages of
computation are tightly pipelined to form an integrated systolic array which is capable of solving the simultaneous
linear equations in just 6n+m— 2 time steps. This systolic array achieves maximum data pipelining rate and its

computation time, in a sense, is optimal.
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1. INTRODUCTION

The evolution of very large scale integration (VLSI)
technology has promoted a great deal of effort in
designing special-purpose systems. Kung! 2® advocated
the systolic concept for designing specialised computing
arrays to handle compute-bound problems. These arrays
generally consist of a regular array of simple and
identical processing elements (PEs) in which data are
transmitted locally and operated on rhythmically. The
simplicity and regularity of the systolic arrays render
them suitable for VLSI implementation. High perform-
ance is achieved by the concurrent use of a large amount
of PEs in the arrays.

The purpose of this paper is to introduce a very
efficient systolic array for solving simultaneous linear
equations. Kant and Kimura® showed that the solution of
a system of # linear equations Ax = b can be obtained in
O(n) steps using an array of mesh-connected PEs. But
their algorithm requires that the coefficient matrix 4 be
strongly non-singular, namely every square block of A4
must be non-singular. Kung and Leiserson® presented an
array of hexagonally connected PEs to do the LU-
decomposition of 4. The two resulting triangular systems
Ly =b and Ux =y then are solved on an array of
linearly connected PEs. These three stages of com-
putation use 10n time steps to produce the solution.
Since many non-singular matrices are not LU-decom-
posable, the use of their design is very limited. Bojanczyk,
Brent and Kung’® later presented a systolic array to
triangularise non-singular matrix 4 via Givens transfor-
mations, and also used a linearly connected array to
solve the resulting triangular system. Although the total
number of time steps is only 6n, each of the first 3n time
steps must include a square root operation which is not
only time consuming but also hardware demanding.
Moreover, due to the different data pipelining rates and
I/O patterns among the stages of computation, con-
siderable extra time is needed for the inter-module
communications. Several other recent designs for solving
system of linear equations also incur these problems.®

Lin and Wu,” based on a generalisation of the well-
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known Gauss—Jordan elimination procedure, designed an
integrated systolic array to solve the simultaneous linear
equations AX = B in 8n+m—4 time steps, where m is
the column number of B. There is no condition imposed
on A and the existence and uniqueness of solution can be
detected during the computation. We noticed that the
data in this systolic array are not tightly pipelined, or
more precisely, every two consecutive data in the data
streams are separated by an empty step. This observation
motivated us to search for a better or even optimal
design.

In this paper, we shall present a new systolic array to
reduce the number of computation steps to 6n+m—2
and show that this is actually optimal when the
generalised Gauss-Jordan elimination procedure is used.
The way of designing this new systolic array can be
briefly outlined as follows. First, we write down a
sequential algorithm for the generalised Gauss—Jordan
elimination procedure and model it as computation
activities on an abstract index set.® ® From the indexed
computations, we identify the data dependencies and
represent them as a three-dimensional data dependence
graph. In order to project this graph into a regularly
operated two-dimensional array in more directions for
more design alternatives, the graph is modified according
to a normalisation principle introduced in Ref. 7. Then a
proper direction is chosen for projection. The resulting
design turns out to be a less constrained semisystolic
array which allows zero-delay interconnections.!’ Finally
a bisection retiming rule’ is applied to make all
interconnection delays positive, i.e. temporally local,
thereby transforming the semisystolic array into the
desired systolic array.

An important property of the array is its ‘unidirec-
tional’ data flow, i.e. no looping of data flow. Because of
this, both fault-tolerance and two-level pipelining tech-
niques can be naturally applied to the array to increase
its dependability and system throughput.’> When the
problem size exceeds the array size, partitioning methods
with either off-array queues® or on-array local memories*?
can be adopted. Otherwise, the array still can be extended
(rescaled) to fit the problem size due to the uniformity of
the PEs.
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DESIGN OF SIMULTANEOUS LINEAR EQUATIONS

2. GENERALISED GAUSS-JORDAN
ELIMINATION AND DATA DEPENDENCE
GRAPH

Consider the solving of the simultaneous linear equations
AX = B, where A is an nxn matrix and B is an n xm
matrix. According to a generalisation of the Gauss—
Jordan elimination procedure, which will be formally
described shortly, 4 can be transformed by a sequence of
elementary row operations into a matrix P in which the
first non-zero element of each row is 1 and the column of
that element contains no other non-zero element. In the
meantime, B is also transformed into a matrix Q by the
same sequence of row operations. If 4 is non-singular,
then P turns out to be a permutation matrix, i.e. in every
row and every column of P there is exactly one element
with value 1 and all the others are 0. Since PX = Q and
P! = P7T (the transpose of P), X = P"Q. Following
is the generalised Gauss—Jordan elimination procedure
for computing P and Q:

for k:=1to ndo
begin (* search for the first non-zero a,,, in row k of A and
divide row k of [A| B] by a,, *)

find: = false;
forj:=1ton+mdo
begin

if find then [A| B],,:= [4]| B,/ a;,
else if j < » and a,; #+ 0 then
begin p: =, a,,.= 1, find: = true end
end;
for i:= 1 to n except k do
(* subtract row k times a;, from row i of [A| B] *)
forj:=1ton+mdo
begin (A | Bl,;:= [4]| B];—a,,
end. (* k-loop *)

We can model the computation of this procedure as
activities on the index set {(i,j,k)|1 <i<n, 1 <j<
n+m, 1<k<n}. In order to conceive the ‘data
movements’, we need some variables to carry the data
objects all over the index points:

* [A]| B],; end

PV first non-zero element carried inside row k.
p: position of first non-zero element carried to other
rows.
AB: elements of [4]| B].
RK: row k carried to other rows.
AL: multiplication factor a,, carried inside row i (+
k).

With the help of these data object carriers, we
now rewrite the procedure as the following recursion
equations:

For1<ig<n 1<j<n+m, 1 <k<n,
(* Propagation of first non-zero element inside row k *)
PV(i,jk)=i=k—> j=0-0

j<nand PV(i,j—1,k) =0
— AB(i,j,k—1)
otherwise — PV(ij—1,k)
i*xk-> 0

(* Propagation of first non-zero element to other rows *)
pi,j,k)=i=k— PV(i,j—1,k) = 0 > PV(i,j, k)
’ PV(i,j—1,k) £ 0-0
i<k- p(i+1,j,k)
i>k— pi—1,j,k)

(* Updating of elements of [A| B] *)
AB(i,j,k)=k=0->j<n-—a,;
j>n-b,,_,
i=k—-PV(i,j—1,k) =0 and
AB(@,j,k—1) £ 0> 1
PV(i,j—1,k) £ 0—
AB(i,j,k—1)/PV(i,j—1,k)
otherwise — 0
i*+k-p@jk)+0->
AB(i,j,k—1)— AL(i,j, k) RK(i,j, k)
otherwise > AB(i,j, k—1)

(* Propagation of row k to other rows *)

RK(i,j, k) = i =k — AB(,j, k)
i<k->RK(@i+1,j,k)
i>k—->RK(i—1,j,k)

(* Propagation of multiplication factor inside row i + k *)
AL(Gi,j,k) =i=k or j=0 or p(i,j,k) =0 —0
AL(i,j—1,k) = 0 and p(i,j, k) + 0 —
AB(i,j,k—1)
otherwise - AL(i,j— 1, k)

If the computation at index point (i, , k) depends on
the outcome of computation at index point (i’,/, k"), we
use the vector (i—i’,j—j’,k—k’)" to represent the data
dependency. From the above recursion equations, all the
data dependencies can easily be identified and represented
as a three-dimensional data dependence graph as shown
in Fig. 1 with different i_j planes drawn separately. Not
drawn are the dependence vectors in the k direction that
run from (i, j, k — 1) to (i, j, k). This graph can be projected
into a regularly operated (n+m) x (2n—1) array of PEs
in the direction of (1,0, 1)7, but the resulting design is not
what we want because of its poor utilisation of the PEs,
only half of them are used at any time step.

(k=1) (k=2) (k=3)
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Figure 1. Data dependence graph of the generalised Gauss—
Jordan elimination procedure for n = 3, m = 2.

3. MODIFIED DATA DEPENDENCE
GRAPH

In the plane k=1 of the data dependence graph,
variables p(1,j,1) and RK(l,/,1) are propagated all in
one direction to update variables 4B(1,j,1). But when
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Figure 2. Revising dependencies.
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Figure 3. Modified dependence graph.

we go to the next plane k = 2, the variables p(2, /,2) and
RK(2,j,2) are now propagated in two directions. Suppose
we ‘globally’ move the values AB(1,j,1) to the index
points (n+1,/,2), update AB(1,j,2) there, as illustrated
in Fig. 2(a), unidirectional propagations of p(2,/,2) and
RK(2,/,2) will be sufficient and the index points (2, , 2),
1 <j < n+m,can beerased. In fact, such a ‘ global’ move
can be ‘localised’ as follows. In plane k = 1, let AB(1,},
1) move along with p(1,/, 1) and RK(1,}, 1), move further
to index point (n+1,j, 1) and then move down to (n+1,
J»2), as illustrated in Fig. 2(b). This brings new local
dependencies from (n,j, 1) to (n+1,/, 1) and from (n+1,
J»1) to (n+1,J,2), however the global dependencies are
eliminated. The same modification process should be
repeated for the planes k = 2,3, ...,n.

The above modification of the data dependence graph
leads to the following recursion equations:

Forl <k<sn k<i<n+k, 1 <j<n+m,
(* Propagation of first non-zero element inside row k *)
PV(i,jk)y=i=k—> j=0-0

j<nand PV(i,j—1,k)=0—

AB(i,j k—1)
otherwise - PV(i,.J—1,k)
i+k—-0

(* Propagation of first non-zero element to other rows *)
plij k) =i=k— PV(i,j—1,k) = 0— PV(ij, k)
PVi,j—1,k)£0-0
i>k— pli—1,j,k)
(* Updating of elements in [A| B] *)
AB(i,j k) =k =0—>j<n—*a,.}.
j >hn- bi.jAn
i=k—- PV(ij—1,k) =0 and
AB(i,jk—1) =0 |
PV(i,j—1,k)=0—
AB(i,j.k—1)/PV(i,j—1,k)
otherwise — 0
i = k+n— RK(, k)
i+ k- pli,jk)+0— AB(i,j,k—1)
—AL(i,j, k) * RK(i, j, k)
otherwise - AB(i,j, k—1)
(* Propagation of row k to other rows *)
RK(i,j,k) = i =k — AB(i,j, k)
i>k— RK(i—1,j,k)

(* Propagation of multiplication factor inside row i + k *)
AL(i,jk)y=i=k orj=0or p(i,j,k)=0-0
AL(i,j—1,k) =0 and p(i,j. k) £ 0
— AB(i,j.k—1)
otherwise - AL(i,j— 1, k)
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Figure 4. Semisystolic array for computing P and Q.

The new data dependence graph derived from the
recursion equations is shown in Fig. 3. Since ‘i = k” and
‘i = k+n’ are the conditions to control various functions
applied on the data, we add an additional variable ¢ to
carry control signals from index point (k,/, k) to index
point (k+1,j,k+ 1), as partially indicated by the dotted
arrows in the graph. The effect of ¢ will become clear
when we map this data/control dependence graph into an
array.

4. SEMISYSTOLIC ARRAY FOR SOLVING
SIMULTANEOUS LINEAR EQUATIONS

Now we have a dependence graph which can be projected
into a two-dimensional regular array in many directions.
For example, if (1,0,1)" is selected as the projection
direction, we will get the design presented in Ref. 7. To
achieve maximum data pipelining rate, we project the
graph in the direction of (1,0,0)” and obtain a
semisystolic array as shown in Fig. 4. The function of
PE, which can be naturally deduced from the details of
recursion equations, is also given there. Note that the

delays on the interconnections are so assigned due to the
default time-schedule on the dependence graph, in other
words, all computations in the vertical plane i = ¢ are
executed at the same time step ¢.

The effect of control variable ¢ is essentially the key to
understand how the whole procedure is executed on the
semisystolic array. Each row of c-values moves down
through the array one row of PEs per time step. The kth
row of [4 | B] (maybe partially updated already) will meet
the row of 1's in the kth row of PEs at kth time step due
to the input sequencing and the delays on the c-values.
This kth row will stay there for n steps until another row
of 1’s comes in. During this period of time, all the other
rows of [A4| B] will pass by and do the elementary row
operations with respect to the kth row. Let us illustrate
the data flows of the semisystolic array by a sequence of
snapshots as shown in Fig. 5. The superscripts indicate
how many times of row operations have been applied to
the matrix elements. The first row of [P| Q] comes out
first, then the second row, and then the third row. This
is the right order we need to multiply P” and Q in the
next stage of computation.
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Figure 5. Snapshots of the semisystolic array for computing P
and Q.

Because of the special feature of permutation matrix
P, the following simple procedure can be used to multiply
P" and Q:

for k:=1to ndo
fori:=1tondo
for j:=1to mdo
if p,, = 1 then x,;:= ¢,/

We locate another n x m rectangular array of PEs below
the right part of the previously designed array to hold the

values of X. In step n+k+1, | <k <n, row k of P
moves in parallel through the array from the left and row
k of Q moves in parallel through the array from the top.
If a value of Q meets a value | of Pin a PE, it stays there
as the final result of X. The entire structure of semisystolic
array for solving simultaneous linear equations is now
completed and depicted in Fig. 6.

5. THE PROPOSED SYSTOLIC ARRAY

Since a temporally local systolic array does not allow
zero-delays on the interconnections, we have to make all
delays positive. Here we introduce a very simple rule to
serve the purpose.

Bisection retiming rule

— Divide the array in two parts P, and P, by a
bisection line which intersects interconnections only.

— Choose a proper number d as the bisection delay.

— Add d to the delays on the intersected interconnec-

tions directing from P, to P,.

Add d to the delays on the input connections in P,.

— Subtract d from the delays on the intersected

interconnections directing from P, to P,.

The idea behind this retiming rule is simply that we
want all activities in part P, to be delayed by d steps and
all the PEs in the system still work correctly. It has been
proved that any semisystolic array can be converted into
a functionally equivalent systolic array by repeatedly
applying this bisection retiming rule.”

Now look at Fig. 6again. Between every two consecutive 5
rows (columns) we make a horizontal (vertical) bisection :‘
and do one retiming with delay 1. After a total of & ‘D
3n+m—2 retimings, the semisystolic array is systolized £ &
as shown in Fig. 7. In the systolic array, we add an n xn 5
array in the lower left part just for transmitting data and ®
make the whole array really spatially local. The wave- &
fronts of input data streams are bent, because different
numbers of delays are added to the input connections &
during the retiming process.

There are only three kinds of PEs in Fig. 7 and the @
functions of them are the same as those specified in Fig. o g
4 and Fig. 6 because the only difference between the S
semisystolic array and the systolic array is the tlmmg of;>
computation. One way of outputing the result data is to =
shift a column of X downward after the column is3
computed. This can be accomplished by supplying =
another set of input data right after the original set. In
the second set, let A be the identity matrix and B be the
zero matrix. Clearly the second set will not be altered by
the elimination procedure. The diagonal 1's of the
second A will eventually reach the lower-right PEs at the
right time steps to trigger down the computed results of
X. A sequence of snapshots is put in the appendix to
illustrate the data flows of the systolic array.

By tracing the movements of b,,,, one can conclude
that the systolic array uses 4n+m—2 time steps to
compute P and Q, and uses 61+ m—2 time steps to solve
the simultaneous linear equations. Since there is no
empty step separating the consecutive data in the data
streams, this systolic array achieves maximum data
pipelining rate.

u[woo/woo'dnoogwapeoe//:sduu LuOJ; papeojumo(]
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Figure 6. Semisystolic array for solving simultaneous linear equations.

6. CONCLUSION

In the dependence graph of the generalised Gauss—Jordan
elimination procedure (Fig. 1), we can find a directed
path which consists of 4n+m—3 index points, for
example, the path (1,1,1)->(n,1,1)—> (n,1,n) — (n,
n+m,n) — (1,n+m, n). The time ordering of the compu-
tations along this path must be reserved by any parallel
implementation of the procedure. This means that for
this part of the computation our systolic array is only one
time step higher than the lower bound. Although the
whole computation is divided into two stages, they are
tightly pipelined to form an integrated array and therefore
totally avoid the external communications inherent in
the matrix triangularisation-based designs.

Our design can easily be extended to detect the
existence and uniqueness of solution by adding a right-

bound detection line to each row of the upper half PEs.
In the first stage of computation, if a detection line finds
that all elements in the left » PEs are zero but there is a
non-zero element in the right m PEs, the solution does
not exist. If a detection line finds that all elements in the
row are zero, then the problem has multiple solutions.
For this case, we can directly output the matrices P and
Q to save the features of the multiple solutions. But if we
must get one of the solutions, we should modify the PEs
in the lower right part to perform “if p,, is the first non-
zero element then x;:= q,,; else if p,. is other non-zero
element then x,;:=0".

For one system of linear equations (m = 1), our
systolic array produces the solution in 6n— 1 time steps.
In some applications,' the coefficient matrix A is fixed
for many systems of linear equations. If m is sufficiently
large, say m > n, then the average computation time for
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Figure 7. Systolic array for solving simultaneous linear equations.

one system is a small constant (6n+m—2)/m < 7.
Another particular application is that when m = nand B
is the identity matrix our systolic array computes the
inverse of A in 7Tn—2 time steps. None of the previous
designs mentioned in Section 1 achieve these perform-
ances because in those designs different systems of linear
equations cannot be solved simultaneously.

Finally, a few words about numerical stability must be
given. The most interesting part of our design, perhaps,
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APPENDIX

Snapshots of the proposed systolic array for solving simultaneous linear equations with n = 3, m = 2, assuming
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