Applications of UET Scheduling Theory to the Implementation

of Declarative Languages

F.W.BURTON,*{ G.P. McCKEOWNT§ aND V. J. RAYWARD-SMITH{Y
* School of Computing Sciences, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
t School of Information Systems, University of East Anglia, Norwich NR4 7TJ.

Motivated by our interest in the use of functional programming languages to write parallel programs, we have been led
to consider the anomaly of more processors possibly leading to a slower execution time. A fter reviewing known results
Sfrom the theory of list-scheduling, we introduce generalisations of the familiar breadth-first and depth-first tree-searching
algorithms to arbitrary dags and consider them in a list-scheduling framework. We prove that with UET actions
(corresponding to pre-emptive scheduling with integer execution times for actions), breadth-first scheduling never leads

to an increase in the execution time when the number of processors is increased. We also prove that for any list-
scheduling algorithm with UET actions, there is no speed-up anomaly when going from two to three processors.

Received April 1986, revised April 1987

1. INTRODUCTION

We are interested in highly parallel algorithms which can
be run on an arbitrary number of processors. It is often
relatively easy to analyse the expected behaviour of a
program on a single processor, and sometimes the
hypothetical behaviour of the program on an unbounded
number of processors can also be analysed. In general,
however, it is very difficult to analyse the behaviour of a
program on n processors, for arbitrary n, particularly
when dynamic process creation is supported by dynamic
process scheduling.

One might expect to be able to get whatever speed is
required (up to the speed of the system of unbounded
size) by increasing the size of the system. However, there
are many reports in the literature of parallel algorithms
which require more time when the number of processors
is increased (see, for example, Lai and Sahni).’* In many
cases, this is because the algorithm is non-deterministic
and happens to make a good choice (or set of choices) on
a particular number of processors and a poor choice (or
set of choices) on a larger number of processors.
However, even deterministic algorithms sometimes ex-
hibit this behaviour.! !

Clearly, an optimal scheduler can always do at least as
well with more processors. (If all else fails, it can ignore
the additional processors.) However, there are two
important problems which arise when we attempt to use
an optimal scheduler. First, we usually do not know how
much time an action requires until it has terminated. In
fact, in many cases, we don’t even know that an action
will exist until it can start. Second, even if we have perfect
information, optimal scheduling is NP-hard.2?24

We are interested in scheduling policies which guar-
antee that increasing the number of processors will not
slow the speed of the system, and in bounding the
damage that can be done by increasing the size of the
system with other scheduling algorithms. We will
consider only deterministic algorithms where the total

1 The work of this author was supported by the Natiunal Science
Foundation under grant no. ECS-8312748 and grant no. DMC-
8514946.

§ To whom correspondence should be addressed.

amount of work performed is independent of the size o
the system. (That is, we exclude speculative algor?
ithms,"* as well as non-deterministic algorithms.)

We are particularly interested in the use of declarativez
programming languages (logic languages and functionaE.
languages) to write parallel programs. In such languageso
parallelism is implicit. For example, consider the follow®
ing divide-and-conquer algorithm to compute the facg
torial function.

sdTly wou) papeojumo(

eog//

Sactorial(n) = = product(1, n)
where
product(i,j) = =
if i = jthen i
else let mid = = (i+/)/2 in
product(i, mid) * product(mid + 1, j)

€/0€€/v/EE/o1E/|UlWOD)/

This simple functional program computes the product of§
integers in an interval by calculating the product of theZ
integers in the left half of the interval and multiplying theZ
result by the product of the integers in the right half. Theé2
two operands of “*’ in the bottom line can be evaluated®
in parallel. If this is done in every case, the result is a3
parallel algorithm that will run in O(log n) time, provided=
that enough processors exist to realise the potential>
parallelism. =

With this approach to parallelism, there is often a veryS
high potential for parallelism. An implementation must™
be responsible for scheduling tasks for execution. This
approach has the following advantages.

(1) The result produced by a program does not
depend on the number of processors. The programmer
does not have to worry about timing errors, synchronising
processes, or non-determinism. A correct program
remains correct.

(2) The program can run on systems of differing size.
It is not necessary to know the size of the system that will
run the program when it is written. Similarly, upgrading
to a larger system will not require existing programs to
be modified.

However, a challenge to this approach to parallelism is
in scheduling tasks in a reasonable manner with
incomplete information. Not only will a system be

330 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

UET SCHEDULING THEORY AND THE IMPLEMENTATION OF DECLARATIVE LANGUAGES

unsure how much time a process will require, it will not
know how many processes will come into existence until
after much of the scheduling has been done.

Our approach is equally suitable for procedural
programming languages which support dynamic task
creation and leave the scheduling of tasks to the
implementation.

We will regard a parallel program as a collection of
actions with a partial order, <, defined on them. If a;
and g; are actions and g, < g; then a; must terminate
before action a, may start. If two actions are unordered,
then they may be performed in either order or in parallel.
In scheduling theory, actions are often called tasks.
However, in programming languages tasks are usually of
coarser grain than what we have in mind. For example,
a task may contain semaphore wait and signal operations.
We would regard the work between any pair of
synchronisation steps (including task creation and
deletion as well as waits and signals, or similar) as an
action.

Since we regard a parallel program as a partially
ordered set of actions, we may represent such a program
as a directed acyclic graph (dag). For example, let us
suppose that the divide-and-conquer algorithm given
above is to be used to compute 8! The program comprises
three types of action: testing, parameter evaluation and
combining. Let ¢,; denote the testing action that compares
the values of i and j, let ¢,, and e, denote the actions that
evaluate the parameter k in the function references
product(i,k) and product(k,j), respectively, and let Cy
denote the multiplication of the values of product(i, mid)
and product(mid+ 1, j) to give the value of product(i,).
The dag representing the parallel program for computing
product(1,8) is then as given in Fig. 1.

/ ’ \\
F 14 fss
f1a fss
€12 €34 e“/\en

Figure 1.

2. BACKGROUND SCHEDULING THEORY

In this section we give a brief review of the relevant
results from scheduling theory. We could not find a
proof of Theorem 2 in the literature and the one given is
our own. In Section 3 some new results of significance in
the implementation of functional programs are given.

Let A denote a finite set of actions partially ordered by
<. Each g,€ 4 is assumed to have execution time 7, and
we are interested in scheduling these actions on m > 1
identical processors, P,, B, ..., P,. Given any total order
[C containing <, there is an obvious associated algorithm
for scheduling the actions. At any time a processor
becomes free it is allocated the next unallocated action in
the total ordering defined by . Such a schedule is called
a list schedule and has been well studied in various texts
and research papers in scheduling theory.>’

For any set A4, partial ordering < and time function 7,
we define

w, to be the shortest length of any schedule (pre-

emption allowed),
w; to be the shortest length of any non-pre-emptive
schedule, and

wyg to be the shortest length of any list schedule.

It is clear that
wy < 0§ < W§. (1

The question then arises as to how badly the best non-
pre-emptive schedule can perform when compared with
the best pre-emptive schedule, and how the best list
schedule compares with both of these. In Ref. 22 it is
shown that

wt < (2—%) @, Q)

and that this bound is achievable in the limit.
From (1) and (2) we can deduce that

ot < (2—%) w? 3)

and again this bound is tight.
In Ref. 18 it is shown that

2
and it is easy to see that this bound is the best attained:
consider a set of m+ 1 identical actions each of length m.
The shortest non-pre-emptive schedule is of length 2m,
while the shortest pre-emptive schedule is of length
m+1.

The next question that arises is: how does an arbitrary
list schedule compare with the optimal list schedule? To
answer this we need the following theorem, proved by
Graham in 1966'° (see also Refs 11 and 12).

Theorem 1

Let A4 be a set of actions executed twice. The first time we
assume each action a,€ 4 takes z, time units, that these
actions are partially ordered by < and totally ordered by
[C containing < and that we executed these actions on m
identical processors. The second time we assume each
a, takes 7; < 7, time units, that the actions are partially
ordered by <’ contained in < and totally ordered by [
containing <’ and that they are executed on a system of
m’ identical processors. Using list scheduling, let o

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 331

¥20Z Iudy 01 uo 1senb Aq LG5/ /€/0€€/P/EE eI/ |ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

F.W.BURTON, G.P. McKEOWN AND V.J. RAYWARD-SMITH

denote the finishing time in the first case and ’ in the
second case. Then,

w'<(1+m—_,l>w.)]
m

Not only is this bound tight but it can be achieved
(asymptotically) by varying any one of the parameters of
the theorem.

As an immediate corollary of this theorem, we see that
for any fixed 4, <, 7, if w is the finishing time of a list-
scheduling algorithm using an arbitrary [containing
<, and wjy is the length of the optimal list-scheduling
algorithm, then

o< (2_%) w(l)"m.u (6)

From the above results we can see that the length of an
arbitrary list schedule is asymptotically no more than a
small multiple of the optimal length. Finding the optimal
(pre-emptive or non-pre-emptive) schedule is NP-hard!®
and so too is finding the best of all possible list
schedules.?® Hence there has been considerable interest in
finding reasonable heuristics for list scheduling and for
investigating those special cases for which polynomial
time algorithms do indeed exist. Muntz and Coffman?®-2°
have proposed an heuristic for pre-emptive scheduling
which is optimal for two processors and an arbitrary dag
or when the dag is a forest and the number of processors
is artibrarily chosen. If w,. denotes the length of a
schedule computed by Muntz and Coffman’s algorithm
then

Wye < (2—%) W,- @)

Moreover, examples exist to show that the bound is
achievable asymptotically.!” Muntz and Coffman’s al-
gorithm has also been further investigated for use on
processors of different speeds in Ref. 13. A large number
of heuristics for constructing list schedules are compared
on a variety of test data in Ref. 9. As one would expect,
successful algorithms tend to give preference to actions
with many descendants and/or generations of descen-
dants.

If we wish to implement a pre-emptive schedule using
a list-scheduling approach we must allow activities on
the dag to be regarded as a sequence of smaller activities
allocated by the list scheduler. To model this situation,
we consider dags in which all the activities have unit
execution time (UET). UET systems have provided
many of the most interesting results in scheduling theory.
The UET list scheduler is simply described as follows.

{UET list scheduler}
{Actions are numbered so that a, " a, [a,...[" a,}
{initialize}
U:= A4; {U is the set of unprocessed tasks}
t:=0; {¢ is the clock}
while U + ¢ do
R:={aeU|3a’eUs.t.a’ <a};
{R is the set of tasks which are available for processing
at time 1}
i=1;
while R+ 0 and i < m
do
l:=min{i|a,e R};

allocate to processor P, during time interval ¢ the
task a,;
R:= R—{a};
U= U—{a};
ir=i+1
endwhile ;
ti=1t+1
endwhile

For any set of UET activities partially ordered by <
there is always some total ordering [~ containing < such
that the corresponding list scheduler gives an optimal
schedule. The proof of this is relatively straightforward.
First, consider any optimal schedule of the activities, say
it takes total time w,,. If this schedule has some processor,
P, idling during the rth time interval and there is an
activity a;€ A scheduled for a later time interval whichU
could have been processed at the earlier time, then weo
can amend the schedule such that P, processes a; at time2
t. Doing this cannot increase the total time of the®
schedule (nor can it reduce it, since the original schedule®
was optimal). We continue applying similar amendments=’
until we can assert that for all 1 <t < w,, there is a>
processor idling during time interval 7 only if all activitiesZ
scheduled after time interval ¢ have an ancestor scheduled 2
during time interval ¢. Finally, we move activities§
scheduled during each time interval ¢ from one processor 5
to another so that if there is any idle time it is found on=
all processors P, P,,,,..., P, for some k > 1. We now?2
define a total ordering on A4 as follows. 3
a; [a; iff in the final amended schedule, either g, is3
processed before a; or they are processed at the same 3
time but g, is processed on P, and a; on P, where2.
k<l
If the UET list scheduler is used under this total 5
ordering, the resultant schedule must be the same as the &
amended schedule and hence have total time w,. We have £

w

o)
o
3

e/u

tel)

thus established that @
o

wy = w, for UET systems. ®) 3

N

Further, (6) still holds and hence we can deduce that for o
a list schedule g
1 =

o< (2—;) w, for UET systems. g

o

As we shall be seeing, examples exist to show that this 2
worst-case ratio is achievable. Moreover, the problem of z
finding the optimal list schedule remains NP-hard even =
for UET systems (e.g. Ref. 24) and so once again we are §
led to consider heuristics. =
The level of an activity, a, is defined to be the length of
a longest path from a to a terminal activity. Hu proposes
a total ordering where 4, [q; if g, has greater level than
a; (if the levels are the same, order arbitrarily).'* This is
optimal for forests but not for arbitrary dags. Denoting
the length of a schedule constructed using this algorithm
by w,;;, Chen® and Chen and Liu® establish the following

bounds for arbitrary dags:
30, ifm=2,
Oy, < 1 . (10)
(2 P) w,, otherwise.
m —_—

Coffman and Graham have developed this algorithm
giving rules to decide whether a, [a; or not when a, and

332 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

UET SCHEDULING THEORY AND THE IMPLEMENTATION OF DECLARATIVE LANGUAGES

a; have the same level.® As a result of this, their algorithm
is optimal for m = 2 and < being a forest. The previously
cited Muntz and Coffman algorithm is a generalisation
of this approach. The worst-case bound of the Coffman—
Graham algorithm for an arbitrary dag, established in
Ref. 17, is

2
W <(2—E)wo. (1)

Examples are given to show that this bound is achievable
asymptotically. This algorithm is a list-scheduling algor-
ithm; polynomial-time, non-list scheduling algorithms
also exist which are optimal for two processors.®

One might expect that any of the following ‘improve-
ments’ would reduce the length of schedule: (i) relaxing
the partial order, <; (ii) reducing the time required to
process some of the activities; (iii) increasing the number
of processors. However, this is not the case — any of these
three occurrences can actually increase the total execution
time (see Ref. 11 or Ref. 12 for an illustration). Such
behaviour is called an anomaly.

For example, it is easy to construct examples for the
list scheduling of UET tasks where an anomaly arises
when the number of processors is increased (see Fig. 2).
It is even possible to get anomalous behaviour when the
dag is a tree. In Fig. 2 we define a,C 4, iff i <j and use
the UET list scheduler.

a
1. L]

az as a4 a3

a4
ay ayo ay aj as
(a) The dag of activities.

1 2 3 4 R
P, a, a4 as ag a
P, a ag ag a; a
Py a3 a3 a a4 as

(b) Gantt chart for three processors.
1 2 3 4 5 6

P, a, as ay as

P,y as a, an // / // /////
P, a, ag ap / // //4

(c) Gantt chart for four processors.

P, a; as a0

Figure 2. Increasing from three to four processors increases
execution time.

Fig. 2 shows that for an arbitrary total ordering, [,
and an arbitrary partially ordered set, increasing the
number of processors from three to four can increase the
total execution time. The example can easily be general-
ised to produce an example to show that an increase

from m processors to m+1 processors (m > 3) can
produce a similar anomaly. However, an increase from
two to three processors can never produce such an
anomaly. To prove this we need the following definitions.

Let B = A be a subset of 4 which inherits the partial
order, <, and the total order, [, defined on 4. The time
taken to schedule B using the UET scheduler on m
processors is denoted by w,,(B); w,, denotes w,,(A). The
ready set of B,r(B)={alaeBA3beBst.b<a} de-
notes that subset of B that can be scheduled in the first
time interval. The selected set of B using m processors,
s.(B) is that subset of r(B) which is actually scheduled in
the first time interval by the UET scheduler. Thus, if
Ir(B)l < m s,(B) = r(B), but otherwise s,(B) is the m
smallest elements of r(B) under the ordering [_. Then the
following is immediate from these definitions.

Lemma 1

If B+ ¢ then w,(B) = w,(B—s,(B))+1.
A second lemma we require is

Lemma 2

If B = B—{a} for some aer(B) then wy(B’) < wy(B)
S wy(B)+1.

Proof

We proceed by induction on |B’|, the result clearly being
true for |B’| = 0 or |B’| = 1. So, assume |B’| = 2 and the
result holds for all sets of cardinality <|B.

Case 1. a¢s,(B). Then sy(B) = {b,c} where b[_ a and
cCa. It follows that s,(B’) = {b,c} so, by Lemma 1,
Wy(B) = wy(B—{b,c})+1 and w,(B) = w,(B' —{b,c})
+ 1. By the induction hypothesis, we can deduce that
Wo(B'—1{b, c}) < wy(B—1{b,c}) < w, (B —{b,c})+1 and
hence, by adding 1 to each expression in this inequality
that w,(B") < w,(B) < wy(B)+ 1.

Case 2. sy(B) ={a}. Then w,(B)= w,(B—{a})+1
= wy(B)+1.

Case 3. 5,(B) ={a,b} and besy(B). If s,(B)={b}
then

Wy(B) = wy(B—{a,b})+1 = w(B'—{b})+ 1 = wy(B').

Otherwise, s,(B’) = {b,c} where cer(B’) and hence ce
r(B—{a, b}).

Now wy(B') = wy(B'—{b,c})+ 1 = w,(B—s,(B)—{c})
+1.

But by the induction hypothesis, w,(B—s,(B)—{c})
< wy(B—5,(B)) < wy(B—s,(B)—{c})+1. Hence, by
adding 1 to each expression in this inequality, we get
Wy(B’) < wy(B) < wy(B)+ 1.

Case 4. sy(B)={a,b} and b¢s,(B’). In this case,
Sy(B’) ={c,d} where ¢ b and d[b. Moreover,
so(B—{a,b}) ={c,d}. Now, let B" = B'—{c,d} = B—{a,c,
d}, then w,(B') = w,(B'—{c,d})+1 = wy(B")+1 and w,
(B) = wy(B—{a,b})+1 = wy(B'—{b})+ 1 = wy(B —{b,c,
d})+2 = w,(B"—{b})+2. By the induction hypothesis,
Wyo(B”—{b}) < wy(B") < wy,(B”—{b})+ 1. Therefore,

wy(B) = 0y(B"—{b}) +2 < 0,(B")+2 = 0,(B) + 1
and w,(B) = w,(B"—{b})+2 > w,(B") + 1 = w,(B).

Hence, once again, we have w,(B') < w,(B)<w,
(B)+1.

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 333

¥20Z Iudy 01 uo 1senb Aq LG5/ /€/0€€/P/EE eI/ |ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

F.W.BURTON, G.P. McKEOWN AND V.J. RAYWARD-SMITH

All possible cases have now been considered and the
proof of the lemma by induction is complete.
We can now prove

Theorem 2

W3 < W,.

Proof

We proceed by induction on |A4|. If [4] = 0 the result is
clearly true. We assume then that |4] > 0 and the result
holds for any set, B, s.t.|B| < |A|.

From the definition of selected set, 5,(4) < 55(A4).

Case 1. 5,(A) = s5,(A). Let B= A —S,(A). Then, by the
induction hypothesis, w,(B) < Wy(B), but wy(4) = w,
(B)+1 and w,(4) = w,(B)+ 1. Hence w4(A) < wy(A).

Case 2. sy(A) = s,(A) U{a} for some acA. Let B=
A—5,(A). Then wy(A) = wy(B—{a})+1 < w,(B—{a})+1
by the induction hypothesis. However, wy(B—{a}) < w,
(B) by Lemma 2 and w,(4) = @y(B)+1 and so w,(A)
< wy(A).

Hence the proof by induction is established.

We know from Theorem 1 that for arbitrary m

(12)

(a) The dag.
1 2 3 4 5
! a as a a3 ayq
PZ a; ag a, ayg ag
Py as a0 ag as a9
Py as a a a6
(b) Gantt diagram for four processors.
1 2 3 4 5 6
Py a, 73 ay ag; a4 a9
V
P, a, ag %, 7 / a; ¥, //

(¢) Gantt diagram for five processors.

Figure 3. Anomalous behaviour of level scheduling.

Theorem 2 shows that this bound is not the best possible
for m = 2. However, it does show that for larger numbers
of processors a move from m to m+1 processors can
never increase processing time by more than a factor
somewhat less than two. For large m, we can indeed get
an anomalous slowdown approaching the value of the
bound.

Having seen how badly an arbitrary list schedule can
behave when increasing the number of processors, our
next task is to consider the anomalous behaviour for the
particular list-scheduling algorithms mentioned above.
Two further list-scheduling algorithms are discussed in
the following section.

In Fig. 3 we give an example to show anomalous
behaviour with level scheduling. From this example it is
easy to construct an example which demonstrates
anomalous behaviour of the Coffman-Graham algor-
ithm.

3. SCHEDULING AND PARALLEL
COMPUTING

In applications where we are scheduling activities
dynamically created (as in the case of functional
programming), the whole dag is not available in advance.
We could possibly estimate the eventual level of an
activity and then apply Hu’s algorithm, but the Coffman—
Graham algorithm would be far too sophisticated for
consideration. In practice, activities are simply scheduled
as they are created. We consider now the two principal
ways in which this can be achieved, breadth first (bf) and
depth first (df), both generalisations of familiar tree-
searching algorithms.?!

We begin by defining the depth of an action in a dag.
All start actions, i.e. actions without parents, are said to
be at depth 0; the depth of any other action in the dag is
then the length of the longest path to itself from a start
action. For any total order, [, on the set of actions A,
in a dag, we define the eldest parent, r, of pe A by

re P ={q|qis a parent of p}
qC rVqgeP, g=*r.

We then define the following two total orderings on a
partially ordered set, 4. If p,qe A then
pbfqiff
(1) depth (p) < depth (g) or
(2) depth (p) = depth (q) + 0
and (a) eldest parent (p) bf eldest parent (g)
or (b) eldest parent (p) = eldest parent (g) and p ‘to

and

the left of” ¢
or
(3) depth (p) = depth (g) =0 and p ‘to the left of’ ¢
and
pdfqiff

(1) depth (p) > depth (q) or
(2) depth (p) = depth (¢) + 0
and (a) eldest parent (p) df eldest parent (gq)
or (b) eldest parent (p) = eldest parent (¢g) and p ‘to

the left of” ¢
or

(3) depth (p) = depth (g) = 0 and p ‘to the left of” q.
The relation ‘to the left’ is an arbitrarily chosen, but
consistently applied rule. Given a diagrammatic repre-
sentation of the poset, 4, we can choose to interpret ‘to
the left of” in the obvious way. For example, the breadth-

334 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

¥20Z Iudy 01 uo 1senb Aq LG5/ /€/0€€/P/EE eI/ |ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

UET SCHEDULING THEORY AND THE IMPLEMENTATION OF DECLARATIVE LANGUAGES

Figure 4.

first list for the dag in Fig. 4 is a,b,d, c,e,g,f, h,i,j and
the depth-first list is i,j,8.f, h,d,c,e,a,b.

From (9), we have a worst-case bound for breadth-first
scheduling

W, < (2 —%) w, for UET systems. (13)

This bound is indeed achievable. Consider (m*—m+1)
start actions, the rightmost of which heads a chain of a
total of m actions. With m identical processors and
breadth-first scheduling, the first m—1 time units are
spent on the leftmost m*—m start actions. The next m
time units are spent on the chain of tasks. The best
strategy is to always work on the chain and then use the
remaining m— 1 processors to work on the independent
activities; this gives an optimal schedule of length m.

Similarly, for depth-first scheduling we have a worst-
case bound

Wy < (2—%) o, for UET systems (14)

and, from the same example as we used for breadth-first,
we see that this bound is also achievable. However, even
though depth-first scheduling can perform as badly as
any conceivable scheduling, it is the one that is usually
used in the parallel implementation of functional
programs. Depth-first has the additional drawback that
it can exhibit anomalous behaviour as the number of
processors is increased. Breadth-first does not have this
anomalous behaviour, but has storage overheads that
make its use impractical. An example demonstrating the
anomalous behaviour of depth-first scheduling is given in
Fig. 5. The depth-first list for this example is a,,, a,,, a,,
ag, Ay, Ay, Ay, Ay, Ay, Ay, A3, 44, A5, ag. From a worst-case
analysis, depth-first does not seem to do that much worse
than a level strategy. However, on average, one would
expect a level strategy to perform significantly better.
This is a topic for further research, but the claim is
certainly supported by all the evidence cited in Golovkin.?

We now demonstrate that breadth-first list scheduling
guarantees that an increase in the number of processors
will never increase the execution time.

Given a set of UET actions subject to a partial order
<, leta,,a,,...,a, be the breadth-first list of the actions
in (4, <) and let E,, , denote the set of actions that have
been executed after k time units under breadth-first
scheduling on m machines.

Lemma 3

E, ,={a,a,....a, _,a_} where i, , is an integer
between 1 and n. '

ag
a
a4
(a) The dag.
P, a as ag ap
P, a ag ayo a4
Py as as ay ////‘
P, as ae ap ////

(b) Gantt diagram for four processors.

Rl 7/
7
7%
P as ay, //A«///A

(¢) Gantt diagram for five processors.

P, a ag as

Py as ay

P, as ayo

Figure 5.

Proof

The proof is by induction on k. Let S = {a,,a,,...,a,}
denote the set of start actions. In the first time unit, the
m processors execute the actions a,,a,,...,a, Wwhere
i,, , = min{m, s}, so the lemma is true for k = 1!
Assume the lemma is true for k£ </ and consider k =
I+1. Let R, , denote the readyset after / time units and
let a,a,,...,q be the breadth-first ordering of these
actions, where r = |R,, |. Ifl, =i, ,+j,l <j<r,then the
lemma is clearly true for k=1/+1, with i, ,,=i,,
+min{m,r}, so assume j is the smallest integer such

that) o
li*’m,l+j (_]e{l,...,r}).

Since 1,2,...,i, i, ,+1,...,i, ,+j—1 are successive
integers, it follows that

L>i, +]).

Since a; ,;¢R, , eldest parent (a; .)¢E, , On the
other hand, g, eR,, , implies eldest parent (a,)€E,, ,.
But, by the inductive hypothesis, E,, , consists of the first
i,, , actions in the breadth-first list of actions. Hence,
eldest parent (a,i) bf eldest parent (aim_t+j)’ and this
implies a, bf a; . which contradicts the assumption
that a,,a,,...,a, is the breadth-first list.

The lemma is therefore true for k = /+ 1 and the proof
by induction is complete.

Lemma 4

lm.k < lm+1,k‘

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 335

¥20Z Iudy 01 uo 1senb Aq LG5/ /€/0€€/P/EE eI/ |ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

F.W.BURTON, G.P. McKEOWN AND V.J. RAYWARD-SMITH

Proof

The proof is again by induction on k. Since i,, , = min
{m, s}, where s is the number of start actions, the lemma
is true for k = 1. Assume that it is true for k </ and
consider kK =1/+1. As above, let a,,a,,...,a, be the
breadth-first ordering of the actions in the readyset R,
and similarly let a,ay,....a; be the breadth- ﬁrst
ordering of the actions in the readyset R

Now i,y =i, +min{m,r} and i, ., =in.,
+min{m+1,r}. If min{m+1,r} > min{m,r} then it
follows immediately from the inductive hypothesis that
the lemma is true for k = /+1.

Consider min{m, r} > min{m+ 1,r’}. By the inductive
hypothesis together with Lemma 3, it follows that

m+1.l‘

@€k, ,UR 1<igr.

m+1, 1>

Thus any action which will be executed on the m
processor system during the next time unit has either
already been executed on the m+ 1 processor system or
will also be executed on that system during the next time
unit. Hence,

Lnst,141 2 b

and the proof by induction is complete.
We have therefore established the following theorem.

REFERENCES

1. F. W. Burton, Annotations to control parallelism and
reduction order in the distributed evaluation of functional
programs. ACM Trans. on Prog. Lang. and Systems 6
159-174 (1984).

2. F. W. Burton, Functional programming for concurrent
and distributed computing, submitted for publication
(1986).

3. N.-F. Chen, An Analysis of Scheduling Algorithms in
Multi-processing Computing Systems. Technical Report
UIUCDCS-R-75-724, Department of Computer Science,
University of Illinois at Urbana, Champaign (1975).

4. N-F.Chen and C.L.Liu, On a class of scheduling
algorithms for multiprocessor computing systems. In
Parallel Processing (Lecture Notes in Computer Science
24), edited T.-Y.Feng, pp. 1—16. Springer, Berlin
(1975).

5. E. G. Coffman, Jr (ed.), Computer and Job-Shop Scheduling
Theory. Wiley, New York (1976).

6. E. G. Coffman, Jr and R. L. Graham, Optimal scheduling
for two processor systems. Acta Informatica 1, 100-213
(1972).

7. M. A. H. Dempster, J. K. Lenstra and A. H. G. Rinooy
Kan, Deterministic and Stochastic Scheduling. Reidel,
Dordrecht, Holland (1982).

8. M. Fujii, T. Kasami and K. Nimomiya, Optimal sequen-
cing of two equivalent processors. SIAM Journal on
Applied Mathematics 17, 784-789 (1969); erratum 20, 141
(1971).

9. B. A. Golovkin, A comparison of methods of scheduling
parallel computations in multiprocessor systems. Engin-
eering Cybernetics 20, 116-126 (1982).

10. R. L. Graham, Bounds on certain multiprocessing anom-
alies. Bell System Technical Journal 45, 1563-1581
(1966).

11. R. L. Graham, Bounds on multiprocessing timing anom-

£}

Theorem 3

If w,, denotes the length of the breadth-first list schedule
of (4, <) on m processors then w,,,, < w,,.

4. CONCLUSION

We have shown that any list-scheduling algorithm will be
within a small factor of the optimal pre-emptive
scheduling algorithm. Since this is a worst-case perform-
ance, it encourages us to believe that any list-scheduling
algorithm will be acceptable in a highly parallel system
where incomplete information which can result from
dynamic task creation prevents some of the common
well-behaved scheduling algorithms from being used.

In addition, we have studied the problem of ensuring
that more processors will result in faster processing. We
have shown that with UET actions (which correspond to
pre-emptive scheduling and integer execution times for
actions) three processors will never be worse than two,
provided the same list-scheduling algorithm is used.
With breadth-first scheduling, this result can be
strengthened so that m+1 processors are never worse
than m, but this cannot be guaranteed for depth-first
scheduling or for any other list-scheduling algorithm that
we have considered.

Further work includes the scheduling of parallel
processors under the more realistic assumption of
interprocessor communication delays.

alies. SIAM Journal on Applied Mathematics 17, 263-269
(1969).

12. R. L. Graham, Bounds on the performance of scheduling
algorithms. In E. G. Coffman, Jr (Ref. 5).

13. E. C. Horvath, S. Lam and R. Sethi, A level algorithm for
preemptive scheduling. ACM Journal 23, 317-327 (1977).

14. T. C. Hu, Parallel sequencing and assembly line problems.
Operational Research 9, 841-848 (1961).

15. R. M. Karp, Reducibility among combinatorial problems.
In Complexity of Computer Computations, edited R. E.
Miller and J. W. Thatcher, pp. 85-103. Plenum Press,
New York (1972).

16. T.-H. Lai and S. Sahni, Anomalies in parallel branch-and-
bound algorithms. Comm. ACM 27, 594-602 (1984).

17. S. Lam and R. Sethi, Worst case analysis of two scheduling
algorithms. SIAM Journal on Computing 6, 518-536
(1977).

18. C. L. Liu, Optimal scheduling on multi-processor com-
puting systems. Proceedings of the 13th Annual IEEE
Symposium on Switching and Automata Theory, pp. 155-160
(1972).

19. R. R. Muntz and E. G. Coffman, Jr, Optimal preemptive
scheduling on two-processor systems. /JEEE Transactions,
Computers C-18, 1014-1020 (1969).

20. R. R. Muntzand E. G. Coffman, Jr, Preemptive scheduling
of real time tasks on multiprocessor systems. ACM Journal
17, 324-338 (1970).

21. N. J. Nilsson, Problem-solving Methods in Artificial Intel-
ligence. McGraw-Hill, New York (1971).

22. R. Sethi, Algorithms for minimal-length schedules. In E. G.
Coffman, Jr (Ref. 5).

23. J. D. Ullman, NP-complete scheduling problems. Journal
of Computer System Science 10, 384-393 (1975).

24. J. D. Ullman, Complexity of sequencing problems. In E.
G. Coffman, Jr (Ref. 5).

336 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

¥20Z Iudy 01 uo 1senb Aq LG5/ /€/0€€/P/EE eI/ |ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq

