On Generating Random Permutations with Arbitrary

Distributionst

B.J. OOMMEN aND D. T. H. NG

School of Computer Science, Carleton University, Ottawa: KIS 5B6, Canada

Let R = {Rl’ Rz, ..

- » Ry} be an ordered set of M elements where R; < R; whenever i <j. Let w be the set of

permutations of R. We consider the problem of randomly generating the elements of & according to a distribution
G(n). Various algorithms including those due to Durstenfeld®S and Moses et al’ are available for the case when the
distribution G(r) is a uniform distribution (i.e., where all the elements of m are generated with equal probability).
In this paper we consider the case when the distribution G(r) is not necessarily uniform. We present a strategy for
specifying the distribution G(rt) and propose a technique for generating the elements of m according to the
distribution G(7). Applications of the technique to generate ‘almost sorted lists’ and in the Travelling Salesman
Problem have been presented. Finally, simulation results have been included which demonstrate the power of the

Random Permutation Generation (RPG) technique.

Received October 1988, revised February 1989

1. INTRODUCTION

Let R ={R,, R,, . . . , Ry} be an ordered set of M
distinct elements, where R; < R; if i <j. Let x be the
set of permutations of . We are interested in randomly
generating elements of & based on an underlying user-
defined distribution G(s). This problem is called the
Random Permutation Generation (RPG) problem.

If the distribution G(7) is uniform, the various M!
permutations are generated with equal probability.
Thus, in this case, G(x) is defined as follows:

8i = G(11;) = Prob[r; is generated] = 1/M!.

i=1,2,...,M. (1)
If all the values of G(r;) are not equal G is said to be
non-uniform.

Observe that if M is small (typically M <6) any
arbitrary distribution G() can be specified by a set of

simple assignment statements. This obviously entails -

the enumeration of g; for 1 <i < M!. In such a case, the
Random Permutation Generation (RPG) based on the
distribution G(7) could be achieved by a single call to
a Random Number Generator (RNG). The technique
to do this is simple and straightforward. The interval
[0, 1] is subdivided into M! sub-intervals of width g;,
and the random permutation generated is the one in
whose subinterval the generated random number falls.

When M s large, such a strategy is infeasible primarily
because the machine architecture does not permit the
generation of a number to the degree of precision
required. In such a case, one has to generate the random
permutation in a more expensive way — i.e., the RPG
scheme needs to invoke the RNG more than once. If
M is large and G(7) is uniform, various algorithms have
been reported (See Refs 3, 5, 7) to yield equally likely

t Partially supported by the National Sciences and Engineering
Research Council of Canada. A preliminary version of this paper
was presented at the 1989 ACM Computer Science Conference in
Louisville, Kentucky.

random permutations. The techniques that have been

reported require M calls to the uniform RNG.

If M is large, however, and G is non-uniform the
problem is two-fold. For the first part, the user is left
with the problem of specifying g, for 1<i< M!.
Additionally, once this has been done, the question of
generating the permutations based on the {g;} has to be
addressed.

In this paper, we shall address both these problems.
We shall first propose a technique to specify the prob-
ability associated with the various permutations.
Although this specification strategy does not permit the
user to explicitly specify and control all the M! values
of g; (which the user should be grateful for), it does let
the user specify M — 1 distinct quantities using which he
can control the various probabilities {g;}. These M — 1
quantities are specified in terms of a probability vector
called the control vector. After specifying it we shall
present an algorithm to achieve the RPG based on the
latter vector.

Although, in general, the user can completely define
the control vector, we believe that in many applications
it is easier for the user if this vector is defined in terms
of a single parameter. To render this possible, we have
suggested a few ways by which the vector of control
probabilities can be completely specified in terms of a
single parameter called the degree of uniformity. In one
specific case the parameter is called p, and it can be
shown that if p = 0 the entire probability mass lies on a
single permutation. Furthermore, if p is unity, G(x) is
uniform. In between these boundary values p can take
any value in the open interval (0, 1). A higher value of
p implies a more equal diffusion of the probability mass
among the elements of .

Alternative single parameter distributions for G(x)
are also defined in the paper, and in each case the
degree of uniformity has been appropriately defined.
The paper also contains various simulation results which
demonstrate the effect of varying the degree of uni-
formity on G(s). Applications of the RPG technique
are also described.

368 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

¥20Z I4dy $0 uo 1senb Aq g29//€/89¢€/¥/€E/8101e/|ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



ON GENERATING RANDOM PERMUTATIONS WITH ARBITRARY DISTRIBUTIONS

2. RANDOM PERMUTATION GENERATION

Throughout this paper we assume that the various
permutations in s are ordered so that it makes sense to
refer to &; and m;, where ;, ; € 7. The ordering may
be lexicogrphic (based on the ordered set R)° or may be
the ordering specified by a permutation listing algor-
ithm.® We require however that 7, and m,, are the
unique permutations as follows:

JTy =R1R2 SR RMﬁ]RM
T an =RMRM—1 .o R2R1.

We define the control vector S as an M x 1 probability
vector satisfying:

S =[s1,8,...,5u]7, where, ()

M
2 s;=1. 3)

s; is the probability of generating the element R; € R in
any permutation generation operation.

Let *8 be any subset of . We define the conditional
control vector S|*®8 as the vector of normalized prob-
abilities in which only the quantities corresponding to
the elements of the set ¥ have non-zero values. Thus,
S|® consists of the normalized probabilities {s/ }, where,

s/ =0 if R, & B (4)
ol therwi 5)
= otherwise.
2 Si
R;eX

Observe that the vector S defined by (2) and (3) is
exactly equivalent to S|, and thus these above nor-
malized probabilities are indeed conditional prob-
abilities appropriately conditioned.

The technique for generating the permutation is now
described. For the sake of explanation we define P € &
be the randomly generated permutation, where, if P is
the string p,p,ps. .. py, then, for all i#j,p;, p,€NR
and p; # p;. We shall generate P by randomly assigning
an element of R for every position in P. The way by
which this is achieved is by computing successively the
prefixes of P. Initially p, is randomly assigned a value
in R based on the control distribution § (i.e., S|R). By
this we mean that for all i, R; is selected with a prob-
ability of s;. Let us assume that p, is assigned the value
Rpy). Clearly, the string p,. . . py has to be computed
using the symbols in ¥ =R — {Rp;)}. This is done in a
recursive manner by using the conditional distribution
of S| and the process is recursively continued by
successively updating .

We note in passing that although the algorithm has
been defined in terms of generating prefixes of the
permutation P, it can just as powerfully be defined in
terms of assigning positions to the elements of R. The
reason for the current assignment strategy will be clear
in Section 2.2.

For the sake of completeness, the above procedure
is algorithmically described below. The properties of
the algorithm are proved subsequently.

Algorithm RPG (S)
Input: The control vector § satisfying (2) and (3).

Output: A permutation P = pp,ps. .. py, where for
all i #j, p; # p;, and p;, p; E R.
Method
Begin
B =N
Fori:=1to M Do
Select p; € %8 based on the distribution S|*8, as per
(4) and (5).
B:=Y - {p}
EndFor
End Algorithm RPG

Observe that generating the permutations based on
the above algorithm automatically implies that the
algorithm disallows all possible distributions for G().
But clearly, for large values of M, even the explicit
definition of G(x) is unattainable. Furthermore, unlike
the distribution used in the currently known algorithms,
G(m) need not necessarily be uniform. Indeed, by
merely specifying M — 1 independent control quanti-
ties, a very large subset of the possible set of distri-
butions can be included in the generating process.

We now prove the properties of Algorithm RPG.

Theorem 1.

The generation of a particular permutation requires at
most M invocations of a RNG. Furthermore, if every
s;> 0, there is a positive probability of generating every
permutation in s. Finally, if $=[1/M, 1/M, ...,
1/M]", the Algorithm RPG generates all the M! per-
mutations with a uniform distribution.

Proof.

The first assertion involving the number of calls of the
RNG required is obvious from Algorithm RPG.
Ifeverys; > 0, there is a finite positive probability that
R; can be assigned to p,. However, in any generation if
p1# R;, then the probability that R; is in the second

position is clearly
S / 2 S;
R-{p1}

which again is clearly greater than zero. A similar argu-
ment shows that R; can be any of the M positions. The
second assertion is thus true since the argument is true
for all R,.

To prove the final assertion we note that if S = [1/M,
1/M, ..., 1/M]" the first element p, can be any element
in M. Furthermore every element is chosen with an
equal probability. The result follows by using a simple
recursive argument observing that for all ®¥ the non-
zero components of S|*8 consists of || elements all of
which have the value 1/|].

O

The final theorem describes the way by which the
control vector controls the form of the permutation that
is generated.

Theorem 2.

Let S be the user defined control probability vector.
Then, in any permutation that is generated the prob-

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 369

¥20Z I4dy $0 uo 1senb Aq g29//€/89¢€/¥/€E/8101e/|ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



B.J. OOMMEN AND D. T. H. NG

ability that R, precedes R, is exactly the ratio ./
(s, +s,)-

Proof.
Let R, and R, be any two distinct elements with indices
u,v€{1,2,...,M}, and let their corresponding con-

trol probabilities be s, and s, respectively. Since the
theorem is trivial for the case when either (or both)
these probabilities are zero, with no loss of generality
we assume that both s, and s, are positive. It is required
to prove that in this case, the probability of generating
a permutation in which R, precedes R, is s,/(s, + 5,).
We shall prove the theorem by performing an induction
on the length of the prefix of the generated permutation
P.

For the indices u,v €{1,2,..., M}, let §, (W) be
the event that either R, or R, is the element which is
selected from 28, where it D BW. Also, let &, ,(i) be the
event that position i contains the first appearance of R,
or R, (i.e., neither of them have occurred before, but
the ith position contains one of them). Note then that
£..,(1),...,8&, (M — 1) are mutually exclusive and col-
lectively exhaustive events. By virtue of the generation
scheme R, ultimately precedes R, if it is selected before
R, since if that is the case, if it is in position p;, then
R, will be in position p; where i <.

We first consider the case when 8 = R. Given &, ,(1),
R, ultimately precedes R, in the permutation every time
R, is the first element selected. Clearly, the probability
that p,, the first element selected is R, is s, because
the RNG is uniform. Similarly, the probability that
R, ultimately precedes R, in the permutation is the
probability that p, = R,, and this occurs with a prob-
ability s,. Thus the conditional probability of R, pre-
ceding R, given &, ,(1) is 5,/(s, + s,).

We now consider the case when 88 D i, where 8 =
{R,, R,} and R D 2. Using (4) and (5), the conditional
control vector S|T8 will contain non-zero elements for
s, and s, since both s, and s, are positive. Since R, and
R, have not yet been selected, their selection will be
based on the conditional control vector S|%. The con-
ditional probability that R, ultimately precedes R, given
E,.,(M+1—|W|) is the probability that the first
element selected from 2B, py, 1w, is R,. Again, since
the RNG is uniform, this occurs with a probability s,,.
Similarly, the conditional probability that R, ultimately
precedes R, in the permutation given &, ,(M + 1 — |%])
is the probability that py._ g is R,. This occurs with
a probability s;,. Thus the conditional probability of R,
preceding R, given &, (M +1—|B|) is obviously
s./(s. + s,), which again is s,/(s, + s,) since the nor-
malizing constant for s, and s, are exactly the same and
is defined by (5).

To complete the proof we note that since
£..,(1),...,&, (M- 1)are mutually exclusive and col-
lectively exhaustive events, using the laws of total prob-
ability,

Prob(R, precedes R )
= 2 Prob[R,, precedes R, |&, ,(i)] . Prob[&, ,())].

Since Prob[R, precedes R,|E, ,(i)] is the same for all i,

Prob(R, precedes R,)
= Prob[R, precedes R, |&, ,(i)] . 2 Prob[&, , (i)]

=5,/(su +5,)
and the result follows. O

2.1. Alternate Specifications of G (7): Pairwise
probabilities

An alternative way of specifying a distribution G(x)
would be to specify the probability of R, preceding R,
in a permutation. Let P, be this probability. Clearly,
.P,=1-,P,, and hence, if the user so desired, he
could specify these M(M — 1)/2 probabilities (i.e.,
{,P, for all u, v}) to completely define his distribution
G(m) on 7. Observe that if these M(M — 1)/2 prob-
abilities were specified, by making M(M — 1)/2 uniform
RNG invocations, the order of every pair of elements
would be explicit and the random permutation gener-
ated.

The problem with this technique however is that
the invocations could lead to contradictory conclusions.
Thus, if we consider the set R = {A, B, C}, the RNG
based on 4Pz may impose the condition that A precedes
B. Similarly, the RNG based on gPc may impose the
condition that B precedes C. Notice that this could imply
that the permutation generated is ‘ABC’. However, if
the RNG based on 4P, required that C preceded A, the
entire random permutation generation process would
have to be repeated because the orders specified by the
pairwise positioning of the elements are contradictory.
Indeed, in the more general case, of the 2¥(™~1/2 poss-
ible outcome scenarios, only M! of these would lead to
valid permutations. Clearly, as M is large the process
could be ‘divergent’. It is easy to see that even for small &
M, an infinite number of calls may be required in any £
one permutation generation. g

Such a ‘divergent’ scenario does not occur if the {s;}
are used to describe G(xr) because the control vector 3
S fully defines the pairwise probabilities ,P, for allg
u,ve{l,2,...,M} Thereverseis, of course, not true. =
However, if M — 1 of the pairwise probabilities are user @
specified, by using Theorem 2, the control vector S can §
be fully and uniquely defined and the RPG technique g
described in this section can be used to generate the ©
permutation P. The following example clarifies this.

[onJe/|ufwod/woo dno-olwepeoe//:sdiy Woll papeojumod

9

¥202 1Mdy

Example 1

Let R = {A, B, C} and let the two user defined pairwise
probabilities be:

APB=O.625, BPC=0'6
Then, since ,Pp = s4/(sa + s5) and gPc = sg/(sg + 5¢),
we have,
s4/(s4 +55) =0.625;55/(sc +s5) = 0.6;
and,
s4+spt+sc=1

This implies that s, = 0.5, sy = 0.3 and s¢c = 0.2.

Using this as the control vector, permutations can be
generated to satisfy the user specified pairwise prob-
abilities.

370 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990




ON GENERATING RANDOM PERMUTATIONS WITH ARBITRARY DISTRIBUTIONS

2.2. A single parameter specification of G(m)

Till now we have specified G() and generated random
permutations based on the control vector S. However,
for the specification of S the user has to specify M — 1
probabilities. Often, it is more convenient that S be
defined by a single parameter. We shall describe one
such single parameter specification of G(r).

Let p be a real number in the interval (0, 1]. Then a
single parameter specification of G(r) is defined in
terms of p as:

S, =p.S;_; fori=2,...,M.

p is called the degree of uniformity.

Observe that if p— 0, 5, will be arbitrarily larger than
5. Thus the probability that s, precedes s, can be as
close to unity as desired. Also, in general s; will be
arbitrarily larger than s;,, implying that in the limit as
p— 0, the probability mass will be completely con-
centrated on m; = R|R; . . . Ry, with probability 1. Fur-
thermore, if p = 1, all the s;’s are equal implying from
Theorem I that the probability mass is equally dispersed
between all the elements of .

To demonstrate the effect of p on the distribution of
G(m) the latter has been tabulated below for various
values of p and for the values of M = 3, 4. Notice the
concentration of the probability mass when p = 0 and
the spread in the mass as p increases. Thus, when p =
0.2, the probability mass on the permutation ‘ABC’ is
0.672043, and this mass decreases to 0.45788 and
0.22769 as p increases to 0.4 and 0.8 respectively. As
expected, the distribution is uniform when p is unity.
Similarly, when p=0.2, and M = 4, the probability
mass on the permutation ‘ABCD’ is 0.53850, and this
mass decreases to 0.28194 and 0.07713 as p increases
to 0.4 and 0.8 respectively. Again, the distribution is
uniform when p— 1.

Obviously for large values of M such as enumeration
strategy is infeasible. To consider the effect of p for large
values of M, we have taken the number of inversions in
a permutation to be an indicator on the degree of
unsortedness in the permutation*. This® is quite a nat-
ural measure. Thus, in any generated permutation, since
we can count the number of inversions, a plot of the
expected number of inversions as a function of p would
demonstrate the power of p to parametrize the degree
of uniformity of G().

* An inversion in a permutation p = pp,. .. py is a pair (p, p))
where p; < p; although i < j. For the properties of inversions, see [ref.

M=15
50T
@ 40T
k=]
0
@
2
5 30T
@
2
5 M=10
o 20T
£
s
10T
M=5
T t t + |
0.2 0.4 0.6 0.8 1.0

Value of p

Figure 1. A plot of the expected number of inversions as a
function of p. Note the increase in the expected number of
inversions with p.

The plot is shown in figure 1 for M taking values 5,
10 and 15. In each case, ten thousand permutations were
generated for every value of p so that a good estimate
of the average number of inversions could be obtained.
Note the monotonicity of the index as p increases. In
each case the average number of inversions has a value
of zero when p is zero, and the quantity increases to the
value of M(M — 1)/4 as p increases to unity.

We conclude this subsection by observing that if the
user did not choose to have the probability mass con-
centrated on 7, = R\R,... Ry for p=0, but rather
choose to have it concentrated on some other per-
mutation Q = q,q,. . . qy, Where Q € z, this can be
trivially achieved by assigning

Sq; =P Sq,_, i=2,...,M,andp € (0,1].

2.3. Alternative single parameter specifications of
G(m)

The parameter p called the degree of uniformity has
been defined so as to render the set {s;} a geometric

Table 1. The distribution G(7) for M = 3 specified in terms of the degree of uniformity. In this case, R = {4, B, C}. Observe that
when p = 0, the probability mass is concentrated on 77; = ABC and when p =1 the mass is uniformly distributed.

P
T 0 0.2 0.4 0.6 0.8 1

ABC 1 0.672043 0.45788 0.31888 0.22769 0.16667
ACB 0 0.134409 0.18315 0.19133 0.18215 0.16667
BAC 0 0.155086 0.22104 0.22509 0.19992 0.16667
BCA 0 6.2035E-3 3.5367E-2 8.1032E-2 0.12795 0.16667
CAB 0 2.0882E-2 7.326E-2 0.11480 0.14572 0.16667
CBA 0 5.3763E-3 2.9304E-2 6.8878E-2 0.11658 0.16667

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 371

¥20Z I4dy $0 uo 1senb Aq g29//€/89¢€/¥/€E/8101e/|ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



B.J. OOMMEN AND D. T. H. NG

Table 2. The distribution G(7r) for M = 4 specified in terms of the degree of uniformity. In this case, )t = {4, B, C, D}. Observe
that when p = 0, the probability mass is concentrated on 7, = ABCD and when p = 1 the probability mass is uniformly distributed.

p
V1 0 0.2 0.4 0.6 0.8 1

ABCD 1 0.53850 0.28194 0.14654 7.7130E-2 4.1667E-2
ABDC 0 0.10770 0.11278 8.7926E-2 6.1704E-2 4.1667E-2
ACBD 0 0.12427 0.13611 0.10344 6.7724E-2 4.1667E-2
ACDB 0 4.9707E-3 2.1778E-2 3.7239E-2 4.3343E-2 4.1667E-2
ADBC 0 2.1540E-2 4.5111E-2 5.2755E-2 4.9363E-2 4.1667E-2
ADCB 0 4.3080E-3 1.8044E-2 3.1653E-2 3.9490E-2 4.1667E-2
BACD 0 0.12743 0.14374 0.10935 6.9961E-2 4.1667E-2
BADC 0 2.5486E-2 5.7494E-2 6.5610E-2 5.5969E-2 4.1667E-2
BCAD 0 6.0681E-2 3.0260E-2 5.1797E-2 5.3304E-2 4.1667E-2

BCDA 0 4.8545E-5 1.9366E-3 1.1188E-2 2.7292E-2 4.1667E-2 -

BDAC 0 1.1763E-3 1.1102E-2 2.7788E-2 3.9315E-2 4.1667E-2 g

BDCA 0 4.7051E-5 1.7764E-3 1.0003E-2 2.5162E-2 4.1667E-2 5

o

CABD 0 2.5512E-2 5.8014E-2 6.6987E-2 5.7178E-2 4.1667E-2 §

CADB 0 1.0205E-3 9.2823E-3 2.4115E-2 3.6594E-2 4.1667E-2 =

CBAD 0 5.2644E-3 2.5299E-2 4.4952E-2 4.9615E-2 4.1667E-2 S

CBDA 0 4.2115E-5 1.6192E-3 9.7910E-3 2.5403E-2 4.1667E-2 =

CDAB 0 1.7688E-4 3.0764E-3 1.2299E-2 2.6673E-2 4.1667E-23

CDBA 0 3.5377E-5 1.2306E-3 7.3793E-3 2.1338E-2 4.1667E-2 5

(o}

D

DABC 0 4.3080E-3 1.8044E-2 3.1653E-2 3.9490E-2 4.1667E-2 3

DACB 0 8.6159E-4 7.2177E-3 1.8992E-2 3.1592E-2 4.1667E-2 g

DBAC 0 9.9415E-4 8.7111E-3 2.2343E-2 3.4674E-2 4.1667E-2 o

DBCA 0 3.9766E-5 1.3938E-3 8.0437E-3 2.2192E-2 4.1667E-25

DCAB 0 1.7232E-4 2.8871E-3 1.1395E-2 2.5274E-2 4.1667E-28

DCBA 0 3.4464E-5 1.1548E-3 6.8371E-3 2.0219E-2 4 1667E-2§

==

=l

N

=

o

)

&

&

w

3

49

. . .y . ~

M=15 progression. Thus R, has a highest probability of being

= co

o

H
o
t
T

w
o
3
L]

N
o
:
1

. —M=10

The number of inversions

10T

0.2

-4

0.4

t t
0.6 0.8
Value of A

Figure 2. A plot of the expected number of inversions as a
function of A. Note the increase in the expected number of

inversions with A.

P1, and Ry, the smallest probability of being p;.

This is not the only way by which G(7) can be speci-o
fied using a single parameter. Indeed, the set {s;} can§
also be defined as a set of diminishing probabilities
where the quantities decrease as per an arithmetic pro-2,
gression. In such a case, if A € (0, 1), we define

st =N2+(N—i+1)(1-A).

Furthermore, we fully define the control vector {s;} as,

M
si=sl | 2 sl.
i=1

Observe that for any value of A, it is impossible to
obtain s; to be arbitrarily larger than s;,, for M > 2. In
this case, to avoid repetition, we have not considered
the case of M = 3 and 4 as in the case discussed earlier.
However, for large values of M, we have plotted (in
Figure 2) the average number of inversions as a function
of A. In each case the average number of inversions
increases to the value of M(M — 1)/4 as A increases to
unity.

To conclude this subsection, we note that {s;} need
not merely be geometrically varied (as in section 2.2)
or arithmetically varied (as in this subsection). Indeed,

A

¥202 1Ay

372 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990



ON GENERATING RANDOM PERMUTATIONS WITH ARBITRARY DISTRIBUTIONS

{s;} can be varied as per any user-defined progression,
such as the Zipf law or an arithmetico-geometric pro-
gression. Thus the set of distributions permitted by our
RPG algorithm is indeed a very large subset of the set
of all possible distributions.

3. APPLICATIONS OF RANDOM
PERMUTATION GENERATION

One of the most basic problems studied in computer
science is that of sorting M elements. It is well known
that sorting algorithms can be made very efficient, and
that in particular, sorting can be achieved with the
average time of O(M log M).%8

However, if the elements to be sorted are in an
‘almost sorted’ order, some of the ‘worst’ algorithms
turn out to be extremely efficient. Indeed, Sedgewick
has even asserted that Insertion Sort (which has a worst
case complexity of O(M?)) has a linear time complexity
if the list is initially ‘almost sorted’. In this connection,
probably the most impressive of the various sorting
algorithms is SmoothSort, due to Dijkstra2. The latter
has a worst case complexity of O (M log M) and it has
a complexity of O(M) for ‘almost sorted’ lists. Fur-
thermore, the complexity increases ‘smoothly’ as the
degree of unsortedness increases.?2

To actually compare various sorting algorithms Cook
and Kim' tested a variety of sorting algorithms experi-
mentally. However, the biggest problem in such studies
is to generate the data in the testing phase. Indeed, if
R={A, B, C, D, E}, it is easy to see that if ‘ABCDE’
is the sorted list then ‘BACDE’ is ‘almost sorted’. The
question is then one of randomly generating such lists.

It is a desirable feature that the algorithm generating
‘almost sorted’ lists must permit the generation of every
element of 7. The reasons for this is because although
Insertion Sort is good for almost sorted lists, it performs
very poorly for ‘almost unsorted’ lists. Thus, if a user
intends to use Insertion Sort as his sorting mechanism,
he would have to reckon with the fact that the scheme
would be excellent if the list is ‘almost sorted’ but it
would perform poorly if the list is unsorted. The ques-
tion is now one of understanding that although
‘EDCBA’ is an unsorted list, this could be the input to
the algorithm although the probability of this occurring
as a list to be sorted may be very small. The strategy
which we have proposed in this paper permits the gen-
eration of almost sorted lists. Indeed, as shown in Figure
1, a small value of p (say p = 0.2) yields the ‘almost
sorted’ lists with a relatively high probability, but also
distributes the rest of the probability mass among the
other permutations in such a way that the less sorted
lists have less of a probability of being generated. Notice
if M = 10and p = 0.2, although all the M! permutations
(3,628,800) can be generated, the average number of
inversions generated is but 1.84. We believe that our
strategy will be extremely powerful in such scenarios.

Another application of the technique presented in
this paper is in the travelling salesman problem.*8 In
this problem, a salesman is required to start from any
city and tour all the cities in his jurisdiction and cover
the minimum distance in this endeavour. The problem
is known to be NP-Complete and a host of approximate
solutions have been suggested. One such solution uses
the concept of simulated annealing. In this solution, the

algorithm starts with a tour and using the principles of
‘controlled annealing’, attempts to find a superior tour.
The algorithm assumes the knowledge of an initial tour
obtained, for example, using various diameters of the
points. The question of computing an initial random
tour can be solved using the RPG technique suggested
in this paper. By assigning a probability measure to
the various initial tours, various travelling salesman
algorithms can be compared by using the ensemble
averages obtained from the results of having the algor-
ithms run from the random starting tours proposed by
a RPG algorithm.

Observe that in this case the designer of the algorithm
must choose an appropriate value of p or A (or the
control vector §) which assigns to tours which are
initially not worthwhile pursuing a negligible probability
measure. He should then take this into consideration to
possibly re-index the cities and determine a suitable
value of p or 4 so as to make such a probability assign-
ment possible.

4. CONCLUSIONS

In this paper we have studied the problem of generating
random permutations of a set R ={R,, R,, ..., R,}.
Let 7 be the set of permutations of R. We have con-
centrated on randomly generating the elements of &
according to a distribution G(;r) when the latter distri-
bution is not necessarily uniform. We have first pro-
posed a strategy for specifying the distribution G(m)
in terms of a control probability vector S, and then
proceeded to present a technique for generating the
elements of s according to this control vector. The
technique generates the random permutation by invok-
ing a RNG exactly M times.

We have also suggested a few techniques by which
the user can specify the control vector S in terms of a
single parameter called the degree of uniformity. In one
case this parameter is given by p and it quantifies the
uniformity of G(x). If p = 0 the entire probability mass
lies on a single permutation and if p is unity, G(m) is
uniform. In between these boundary values p can take
any value in the open interval (0, 1). A higher value of
p implies a more equal spread of the probability mass
among the elements of &. The effects of changing p
on the distribution G(x) has been demonstrated by
presenting various simulation results.

Finally, two applications of the RPG technique are
also described which involve the generation of ‘almost
sorted lists’ and the generation of the initial tours for an
algorithm attempting to solve the Travelling Salesman
Problem.

ACKNOWLEDGEMENTS

We are very grateful to an anonymous referee for his
careful reading of the paper and for helping us tighten
the proof of Theorem II.

REFERENCES

1. C. R. Cook and D. J. Kim, Best Sorting Algorithm for
Nearly Sorted Files, Comm. of the ACM, 23, 620-624
(1980)

2. E. W. Dijkstra, Smoothsort, An Algorithm for Sorting in
SITU, Science of Comp. Prog., pp. 223-233 (1982).

THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990 373

¥20Z I4dy $0 uo 1senb Aq g29//€/89¢€/¥/€E/8101e/|ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



B.J. OOMMEN AND D. T. H. NG

3. R. Durstenfield, Random Permutation, Comm. of the 6. D. E. Knuth, The Art of Computer Programming; Vol. 3:

ACM, 7, 420 (1964).

4. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan and

Sorting and Searching, Addison Wesley, Reading, MA
Dover (Second Edition) (1981).

’

D. B. Shmoys, The Travelling Salesman Problem, John 7. L. E. Moses and R. V. Oakford, Tables of Random
Wiley (1985). Permutations, Stanford University Press (1963).
5. D. E. Knuth, The Art of Computer Programming; Vol. 2: 8. R. Sedgewick, Algorithms, Addison Wesley (Second Edi-

Seminumerical Algorithms, Addison Wesley, Reading,
MA, Dover (Second Edition) (1981).

tion) (1988).

9. S. M. Ross, Stochastic Processes, Wiley (1983).

Announcement

2-5 JUNE 1991
HAWAII

Fourth International Conference on Indus-
trial and Engineering Applications of Arti-
ficial Intelligence and Expert Systems (IEA/
AIE-91), Waiohai Hotel, Kauai, Hawaii,
June 2-5, 1991. Sponsored by ACM/
SIGART, and The University of Tennessee
Space Institute, in cooperation with AAAI,
IEEE Computer Society, International
Association of Knowledge Engineers, and
Canadian Society for Computational Studies
of Artificial Intelligence, International
Neural Network Society, and ECCAI.

For further information contact:

Dr. Moonis Ali, Conference General Chair-
man, The University of Tennessee Space
Institute, MS15, B.H. Goethert Parkway,
Tullahoma, TN 37388, U.S.A. Tel: (615) 455-
0631 ext. 236. Fax (615) 454-2354.

E-mail: ALIF@QUTSIV1.BITNET

12-16 NOVEMBER 1990
NIMES, FRANCE
Neural Networks and their Applications

The Second International Workshop on
“Neural Networks & their Applications”,
held in November 1989, attracted over 500
visitors, attendees and speakers from both
the industrial world and research laboratories
of some twenty countries. It was also the
occasion for twenty-five companies and
research organizations to exhibit their prod-
ucts and prototypes.

Fortified by this success, the Neuro-Nimes
Workshop will be held at Nimes from Nov-
ember 12 to 16, 1990.

In a field where fashion may perhaps tend
to obscure seriousness, it can sometimes be
difficult to distinguish what should and what
should not be taken into account, and it is
with the focus closely on reality and efficiency
that Neuro-Nimes '90 will present a selection

374 THE COMPUTER JOURNAL, VOL 33, NO. 4, 1990

of the leading R&D work on connectionism,
neural networks and their applications. Par-g
ticipants will be able to benefit from a unique2
opportunity to take stock of current methods=.
and techniques and be in a position to foresee S
the short term and medium-term industrial§
applications. =
A meeting place for engineers from indus- S
try and research workers, Neuro-Nimes will =
comprise four complementary events:

® a scientific and technical conference

® a series of tutorials

® an exhibition of commercially available
products and advanced prototypes

® an industrial forum

Information

Correspondence and requests for informa-
tion should be addressed to the General
Chairman: Jean-Claude Rault

EC2-269-287, rue de la Garenne - 92024 Nan-
terre Cedex - France. Tel: +33.147 807000 -
Telex: 612 469 - Fax: +33.1 47 80 66 29

¥20Z 1Mdy $0 uo 1senb Aq 829//¢/89¢/¥/€E/8101e/|ulwoo/woo dno-olwspeoe//:sdy





