Short Note

A New HEAPSORT Algorithm and the Analy-
sis of Its Complexity

Heapsort algorithm HEAPSORT is widely
used for its high efficiency and well-defined
data structure. A new heapsort algorithm is
given in this paper that makes the constant
factor of the complexity smaller. And it does
a comparative analysis of this algorithm with
those that have been designed.

Received April 1988, revised February 1989.

INTRODUCTION

The sorting problem of n elements
a,a,...... , a, drawn from a set having a
linear ordering R is to find a permutation &
of n elements 1,2,...... ,n such that
a,)Ray,) for 1 <=i<n.

It is theoretically proved that any
algorithm for sorting n elements requires
at least log,(n!) comparisons.
log,(n!) = n log;n — 1.44n + log,Vn +
1.325. So we can consider it as the theoretical
lower bound of complexity.!'2

Heapsort algorithm HEAPSORT was cre-
ated by Williams in 1960s, and it was
improved by Floyd.®l It is impossible to
improve HEAPSORT algorithm to reduce its
bound of complexity. The better way to have
performance is to make the constant factor of
the complexity smaller (only can be changed
ranging from 2 down to 1). Surely, that would
be of more significance.

ALGORITHM
1. The way of designing the algorithm

It is evidently effectiveless to revise the pro-
cedure of setting up the original heap. Now,
let us reconsider the procedure of rearranging
the heap.

It is vacant, in fact, when the root node is
removed during rearranging the heap. The
new root node is either its leftson or its right-
son. Floyd used this fact and proposed the
improvement of HEAPSORT algorithm as
follows:

(1) By comparing leftson with rightson
once, the larger node can move up
one level. Repeat this action until the
vacant node (say Y in the following)
appears on the bottom level.

Then the deepest rightmost leaf will
be put in the position of the vacant
node.

(2) It is possible for node Y to move up.
This is simply done by one com-
parison with its parent node each time
until the parent node is larger.

It is obvious that the best case will happen
when node Y won’t move up during re-
arranging the heap each time. Therefore,
the best case time complexity becomes
nlog, n + 0(n). On the other hand, under the
worst case, node Y will move up h — 1 times
when rearranging the heap (h is the height
of the heap with j—1 elements, h=
log,(j — 1)), so that the complexity will be

27 ,2(log,(j— 1) — 1), i.e. 2nlog, n + 0(n),
which is that of the original HEAPSORT
algorithm. In general, node Y will not move
up too high, thus Floyd’s algorithm has better
average performance.

Based on the above ideas, now let us con-
sider the improvement of the algorithm as
follows.

First, we use (1) to let the process, com-
paring leftson with rightson once and the
larger moving up one level, stop at level
(2/3)h (h is the height of the current heap).
Then the deepest rightmost leaf will be put
in the position of the vacant node with level
(2/3)h. When node Y moves up, we use (2).
Otherwise, in the necessary condition, we
use original HEAPSORT algorithm to let Y
move down along certain path.

2. Algorithms
(1) Set up the original heap [1]

procedure HEAPFIFY(i, j);
{Arrange elements A[i]-A[/] of array
A into a heap}
if i is not a leaf and a son of i contains
an element which is larger than i
then begin
Let k be a son of i with the larger
element;
interchange A[i] and A[k];
HEAPFIFY(k, j)
end;
procedure BUILDHEAP;
for i: = [n/2] step —1 until 1 do
HEAPFIFY(i, n);

(2) Rearrange the heap

procedure UPORDOWN(i, j);
ifi<d
then begin
Let k be ason of i with the larger
element;
Ali]: = Alk];
UPORDOWN(k,j)
end
else begin
Afi]: = A[j + 1];
if A[i] <=A[li/2]]
then HEAPFIFY(i, j)
else while A[i]> A[li/2]]
do
begin
interchange Ali] and
A[li/2]];
i = 1if2]
end
end;

(3) Heap sorting

Input: array of elements A[i] (1<=
i< =n) to be sorted;
Output: the sorted array A.
procedure NEWheapsort;
BUILDHEAP:
for j: = n step —1 until 2 do
begin
d: = 2[(2/3)lng2(j~ l)j;
B: = A[l];
UPORDOWN(1, j - 1);
Aljl:=B
end;

Analysis of the Complexity

The process of rearranging the heap is
obviously correct. And the correctness of the
algorithm NEWheapsort can be proved by
induction on the times that ‘for’ loop has
been executed.

Theorem. The worst case complexity
of the algorithm NEWheapsort is T(n) =
(4/3)nlog, n + 0(n).

Proof. The complexity of the algorithm
consists of two parts:

(1) Setting up the original heap by calling
BUILDHEAP. It takes time 0(n);"*!

(2) The time it requires for the for loop to
perform.

Once the for loop is performed, UPOR-
DOWN rearranges the heap with j—1
elements, the height of which is h=
log,(j — 1). By one comparison the leftson
with the rightson, the larger moves up one
level. The process will stop at level (2/3)h
with (2/3)h comparisons. The deepest right-
most leaf will be then put into the position of
the vacant node. Under the worst case, node
Y with (2/3)h moves either up to the root
with (2/3)h comparisons or down to the leaf
with 2#(1/3)h comparisons. Therefore the
times of comparison of rearranging the heap
each time is at most

@3h - _ (4/3)h

Q/3)h + {2*(1/3)h
=(4/3)log, (- 1)

Here, we can obviously see why we choose
(2/3)h is that, whether node Y moves up or
down, the times of comparison of rearranging
the heap each time is not more than (4/3)h.
Otherwise, no matter what the number we
choose is greater or smaller than (2/3)h, the
times of comparison will be greater than
(4/3)h when node Y moves up or down.

So, the time it requires for the for loop to
perform is

2} ((4/3)log, (j— 1) = (4/3)nlog; n.

Thus the time complexity of the algorithm
NEWheapsort is T(n) = 0(n) + (4/3)n log, n.

In general, node Y will move neither up
too high nor down too low. At any case, the
efficiency of it is two times as high as that of
HEAPSORT. 1t is clear that it has better
performance and runs at better case. Further,
it fundamentally solves the problem that
Floyd suggested.

G. XUNRANG™* and Z. YUZHANG
Computer Science Department, Shanghai
University of Science and Technology,
Shanghai, PR China

* To whom correspondence should be
addressed.

THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990 281

202 I4dy 60 U0 1senb Aq 29259¢/182/S/€¢/81ome/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

References

1. Alfred V. Aho, John E. Hopcroft and
Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 86-92
(1975).

SHORT NOTE

2. Sara Baase, Computer Algorithms:
Introduction to Design & Analysis.
Addison-Wesley, Reading, Mass., 60-73
(1978).

3. D. E. Knuth, The Art of Computer Pro-
gramming, Vol. 3, ‘Sorting & Searching’.

Addison-Wesley Publishing Company,
Inc., 145-149, 158, 618 (1973).

4. E. Horowitz and S. Sahni, Fundamentals
of Computer Algorithms. Computer
Science Press, Inc., 61-70 (1978).

Announcements

10-13 SEPTEMBER 1990
ETH ZURICH

Awards and computation race at CONPAR
90, VAPP IV

The Awards Committee will award one or

two prizes and a Plaque of Recognition in

each of four categories:

(1) Best technical contribution

(2) Excellent presentation (based on nomi-
nation by the audience)

(3) Best visually animated presentation of
concurrency and/or parallelism

(4) The fastest computer solution to a
(highly?) parallel problem.

The committee anticipates announcing the
awards and the results of the competition
during the last session of the conference on
Thursday 13, September 1990. At that
session, selected animations will be shown,
and participants in the computation race will
present selected descriptions of their
projects.

The Awards Committee: J. Nievergelt
(chair), M. Annaratone, J. Dongarra, 1.
Duff, W. Haendler, H. Jordan, P. Kropf,
E. Rothauser, H. Simon, J. Staunstrup, P.
Stucki.

We solicit contributions in the area of Visu-
alization of Concurrent Processes at CONPAR
90, VAPP IV ETH Zurich, 10-13 September
1990.

The Awards Committee is looking for
original research and development work in
the area of Visualization of Concurrent Pro-
cesses. Processes are said to be concurrent or
simultaneous or parallel if they co-exist in
time. Contributions should be animated,
esthetically pleasing, provide ‘aha-effects’,
and have their origin in a field of application
such as parallel circuit and architecture
design, parallel geometric algorithms, pat-
tern recognition, artificial neural nets, par-
ticle motion simulation, cellular automata,
etc. The expected length of the individual
contributions should be in the range of 30 to
240 seconds of running video or real-time
display on a workstation.

The Awards Committee will review sub-
missions and select pieces to show at the
conference. The best contribution will be
awarded a CONPAR 90/Vapp IV Animation
Prize.

Contributions should be recorded on PAL
or NTSC video tape (U-Matic low-band or
VHS), or be ready for display on a work-
station at the conference. Contributions must
be submitted by 1, July 1990 to:

Prof. Peter Stucki, University of Zurich,
Department of Computer Science, Mul-
timedia Laboratory, CH-8057 Zurich, Swit-
zerland. Tel: XX41-1-257-4350. Fax: XX41-
1-257-4343. This address will also provide
further information if required.

Computation race at CONPAR 90, VAPP IV
Parallel solution of a jigsaw puzzle.

Have you ever put together a complicated
jigsaw puzzle with the help of friends? The
first two or three help a great deal - one can
start assembling the blue sky, another one
the green forest, and you put together the
macropieces they have prepared. But how
many friends can be of help? There will be a
point of diminishing return when those in
charge of the sky and the sea start hunting
for the same blue pieces. You can of course,
let each one work on his own copy of the
puzzle, but how much faster will they reach
the goal than a single puzzle solver? Jigsaw
puzzles are amenable to the standard tech-
niques for exploiting parallelism, and appear
to exhibit all the difficulties commonly
encountered. They may be a good test prob-
lem for honing our speed-up skills.

We propose a kind of jigsaw puzzle built
on numbers and equations, called a ‘number-
cross’, shown in the following example.
Reading from left to right along any row, or
top to bottom along any column, we see
strings separated by blanks. Each string rep-
resents a single-digit constant or a valid
sequence of equations that involves single-
digit constants. The picture below shows to
puzzles on a 7 by 7 array. Each puzzle is
given by prescribing 49 pieces; we exhibit one
solution for each puzzle.

16 blanks 1

00 |7]=|4
4
62
2'3
53 |2
25’
1'6
27 [8]- |1
18

39 S

£004

ni+|[a
N
[US I I BiVe)
N

s

W= = NN

Wi * | N
EN
]
O
'
—

o+ [
[)
I
O

]
—

24 blanks

ol+ [~

S+ |O

o0 0O AN
— S
—
]

— 4 |
P

0

In a programming notation, an N-cross
might be given as follows:

constant = ..; {n < 238}

type piece =*’, ‘+’, {types of pieces to
=), 0="0" L fill in the puzzle}
‘0.

282 THE COMPUTER JOURNAL, VOL 33, NO. 3, 1990

var puzzle: array|1
..n, 1..n] of piece;

var pieces: {how many pieces of
array|[piece] of each type}
integer;

The array ‘pieces’ specifies how many
pieces of each type there are: how many
blanks, how many ‘+’s, how many digits
‘I’, etc. Your program receives the initia-
lized array ‘pieces’, starts a clock, fills
‘puzzle’ to represent a solution, and
computes the puzzle-solving time by
stopping the clock before outputting the
results.

Let us call a string (of pieces) a ‘max

string’ if it meets all the following require-

ments:

— it runs left-to right, or top-to-bottom,

- it is bounded by blanks or array bound-
aries,

~ it contains no blanks.

A solution is characterized by the following

requirements:

- Every piece (as counted in the array
‘pieces’) has been used to fill exactly one
entry of ‘puzzle’,

- Every max string represents either an
integer constant, or a sequence of correct

integer equations that involve
parentheses-free expressions over
constants,

- The only constants are 0 .. 9 (unsigned,
single decimal digit).

Conventions:

‘/" is integer division where the remainder

must be zero. (e.g. 7/3 is not allowed)

‘+’ and ‘-’ are binary operators; they may

not be used as a unary plus or minus.

Operators are evaluated left to right or top

to bottom, with usual precedence.

Example of a sequence of equations: 3 = 1

+2=9/3

A program to solve an N-cross accepts as

input a data set D consisting of 17 non-

negative integers: the puzzle size n, and the

16-element array ‘pieces’. The program

may not accept any other input.

This race is for real time. Everyone com-
petes for the fastest solution regardless of
alogrithm, software, or hardware used. At
a conference on parallel computation, we
would expect someone to do better on par-
allel hardware than can be done on a per-
sonal computer. We'll see, good luck.

Rules of participation:

1. An ‘entry’ to the computation race con-
sists of a team of 1 or more people, a set
of hardware (including distributed
systems), one program, and one run only
for each data set.

2. The same person may participate in at
most 3 entries.

3. For each entry, we encourage
participants to provide the following infor-

202 I4dy 60 U0 1senb Aq 29259¢/182/S/€¢/81ome/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

