Tesseral Quaternions for the Octtree

S. B. M. BELL anp D. C. MASON

NERC Unit for Thematic Information Systems, Geography Department, University of Reading, Whiteknights, PO Box 227, Reading RG6 2AB

The linear octtree of Gargantini’ is discussed. Its addressing is extended to the whole of 3-dimensional Euclidean space.
A place-system Tesseral arithmetic>’ operating directly on the octtree addresses is described. It is based on the
quaternions. They provide the geometrical operations of vector addition and subtraction, and rotate and scale.

Received March 1988, revised February 1989

1. INTRODUCTION

Hierarchical data structures have been reviewed by
Samet,* and recent papers on the octtree® ® 7-8 show that
this method of dividing and addressing 3-dimensional
data has many advantages. The linear octtree is explored
by Gargantini.! In this the 3-dimensional space of the
image is addressed in an hierarchical manner, and the
address plus the data relevant to that address are stored
in the form of a sorted list. This method of storing the
data is useful in computer graphics®? and might be used
in the field of Geographic Information Systems for
digital elevation models in the same way as quadtrees®
are already used. Processing such data usually involves
some geometric transforms such as translation, rotation
and scaling. If Cartesian geometry is used to provide the
required geometric manipulation, the hierarchical ad-
dress must be separated into Cartesian components
before the geometrical transform, and possibly re-
converted into an hierarchical address afterwards.!
However, after extending the Gargantini address scheme!
to the whole of 3-dimensional Euclidean space, it is
possible to find a Tesseral® arithmetic which provides
geometric transforms without conversion of the
hierarchical address. This paper describes such an
addressing and arithmetic for the octtree.

2. ADDRESSING THE OCTTREE

The image is taken to be a cube, with one vertex at the
origin. The cube is split into 8 octants, and the octant
nearest the origin is labelled with the symbol 0. Each
parent octant is then split into eight further son octants
each of which take a left-hand label symbol correspond-
ing to the parent octant and a right-hand label symbol
corresponding to the position of the son octant. For
example, the son octant of the parent octant labelled 0
nearest the parent octant labelled b is labelled 0b. This
process of subdividing octants is continued, the new label
symbol always appended on the right, until the desired
resolution of addressing is reached. Fig. 1 shows the
situation after two subdivisions, and introduces the label
symbols we shall use for *he linear-octtree addressing: 0,
b, d, f, h, j, | and n. The hidden octant is labelled 4. In
Gargantini’s scheme' addresses covering a larger area
than the minimum are indicated by appending another
label symbol or label symbols, say x or xx etc., on the
right-hand side of the address. x means that all 8 octants
of the parent are addressed, so that /x means all of b0,
bb, bd, bf, bh, bj, bl, bn. However, for our current
purposes we want to address the octtree at the minimum

le/ln[nl/nn
Zld/[f/lnd/nf nn

p — — L
/ dl / dn fl / fn nf /
dd df d ﬂ n / "
b
dd df fd g | ¥ / n/
fi jn
T A
bn /)
d f bd bf o / }
bj |
0 b b0 T /

Fig. 1. The linear octtree subdivided twice.

resolution, and shall not be referring explicitly to the fact
that the linear-octtree addressing lends itself to an
hierarchical interpretation of the image-space.

3. ADDRESSING THE COMPLETE
EUCLIDEAN SPACE

We see that the octtree addresses only cover one of the
octants of the 3-dimensional space, which we shall call
the positive octant. This is not sufficient if we want to
provide a full geometry for the space, since the result of
some spatial transform, for example a vector subtraction,
or a rotate and scale, could lie outside the positive octant,
and so we now extend the addressing scheme to cover the
other 7 octants. The octant opposite the line 0 to b is
given the prefix ... bbbb, by appending an infinite number
of bs to the left-hand side of the address. This will be
written symbolically as ¢(b. All the other octants are
similarly labelled : the one opposite the line 0 to d has all
the addresses prefixed by <{d and so on. Suppose that the
positive octant has been subdivided to some given
resolution. Let V be the address of the pixel furthest from
the origin in the direction of the line from 0 to u. To find
the full address of a pixel in the octant prefixed by (u,
where u is any Tesseral label symbol, pad the addresses
in the positive octant with leading Os until they are all the
same length, then translate the positive octant along the

386 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

TESSERAL QUATERNIONS FOR THE OCTTREE

line u to 0 until ¥ has passed the origin and is adjacent
to it. Prefix all the addresses of all the translated pixels by

{u.

4. MAPPING VECTOR ADDITION AND
SUBTRACTION

We now provide an algorithm for doing vector addition
directly on a pixel address label. We regard the address
as a number in an arithmetic to which we give the generic
name Tesseral?, expressed in place-system form to a new
‘areal’ base. The digits are the individual symbols of the
address, and we may map them on to Cartesian addresses
as follows:

0 (0,0,0)
b (1,0,0)
d (0,1,0)
S (1,10
h o (0,0,1)
J (1,0,1)
I (0,1,1)
n (L,1,1)

We first provide an answer for the addition of any two
digits in addition table, Table 1. The method of forming

Table 1. Octtree digit addition

add it to d we get the answer 0. A glance at the addition
table, Table 1, shows that we must make the last digit of
X equal to d in order for this to be true. The last digits
of A, X, and B then cancel, and we can continue and find
the penultimate digit of X via the equation:

A+X'+d=B or
(A’+d)+X"'=B or,if A’ +d is written 4"
A"+X' =B)

It can be seen that equation (2) is now of the same form
as equation (1), and we can proceed to solve it in the
same way. The process ceases when we obtain an
equation (3):

A"I+XIII — Bm (3)

which is identical with some equation (4) previously
found:

Am+Xm — B//I (4)

The sequence of digits found for X between equation (4)
and equation (3), inclusive of (4) and exclusive of (3), will
now repeat indefinitely, and the value of all digits of X'
has now been found.

To automate the process we provide a subtraction
table, Table 2, in which the required digit and associated

Table 2. Octtree digit subtraction

0 b d f h j I n

+

0 00 Ob 0d Of Oh Oj O On
b 0b b0 Of bd Oj bh On bl
d 0d Of d0 db O On dh dj
f Of bd db fO On bl di fh
h Oh 0 O On hO hb hd hf
j 0 bh On bl hb O hf jd
I 0 On dh dj hd Hf 10 Ib
n On bl di fh hf jd b n0

-0 b d f h j I n

0 0,0 0b 0,d 0,f 0,h 0,j 0,/ 0,n
bbb 0,0 bf 0,d bj 0k bn 0,
d dd df 0,0 0,b di dn 0,h 0,
f ff dd bb 0,0 fin dl bj 0k
h hh hj hil hn 0,0 0,b 0,d 0,f
i gJ hh jn hl bb 0,0 bf 0,d
I L1 Ln hh hj dd df 0,0 0,b
n mn Ll jj hh ff dd bb 0,0

the table is described in references 2 and 3. Multi-digit
addition is performed by using a carry in a fashion
exactly analogous to ordinary arithmetic with numbers
expressed to any ordinary base. We provide a worked
example.

f b d+
n j d

fJj 1o Answer
b d Carries

Subtraction is provided by an extension of the method
used for P-Adic fields® to a given base as described in
reference 10 and forthwith described here. Suppose that
the subtraction sum require is:

X=B—-A4
or, in the form we shall want to use it:
A+X =B 1)

where 4 and B are known Tesseral numbers and X is
unknown. We find the digits of X from right to left,
starting with the least significant digit of X. Suppose that
the last digit of A4 is d and the last digit of B is 0.

We require the last digit of X to be such that when we

carry to be added on to the remaining digits of 4 is found
by table lookup. The carry is given first, then the answer
digit itself. The row index of Table 2 is the 4 digit and the
column index the B digit. A worked example for
subtraction follows:

fbd+X = fjl0 Subtraction tables gives d,d,
X=..d

So+d+ X =fjl

f+Xx’ =fjl Subtraction table gives b,j,
X=..d

f+b+X" =fj

bd+X” =fj Subtraction table gives d,n,
X=..nmd

b+d+ X" =f

f+Xx” =f Subtraction table gives 0,0,
X =..0njd

0o+Xx" =0 Subtraction tables gives 0,0
X = ..00njd

The iterations of the equation are now identical, and the
answer is:

..... 00000njd = njd

Assuming that this algorithm is identical to vector
subtraction, with pixel addresses defined as in the section
on ‘Addressing the complete Euclidean space’, we are

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 387

1-2

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

S. B.M. BELL AND D. C. MASON

assured that the algorithm provides a repeating sequence
of no more than one digit for whole-pixel addresses. The
identity of the algorithm with vector subtraction can be
proved by separating each pixel address into its Cartesian
components, as described by Gargantini,’ and noting
that the algorithm is then equivalent to two’s complement
subtraction for each Cartesian component.

5. QUATERNION ALGEBRA

We would like to extend our arithmetic so that it
encompasses a multiplication also. The multiplication
should have a simple geometric meaning that will enable
_us to provide Tesseral algorithms easily for any geometric
transform we may want. In two dimensions this is done
by making the multiplication correspond to that of the
complex numbers, so that the geometric transform is
rotate and scale. It can then be shown that, provided we
can also perform the complex conjugate operation, quite
general geometric transforms'! can be programmed using
algorithms which rest on the Tesseral addition, sub-
traction, multiplication, and division. Guided by this, we
demand that the 3-dimensional multiplication should
correspond to a 3-dimensional rotation and scaling.
However, none exists, and we must go to 4 dimensions
before we find the quaternions which do have this
property. The quaternions have already had advocates
who suggest their use in computer graphics.!>'® We first
explore the algebra of the quaternions, and then turn to
their implementation on the Tesseral hypercube, and its
subset, the Tesserally extended linear octtree.

A typical quaternion, Q, consists of four linearly
independent components, r, s, u, and v, each of which are
scalars. It may be written:

O = rxty+sxt +uxt,+vxt,

f,1s a scalar and is equal to 1 as far as quaternion algebra
is concerned. ¢, t,, and 7, are scalars, and we now explore
their algebra. They obey algebraic rules that include
those of the complex numbers as a subset. However, in
the quaternion extension, multiplication is not com-
mutative, i.e. 7, is not equal to 1, xz,. rxt, is called the
scalar part of Q'* and Tesseral arithmetic with numbers
that are linearly dependent on ¢, alone is identical to
ordinary arithmetic to the appropriate base, which is 2
for the Tesseral arithmetic described in this paper. There
is a general quaternion addition and subtraction. The
Tesseral addition and subtraction explained above for
the octtree is a subgroup. There is a multiplication and a
division. The multipiication rules for the three com-
ponents ¢, t,, t, are:

txt, = —1
t,xt, =1, for x,y cyclic
txt, = —t,

It can be seen that each subset {,,,} behaves like the
complex numbers, with ¢, playing the role of i. In the
algebra presented below, +, —, %, and / refer to the
quaternion operations of add, subtract, multiply and
divide. We consider the quaternion Q:

O = r+s*t, +uxt,+vxty, r, s, u, v scalar
The scalar part of Q, S(Q) is:

r

388 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

The rest of the quaternion is jointly called the vector
part.’* The vector part of Q, V(Q) is:

Skl + Uty + vkl
Its quaternion conjugate, gc(Q) is:

S(@Q)-V(Q)

Its magnitude, mag(Q), a scalar number, is:

(gc(Q)*Q):

Its multiplicative inverse Q7! (see appendix A.3) is

gc(Q) / mag(Q)*

The four components ¢,, ¢,, ¢, and f, can be mapped
onto unit vectors along four orthogonal axes. The
Tesserally extended octtree is only 3-dimensional, and
the space it occupies is defined to be that spanned by the
vector part of a quaternion. This is called imaginary
space by extension of the term for the imaginary
1-dimensional space of the complex numbers. The quat-
ernion addition and subtraction then map onto vector
addition and subtraction. Proofs for the following
assertions in this paragraph are to be found in Appendices
A.5-A.8. The multiplication corresponds to the operation
of rotate and scale. Each quaternion vector rotates every
other by the same angle and scales it by the same
amount. Q scales by mag(Q) and rotates by an angle
ang(Q) such that:

tan{ang(Q)} = (— V(Q)*V(Q)): / S(Q)
It rotates by this angle in two different planes:

(i) in the plane (PV) at right-angles to the vector V(Q)
in imaginary space (see Fig. 24, which illustrates PV(Q)
for the quaternion r+sx*t));

(i) in the plane (PS) defined by vector ¥(Q) and vector
t, (see Fig. 2b, which illustrates PS(Q) for the quaternion
r+s%t)).

We introduce a second quaternion P. The properties

114

PV (Q) plane

Aj 72

Lol &3
Fig. 2(a). The vector part of a quaternion, Q, lying along the

t;-axis in imaginary space, and its plane PV(Q) parallel to
the plane defined by ¢, and ¢,.

tl}

/Q. PS (Q) plane

&

ang (Q)

fo
Fig. 2(b). The same quaternion, Q, shown in its plane PS(0)
parallel to the plane defined by ¢, and ¢,

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

TESSERAL QUATERNIONS FOR THE OCTTREE

we are about to remark on hold for any two general
quaternions P and Q, but for the purpose of illustration
suppose:

P =w+xxt,

where w and x are scalars. The plane PV(P) for P is
defined by the vectors ¢, and ¢, illustrated in Fig. 34 and
PS(P) is defined by the vectors ¢, and ¢, illustrated in Fig.
3b. We shall define the arbitrary sign of the angle ang(Q)

3]

. 4 > 13
P

Fig. 3(a). Another quaternion, P, whose vector part lies along ¢,.

3A

|

|

|

|

|
o]
4

Fig. 3(b). The same quaternion, P, shown in its plane PS(P),
together with its projection, P, into the plane PS(Q) (i.e. that
defined by ¢, and ¢,).

to

to be such that we can say that the quaternion Q, when
it pre-multiplies P, rotates P by an angle g in PV(Q) and
PS(Q). For the particular P and Q that we have chosen
as exemplars, this is illustrated in Fig. 4a for PV(Q) and

ti)

n

P

ang (Q)

— 13

Fig. 4(a). The vector part of P is rotated by ang (Q) in the plane
PV(Q), i.e. that defined by t, and ¢,.

4y |

P
ang (Q)

> 10

Fig. 4(b). The projection of P into PS(Q) is rotated by ang (Q)
in PS(Q), i.e. the plane defined by ¢, and ¢,

45 for PS(Q). However, the quaternion multiplication:

PxQ™?
rotates P by an angle ¢ in PV(Q) and an angle —q in
PS(Q).
So that:
QxPxQ™"

rotates P by an angle 2xq in PV(Q) and zero in PS(Q)
Thus if S(P) was zero to start w1th it will remain so.

We now consider Q and 0%, and proofs for the
following assertions in this paragraph are to be found in
Appendix A.9. V(Q) and V(Q? have an identical
orientation in imaginary space, and thus so also does PV.
If Q rotates by g then QF rotates by ¢/2 in the same
planes PV and PS. Also 1f Q scales by an amount s, then
Q¢ scales by an amount s2.

gc(Q) shares PV with Q and Q. gc(Q) rotates by the
same angle g with the same signs as Q?, but it scales by
the same amount as Q, namely s.

For these reasons, we can see that if:

Q%P =B

then:

Q:+Prqc(Qh) = B
and, most importantly, the operator:

0's [1+ ge(@h
will not only scale all quaternions by the amount s, but
will also rotate them by an angle ¢ within imaginary
space alone. This therefore is the operator we require to
map every point in imaginary space to another point in
imaginary space by means of a 3-dimensional rotation
and scaling. Suppose, as may be the case in image
processing, that we want to rotate and scale our image so
that point, or equivalently, quaternion P in imaginary
space falls on point B in imaginary space. We calculate Q
from its equality with BxP~!, then we calculate Q2 and
qc(Q). We can then apply the operator above to all the
image points, and the desired mapping is achieved.
Should we want to rotate about a point O instead of the
origin, the operator becomes:

(%) * (1-0) *qe(Q))+0
It will be shown that it is possible to carry out all the

required calculations using Tesseral techniques that work
directly on the addresses of the octtree.

6. ADDRESSING THE HYPERCUBE,
ADDITION AND SUBTRACTION

Table 3 relates the hypercube digits to Cartesian values
and the algebraic symbols used in the previous section.
It can be seen that the octtree tesseral addresses, in
imaginary space, form a subset. We map vector addition
onto Tesseral addition and produce Table 4, the addition
table for Tesseral hypercube digits. Addition is performed
in the same way as for the octtree, and a subtraction
table, Table 5, is also provided. It is used for subtraction
in an identical way to the octtree digit subtraction table,
Table 2.

7. MULTIPLICATION
Table 6 is the multiplication table for digits. The row

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 389

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

S. B. M. BELL AND D. C. MASON

index pre-multiplies the column index. We note that digit to ordinary arithmetic to any ordinary base. We provide
a is the multiplicative unity. Multi-digit multiplication is a worked example.
performed by using a carry in a fashion exactly analogous b dx
n j d

Table 3. Hypercube addressing -

{laaaaaaaaaa + did=<a
Digit Cartesian value Component <hhhhhhhhh + bxd=<h

Gidiiiiili + fad =<i
0 © 0 0, 0) O <bbbbbbbbj + dxj = {bj
a (1, 0, 0, 0) ¢ {aaaaaaae + bxj = ae
f E(l)’ i’ 8’ 8; i {cccccco + fxj =<co
d (0’ 0 1 0 ¢ {ccccccck + dxn=<{ck
e (1’ 0:]: 0) 2 Giiiiim + bxn={im
;o0 L L0 — lecccef fon = cf
g a 1, 1, 00 —
h © 0, 0, 1) 1, {ccccf00dca Answer
i a o, o, 1) —
J ©o 1 0 1) — {ciolaah Carries
;c 2(1) (1) (1) :; — {icKai k
m 1 oo 1 1) — <C<f Z <k
n o 1, 1, 1) — b b
o (O, 1, 1, 1) — <

m

Table 4. Hypercube digit addition

0 a b ¢ d e f g h i j kK I m n o

00 Oa 0b Oc 0Od 0Oe Of Og On 0i Of Ok O/ Om On Oo
Oa a0 Oc ab Oe ad Og af O0i ah Ok a Om al Oo an
0b O0c b0 ba Of Og bd be 0O Ok bh bi On 0o bl bm
Oc ab ba 0 Og af be cd Ok aj bi ch 00 an bm cl
0d 0¢e Of Og d0 da db dc O Om On Oo dh di di dk
O¢ ad Og af da e dc eb Om al Q0o an di eh dk e
Og bd be db dc fO fa On 0o bl bm di dk fh fi
Og af be cd dc eb fa g0 0o an bm cl dk ¢ fi gh
Oh 0 O Ok O Om On Oo KO ha hb hc hd he hf hg
0i ah Ok a Om al 0o an ha 0 hc b he id hg |if
O Ok bh bi On 0o bl bm hb hc jO ja hf hg jd je
Ok a bi ch 0o an bm ¢ hec b ja kO hg if je kd
00 Om On Oo dh di di dk hd he hf hg 10 la b I
Om al 0o an di eh dk e he id hg if la mO0 Ic mb
On 0o bl bm di dk fh fi hf hg jd je b I n0 na
0o an bm c dk e fi gh hg if je kd Ic mb na o0

SIJI IS RO | 4
=
<K

Table 5. Hypercube digit subtraction

+ 0 a b ¢ d e f g h i j k1 m n o

0 00 0,a 0,b 0,c 0,d 0,e 0,f 0,g 0,h 0,i 0,j 0,k 0,/ 0,m O,n 0,0
a aa 0,0 ac 0,b ae 0,d a,g 0,f a,i 0,h ak 0,j amO0,]l a0 O,n
b b,b bec 0,0 0,a bf bg 0,d be b,j bk 0,h 0,i b,n bo 0,/ O,m
¢ ¢c bb ac 0,0 c,g bf ae 0d ¢,k b,j a,i 0,h c,o b,n amO0,l!
d dd de df dg 0,0 0,a 0,b 0,c d! dmdn doo 0h 0,i 0,j 0,k
e e,e dd eg df aa 0,0 ac 0,b em d,l e0 dn ai 0h ak 0,
f ff fig dd de bb bc 0,0 0,a fin fo d,l dmb,j bk 0,h 0,
g 8g f.f ee dd cc bb aa 0,0 go fin emdl c,k bj ai 0h
h hh hi hj hk hl hmhn ho 0,0 0,a 0,b 0,c 0,d 0,e 0,/ 0,g
i ii hh ik hj i,m hl i,o hn aa 0,0 ac 0,b ae 0,d ag Of
j g ik hh hi jn jo hl hmbb bc 0,0 0,a bf bg 0,d O,
k kk jj ii hh ko jn iim hl cc bb aa 0,0 c,g bf ae 0,0
1 Ll Im ln Lo hh hi hj hk dd de df dg 0,0 0,a 0,b 0,c
m mmll molLn ii hh i,k hj ee dd eg df aa 0,0 ac 0,b
n nn no LI Lmjj jk hh hi ff f,g dd de bb bc 0,0 0,a
o o0 nm,n mmll kk jj ii hh gg f.f ee dd c,c bb aa 0,0

390 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

TESSERAL QUATERNIONS FOR THE OCTTREE

Table 6. Hypercube digit multiplication

* 0 a b c d e f g

a <0000 <000a <0005 <000¢ <000d <000e <000f <000g
b {0000 <000b {aaaa {aaac {hhhh Chhhj iiii itk

¢ <0000 <000c {aaac <0060 {hhhl {hhho (iiio Chhjl
d {0000 <0004 <000A {oool {aaaa {aaae {aaai {aaam
e <0000 <000e <000/ <0000 {aaae <0040 {aaao <00dj
f <0000 <000f {aaai {aaao iiii (iiio {aaal {aaaf
g <0000 <000g {aaak <00b/ iiim Chhlj {aaaf {aaga
h <0000 <000A {dddd {dddl <{000b <0005 {dddf {dddn
i <0000 <000i {dddf {dddo <000f <0000 <00bo <00bi
j <0000 <000j {eeee {eeeo (hhhj <0060 {mmmo <{eege
k<0000 <000k {eeeg {ddfl {hhhn <00be <iiki <0500
l <0000 <000/ {dddl <00h0 {aaac {aaao {eeeo {aaic
m {0000 {000m {dddn <{00hc {aaag <00dj {aaci <00jd
n <0000 <000n {eeem {aaic itk {aace {eeef {aach
o <0000 <0000 {eeeo <0050 iiio <0010 {aac0 {acam
x h i j k l m n 0

a <000k <000i <0005 <000k <000/ <000m {000n <0000
b (0004 <000f {aaae {aaag {hhhl {hhhn iiim iiio

¢ <000/ <0000 {aaao <005/ <0040 <00dc {aaec <00fo
d (bbbb {bbbf {bbbj {bbbn {ecee {cceg {ceck {ccco
e (bbbj {bbbo {00A00 <00he {ccco {bbfj {aaie <00/0
f (bbbf <0040 {ceco {aaei (kkko (iimi {ceef {aael
g <bbbn <00di {aaie <00/b {cege <0d00 {aaeh {aeak
h <aaaa {aaai {eeee {eeem {aaac {aaak {eeeg {eeeo
i {aaai <00h0 {eeeo ddif {aaao {00hf {aaci <0050
J {aaae {aaao {aaal {aaaj (iiio {aace iiij {aac0
k (aaam {O00hf {aaaj {aaka {aaec <00fh {aacd {acam
/ {cece {ccco {gggo {ccke {aaal {aaal {eeel {aai0
m {ceck <bbjf {eeme <0Ah00 {aaal {aama {aaib {aiag
n {cccg {aaei {ceef {aaid iiil {aaeb {aala {aalo
o <{cceo <00/0 {aai0 {aiag {aael {aeak {aalo {aaol

8. P-ADIC DIVISION

Division is necessary in the course of calculating, for
example, how to rotate and scale an image such that
point P falls on point B, as described in Section 5.

If J and K are known, X unknown, the division
equation may be written:

X=J%K or JxX=K)
X=K+«J' or X+J=K

and we seek the solution of these. In a method similar to
that used for subtraction, in an extension of the method
for division of P-Adic numbers to some base,® we find the
digits of X from right to left, starting with the least
significant digit of X, and using the second form of the
equations above. Notionally, we use the multiplication
table (Table 6) to find a last digit for X that, when
operated on by the last digit of J, will produce a result
(R) with the last digit equal to the last digit of K. The last
digits of R and K are then additively cancelled, and the
algorithm is iterated to produce the next least significant
digit of X. We proceed in this manner until we find the
same sequence of digits repeated indefinitely.

We should like to be able to produce a division table
for digits analogous to the subtraction table, Table 5.
This is not possible, however, because there are some
digits that cannot be changed into a Tesseral number
ending in some other arbitrary digit by pre- or post-
multiplication by any digit whatever. For example, a
number ending in 0 cannot be changed into a number

ending in any other digit using multiplication alone.
There are other digits besides 0 which create similar
difficulties. For example, study of the multiplication
table, Table 6, shows us that we cannot turn a Tesseral
number ending in / into one ending in a by pre- or
post-multiplication using any other digit. Our strategy is
to convert a number ending in 0 or 1 into another
number which is more amenable.

We divide by a0 in the case of a number ending in 0,
by shifting the radix point to the left by one place. If the
number ends in several zeroes we repeat until the number
ends in some other digit. If J in equation (5) ends in 0 we
divide J by a0 and replace J by J/a0. We have naturally
altered the value of X. We have multiplied the original
X by a0. However, we may solve equation (5) for X*a0
and, having found X'*a0 by the method already suggested,
then divide the answer, X*a0, by a0 to regain X. This
division is done by shifting the radix point one place to
the left, and will thus in general result in the answer, X,
having a non-zero digit to the right of the radix point.

We now consider our second example: if J ends in / we
can convert J to a number ending in a0 by multiplying
J by I. To preserve the equality of equation (5) we also
multiply K by /. After this process J ends in a0, and we
divide by a0 to obtain a number ending in a as previously
described.

By contrast, we consider the case when J ends in digit
a. Digit a can be changed into any other digit v by
multiplication by v and thus we will always be able to
proceed to find the next digit of X if J ends in a. Although

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 391

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

S. B. M. BELL AND D. C. MASON

Table 7. Hypercube digit division (pre-multiplication)

/ a b d h

0 0,0 0,0 0,0 0,0
a 0,a a,b a,d a,h
b 0,b 0,a 0,h b,d
c 0,c a,c a,l cl
d 0,d d,h 0,a 0,b
e 0,e e,j a,e a,j
f 0f d,i 0,i b.f
g 0,g ek a,m ¢,n
h 0,h 0,d h,b 0,a
i 0,i af i a,i
Jj 0,j 0,e h,j b,e
k 0,k a,g in c,m
l 0,/ d,l h,c 0,c
m Om en i,g ak
n 0,n dm hk b,g
o 0,0 e,0 i,0 c,0

the number occupying the notional place of K in equation
(5) will change as we iterate, that occupying the place of
J does not alter in value. If it starts by ending in q, it
always ends in a, and we have therefore solved the
problem for all iterations. The strategy is therefore to
convert J so that it ends in a digit like a which can be
converted to any other digit by multiplication by some
other digit. The digits for which this is true are a, b, d, h.
For completeness the next paragraph prescribes in a
more formal fashion how to turn every other digit into
one of these.

Our aim is to convert the last digit of J into one which
allows us to write a simple division table, Tables 7 and 8,
for any last digit of K. During the iterations of the
division algorithm the value of K changes, but that of J
does not. J is converted to the required forms as a one-
off exercise at the start, and then each iteration of the
algorithm starts with a simple table look-up involving no
extra multiplications or radix-point shifts. For rows/
columns a, b, d, h and n, in Table 6, the same condition
as for addition holds. For any given digit x, we can
always find a unique digit y, which, when multiplied by
x, produces a number ending in any given digit z. We call
the directed pair (x,z) soluble if and only if this is so. Any
number, N, ending in digit g, k, m, or n can be converted

Table 8. Hypercube digit division (post-multiplication)

/ a b d h

0 0,0 0,0 0,0 0,0
a 0,a a,b a,d a,h
b 0,b 0,a b,h 0,d
c 0,c a,c el a,l
d 0,d 0,h 0,a d,b
e 0,e a,j a,e e,j
f 0f 0,i b,i d.f
g 0,g a,k c,m e,n
h 0k h,d 0,b 0,a
i 0,i i, af a,i
Jj 0,j h,e b,j 0,e
k 0k i,g c,n a,m
l 0,/ h,l 0,¢ d,c
m Om in a,g e k
n O,n h,m bk dg
o 0,0 i,o c,0 e,0

to some number, M, ending, respectively, in digit 4, d, b,
or a by pre- or post-multiplication with number L, L =
n. Numbers, N, ending in ¢, e, i, f, j, I, can be converted
to some number, M, ending, respectively, in digits 50, d0,
h0, a0, a0, a0 by pre- or post-multiplication with a number,
L, consisting of one digit, the last digit of N. So L will be
equal to digit c, e, i, f, j, I, respectively. The radix point
in M is then shifted one digit to the left, and the answer,
when found must have the radix point shifted one digit
to the left also. If N ends in digit o it can be converted to
some number, M, ending in digit d by post-multiplication
by a number L, L = m#n. Finally, a number, N, whose

last digit is 0, must always be dealt with by shifting the .

radix point. We can thus always convert our equation
into one in which J has a last digit which forms a soluble
pair with any last digit of K by multiplying both J and K
by a suitable number, and then, if necessary, dividing J
by some power of a0 by shifting the radix point in J to
the left. Our division table thus only needs to cater for
the conversion of a, b, d, h to any digit.

Table 7, for digit division, answers the question: ‘how
do you convert a, b, d, h (columns) to any of the other
digit (rows) by pre-multiplication?’ Table 8, also for
digit division, answers the question : ‘how do you convert
a, b, d, h (columns) to any of the other digits (rows) by
post-multiplication?’ The digit on the right of each
column is the answer, and the digit to the left is the
negative of the carry whose use is explained by the
example below. It is the negative of the digit given in the
multiplication table, Table 6.

We follow with an example of hypercube division.
First we perform one iteration of the solution using only
the multiplication table, Table 6, and writing out the
steps in detail, then we will perform all the iterations
necessary for a complete solution using the division
table, Table 7.

X*njd = {cf00dca Table 6 shows that dxd = <a
X'dxnjd = {cf00dca Set X =X'd
X’0*njd+d*njd = {cf00dca
X'0 x njd+ d * nj0+ dxd = {cf00dca
X0 xnjd+d*nj0+ {a = {cf00dca
X'0*njd = {cf00dca—d*nj0+a
= {cf00dc0—d*nj0+a+a
= {¢f00dc0 — d * nj0 + a0
Divide both sides by a0
X' xnjd = {cf00dc—d=*nj+a
X" xnjd = {cf00dc—{cij+a
Using Table 6 for d*nj

= {knhkdh Using Tables 4 and 5

- We now perform the same iteration again using the

division table, Table 7, and go on to find a complete
solution. Table 7 rather than Table 8 is used because X
pre-multiplies rather than post-multiplies njd.

Xx*xnjd = {cf00dca Division table 7 gives a,d
X=...d
X' xnjd = {cf00dc—d*nj+a
= (knhkdh Division table 7 gives h,b

X' =...b,X=...bd
X" *njd = {knhkd—bx*nj+h

= {cbefi Division table 7 gives i,f
X'=..f,X=...fbd
X" xnjd = {cbef— fxnj+i
=0 X" =...0, X =<0fbd

392 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

TESSERAL QUATERNIONS FOR THE OCTTREE

For completeness we mention that if the answer to a
division sum is fractional it must be converted to a form
that can be easily mapped to the 4-dimensional space of
the hypercube. The algorithm for doing this is given in
reference 10.

9. FINDING THE SQUARE ROOT

The algorithm for finding the square root of a hypercube
quaternion is the same as that for the 2-dimensional
Tesseral arithmetic based on the complex numbers'® and
performs with similar efficiency. For the worst case it
takes 13 iterations to find the square-root to within 1 per
cent. The mathematical background to this algorithm is
given in Appendix A.10 It is a variant of Newton’s
method of finding a square root.

Let T be the Tesseral number of which we wish to find
the square root.

(1) Replace T with a normalised T between 0.0uU and
0.uU where u is a Tesseral digit and U a string of Tesseral
digits, by an even number of shifts 2xv where v stands for
an ordinary number. Steps (3) and (4) can still be done
using integer arithmetic, but the position of the radix
point must be remembered.

(2) If necessary replace T with a rotated T until it is
close to the line 0 to a. The method is as follows. If T
begins with <0, <b, {d, {f, <h, {j, I or {n, do nothing.
If T begins with <a, {c, <{e, g, <i, <k, {m or <0, multiply
it by b*b, i.e. (a.

(3) Perform the Tesseral calculation:

G =(T+a) / a0 where G is a Tesseral number.

(4) Tterate, replacing G with Tesseral G—(G*G—T)/
a0 at each iteration until G+G is equal to T within the
required error.

(5) Shift G back by v. We shift back by half the
number of shifts we used under step (1) because G is the
square root of 7. For example, if we had divided by 400
on carrying out step (1) we must now multiply by the
square root of @00, namely a0.

(6) If T was multiplied by b*b under step (2), multiply
G by <{b. Multiplying by <b is equivalent to dividing by
b as we can see from the Cartesian equivalent of b given
in Table 3 as t,, and the algebra of division given in
section 5. As for step (5), we only divide by b once
because G is the square root of T.

10. FINDING THE QUATERNION
CONJUGATE

The quaternion conjugate of each digit may be looked up
in the quaternion conjugate table, Table 9. The quat-
ernion conjugates of each digit in the number are then
added together, beginning each at the column position of
the original digit. For example, the quaternion conjugate
of the Tesseral number abc is given by:

gc(abe) = a00+ (b0 + <bc

11. EFFICIENCY CONSIDERATIONS AND
SUMMARY

The labelling scheme for the linear octtree described here
is an extension of that given by Gargantini,' where she

Table 9. Hypercube digit conjugation

S
(=]

Q:g\»\.&.}&q\m Ao o8
N\
&

demonstrates that the scheme lends itself to efficient
algorithms for non-geometric manipulations of 3-dimen-
sional data such as finding the resultant octtree obtained
by overlaying two octtree data-sets. It has been shown
here that the address labels of the linear octtree can be
regarded as quaternion numbers, and that quaternion
addition, subtraction, multiplication, division, conju-
gation and extraction of the square root can be done,
without translating the address labels into Cartesian
form, with an arithmetic that uses the individual symbols
in the address labels as digits. This is quaternion Tesseral
arithmetic. The geometrical transforms thus provided
are vector addition, subtraction, and rotation/scaling,
reflection in the line 0 to a, and scaling by the square
root/halving the angle of rotation, all in 4-dimensional
space. These operations can be used to provide vector
addition, subtraction and rotation/scaling in the 3-
dimensional space of the octtree. It has been shown that
if the translation and/or rotation/scaling required is
defined as a linear mapping of two points in the 3-
dimensional image onto two other points, then the
required transform can be defined in terms of quaternion
multiplications and additions (with the Tesseral numbers
A, B, and C also found by Tesseral methods). The
operator is:
A*xB+[]D=*C

which has 1 Tesseral addition as compared with 3 in the
Cartesian case and 2 Tesseral multiplications as com-
pared with 9 in the Cartesian case. So for this transform
the method might be more efficient because (a) it is not
necessary to translate the linear-octtree address into
Cartesian form and back into linear-octtree form at the
end of the calculation, and (b) the number of arithmetic
operations is fewer.

It is conjectured that the geometric transforms of
vector addition, subtraction and scaling/rotation in
3-dimensional space are sufficient to provide any linear
geometric transform, and that, in line with the results for
the Tesseral addressing of 2-dimensional space, based on
the complex numbers,'! fewer arithmetic operations per
general geometric transform will be required. In that case
the method might be more efficient generally since we
may repeat: (a) it is not necessary to translate the linear-

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 393

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

S. B.M. BELL AND D. C. MASON

octtree address into Cartesian form and back into linear-
octtree form at the end of the calculation, and (b) the
number of arithmetic operations per general geometric
transform is less. Whether the method is more efficient
depends on whether efficiency algorithms can be created
using the tesseral arithmetic to provide geometric
transforms of interest for image processing or geographic
information systems, and the method of implementing
the basic tesseral arithmetic operations of +, —, * and
/. For Cartesian arithmetic these operations are provided
in hardware in the Arithmetic Logical Unit and a
hardware or micro-coded implementation for the tesseral
operations would clearly be faster.

Acknowledgements

Thanks are due to Dylan Morgan for the use of his
manuscript on quaternions,’” and his assistance in
interpreting it, to William Wingate who provided
references 12 and 13 on the use of quaternions in 3
dimensions, and to Fred Holroyd for checking the
mathematics of an earlier draft.

This work was partly supported under NERC Contract
No. F60/G6/12.

REFERENCES

1. I. Gargantini, Linear octtrees for fast processing of three-
dimensional objects. Computer Graphics and Image Pro-
cessing 20, 365-374 (1982).

2. S. B. M. Bell, B. M. Diaz, F. C. Holroyd and M. J. Jack-
son, Spatially referenced methods of storing and handling
raster and vector data. Image and Vision Computing 1 (4),
211-220 (1983).

3. S. B. M. Bell, B. M. Diaz and F. C. Holroyd, Capturing
image syntax using Tesseral addressing and arithmetic. In
Digital Image Processing in Remote Sensing, edited J. P.
Muller. Taylor and Francis, Basingstoke (1988).

4. H. Samet, The quadtree and related hierarchical data
structures. ACM Computing Surveys 16 (2), 187-260 (1984).

5. J. Weng and N. Ahuja, Octtrees of objects in arbitrary
motion: representation and efficiency. Computer Vision,
Graphics, and Image Processing 39, 167-185 (1987).

6. H. H. Atkinson, I. Gargantini and T. R. S. Walsh, Filling
by Quadrants or Octants. Computer Vision, Graphics, and
Image Processing 33, 138-155 (1986).

7. 1. Navazo, D. Ayala and P. Brunet, A Geometric Modeller
Based on the Exact Octtree Representation of Polyhedra.
Computer Graphics Forum 5, 91-104 (1986).

8. N. Ahuja and C. Nash, Octree Representations of Moving
Objects. Computer Vision, Graphics and Image Processing
26, 207-216 (1984).

9. N. Koblitz, p-Adic Numbers, p-adic Analysis, and Zeta-
Functions. Springer-Verlag, New York (1977).

10. S. B. M. Bell, B. M. Diaz and F. C. Holroyd, Constructive
tesseral inverse. In B. M. Diaz and S. B. M. Bell (eds),
Spatial Data Processing using Tesseral Methods. Natural
Environment Research Council, Swindon (1986).

11. S. B. M. Bell and F. C. Holroyd, Tesseral Algorithms. In
B. M. Diazand S. B. M. Bell (eds), Spatial Data Processing
using Tesseral Methods. Natural Environment Research
Council, Swindon (1986).

12. R. R. Martin, Rotation by quaternions. Mathematical
Spectrum 42—48 (March 1985).

13. J. Rooney, A survey of spatial rotations about a fixed
point. Environment and Planning B (4), 185-210 (1977).

14. W. R. Hamilton, Elements of Quaternions. Longman,
Green, London (1899).

15. S. B. M. Bell, B. M. Diaz and F.C. Holroyd, Tesseral
square roots in 2d. In B. M. Diaz and S. B. M. Bell (eds),
Spatial Data Processing using Tesseral Methods. Natural
Environment Research Council, Swindon (1986).

16. S. B. M. Bell, B. M. Diaz and F.C. Holroyd, Tesseral
quaternions for 3d. In B. M. Diaz and S. B. M. Bell (eds),
Spatial Data Processing using Tesseral Methods. Natural
Environment Research Council, Swindon (1986).

17. J. D. Morgan, Personal communication (1984).

APPENDIX: QUATERNION ALGEBRA
A.1 Alternative form of the quaternion:
r+sxt, +uxt, +v*ty
Consider the quantity:
Q = xx[cos(q)+b/q*sin(q) * ¢,
+c/qxsin(q)*t,+d/q*sin(q) * 1]
where b*+c*+d? = ¢*
It can be seen that Q is a quaternion. Set:

r = x#*cos(q) Q)
s=x*b/q*sin(q) 2
u=x*c/q=*sin(q) 3)
v=Xx%*d/qx*sin(q))]
Then:

Q=r+sxt,tuxt,+v*l;
We have:

mag (Q)? = (r*r+ sxs+uku+ v¥v)
= xxx * [c0os2 (q) + (b*b + cxc + dxd) /[{q*q} * sin® ()]
from equations (1) to (4)
= X*X
So
x = mag(Q) %)
Also:

{s*s+usu—+v*v} [rer = [xxx % (bxb+ cxc

+dxd)/q*xq * sin®(q)] / {x*x * cos® (q)]
from equations (1) to (4). Therefore:
{s*s+usu+v*v} [r=r = tan®(q) (6)

From equations (5) and (6) we may proceed in the
reverse direction and determine x and tan(g) given r, s,
u, v. If we define g to be the angle less than n/2 radians
which satisfies (6) we may then determine b, ¢, d from
equations (2) to (4). Thus the two forms of writing the
quaternion:

Q=r+sxt,tuxt,+v*t,
and

Q = xx[cos(q)+b/q*sin(q)*1,
+c¢/qx*sin(q) * t,+d/q*sin(q) * t;]

are interchangeable.
The value of ang(Q) as defined in the body of the
paper is:

ang(Q) = tan™ {[— V(Q) * V(Q))}/ S(Q)}

394 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

TESSERAL QUATERNIONS FOR THE OCTTREE

Therefore:
tan[ang (q)] = sin(g) / cos(q)

from equations (1) to (4) and the definition of quaternion
multiplication. So:

ang(Q) = ¢

A.2 Behaviour under rotation of imaginary axes

The quaternion algebra is invariant under a rotation of
the imaginary (3-dimensional) axes. x must be invariant
under such a rotation since it is the length of the 4-
dimensional vector (r, s, u, v). The invariant length of the
3-dimensional vector in imaginary space, (s, u, v), is x*sin
(¢9), and hence ¢ must be invariant under rotation of the
imaginary axes. Quaternion addition and subtraction are
obviously invariant since these map to vector addition
and subtraction. We prove that multiplication is also
invariant.

Let the first quaternion be:

O =r,ts,xtiHu*xt,+v,*t,

Let the second quaternion be:
P=r,+s,xt;+u,xt,+v,*1,

Then V(Q) is the vector (s,, u,,v,) and V(P) is the vector
(s,,u,,0,). Let the angle between V(Q) and V(P) be y,
again invariant under rotation. The scalar product:*

V(Q)V(P) = 5,45, + Ukt + V%0,
= x*X,*sin (q)*sin (p)*cos (y) @)

and is invariant under rotation, as may be checked by
elementary 3-D trigonometry. The vector product:!

V(Q) X V(P) = (U kv, — U, ¥V, D %S, —S*U,, Sp*U,— S, ¥U,)
= X *X,sin (q)*sin (p)*sin (y) * e ®)

where e is the unit vector at right angles to the plane

. defined by V(Q) and V(P), and is also invariant under
rotation, as may be checked by elementary trigonometry.
The quaternion product:

Q*P = {rxr } —{s,*s, +uu,+v,%0,} +{r *[s, 1,
Fu gty +v]+ {r ¥[s 4t +u, *t, + v *15]}
+{(uxv, — U ¥v,)%ty + (U *5, — S *V,) %1,

+ (541, — 5%)* L 15}

The first term in curly brackets is a scalar and hence
invariant under rotation of the imaginary axes. The
second term in curly brackets is the scalar product
V(Q)V(P), and from (7) invariant under rotation of the
imaginary axes. The third and fourth terms in curly
brackets are the vectors V(Q) and V(P) themselves, each
multiplied by a scalar, and hence invariant under rotation
of the imaginary axes. The fifth term in curly brackets is
the vector product V(Q) x V(P) and from (8) invariant
under rotation of the imaginary axes. Hence the
quaternion product is invariant under rotation of the
imaginary axes.

A.3 Quaternion division and inverse of a quaternion

Quaternion division may be defined in terms of quat-
ernion multiplication and conjugation.

P/Q =PxQ!
= Px*qc(Q)/[mag(Q)?]

as may be checked by multiplying Q by @' and finding
that the result is 1. Since quaternion conjugation is
invariant under rotation of the imaginary axes, so is
quaternion division.

A.4 Proof that mag (Q*P) is mag (Q)+xmag (P)

Since we have proved quaternions invariant under
rotation of the imaginary axes, we can choose the
orientation of these to simplify the algebra for the rest of
the proofs. We choose the 7, axis to be in the direction of

V(Q), so:

Q = x,x[cos(q)+bq/q*sin(q) * 1]
= x,*[cos(q)+sin(q) * 1,])

We choose the 7, axis to be in the direction of the
component of V(P) at right angles to V(Q), so:

P= xz;* [cos (p)+ b, *sin(p) * ty+c,/psin(p)xt,] (10)

First we prove that Q scales P by x, upon the transform
O+P. mag(Q) is x,, and mag(P) is x, by equation (5).

QP = cos(q) *cos (p)—b,/p *sin (p) *sin (q)
+[cos(g) *b,/p *sin (p) +cos (p) *sin ()] * 1,
+[c,/p *sin (p) xcos (q)] * 1,
+[c,/p*sin(g) *sin(p)]*t; (11)
from equations (1) to (4), equations (9) and (10), and the
definition of quaternion multiplication. Therefore:

mag (Q*P)? = (x,*x,) *'(xq*xp) * [{(cos (g)*cos (p)'
—b,/p*sin®(p))}* +{cos (q)*b,/p*sin (p)
+cos (p)*sin (q)}* +{c,/p*sin (p)*cos (¢9)}*
+{c,/p*sin (p)*sin (¢)}*]

The term in square brackets simplifies to yield 1, and
hence mag (Q*P) is x, * x,,.

A.5 Result of pre-multiplying P by Q for the plane
PS(Q)

We will now simplify the algebra yet further, by omitting
explicit mention of x, and x,. Their re-insertion into the
algebra is trivial.

Projection of V(P) along V(Q) = b,/p *sin (p)

from equations (9) and (10). (12)

The imaginary axes have been labelled (z,, ¢,, t,). Let the
fourth axis along which the scalar parts S(Q) and S(P) lie
be labelled ¢,,.

Projection of P along ¢,, i.e. in the common direction

S(P), S(Q), = cos (p). (13)

From (12) and (13) the magnitude squared of the
projection of P in PS(Q), the plane defined by V(Q) and

S(Q):
Jo=b,/p*b,/p*sin(p)*sin(p)+cos(p)xcos(p) (14)

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 395

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

S. B. M. BELL AND D. C. MASON

and the angle made by the projection of P relative to f,:
k,, = tan"{b,/p * tan (p)}. (15)

The angle made by the projection of Q in the same plane
relative to ¢,:

k,, =4 (16)

After multiplication, and from equation (11), the
projection of V(Q*P) along

V(Q) = cos(q) *b,/p *sin (p) +cos (p) *sin (q) (17)
The projection of Q*P along ¢, = cos (g) *cos (p)
—b,/p*sin(p) *sin(q) (18)

From (17) and (18) the magnitude squared of the
projection of (Q*P) in PS(Q):

Jn = [cos(q) xb,/p *sin (p) + cos (p) * sin (g)]*

+[cos(g) xcos (p) —b,/p * sin (p) *sin (¢)]*
(19)

On explicitly carrying out the squaring of the terms in
square brackets, two terms cancel, and factorising the
remaining terms and using the fact that cos®+sin® = 1,
equation (19) simplifies to yield j, = j,.

The angle made by the projection of Q*P in PS(Q),
from equation (17) and (18), and relative to ¢, is:

k, = tan™* {[cos(g)*b,/p *sin (p) +cos (p) *sin (¢)]/
[cos (g) cos (p) —b,,/p * sin (p) * sin ()]}
= tan™" {[b *tan (p) + tan (¢)]/

[1—b,/p*tan (p) * tan (q)]}
=k,,+k,, (20)

op

A.6 Result of pre-multiplying P by Q for the imaginary
plane PV(Q)

The magnitude squared of the projection of P in PV(Q),
i.e. at right angles to ¥(Q) in imaginary space, is the
component along ¢,:

I, ={c,/p*sin (p)}* 2]
The angle made by this projection relative to ¢, is zero:
(22)

After multiplication, from equation (11), the magnitude
squared of the projection of (Q*P) in PV(Q):

I, = {c,/p*sin(p)cos(q)}*+{c,/p *sin(g) *sin (p)}* (23)

after extracting the common term [c,/p *sin (p)]?, this
expression readily yields /, = /,. The angle made by this
projection relative to ¢, is:

tan™" {[c,/p * sin (p) * sin (g)]/{c,/p * sin (p) * cos (9)]}
:]ng (24)

m,=0

mﬂ

+g from equation (22).

A.7 Result of post-multiplying P by Q' for the plane
PS(Q)

Q7' = cos(g)—b,/q*sin(g) * 1, (25)
from Section A.3. As before:
P =cos(p)+b,/p*sin(p)*t,+c,/p*sin(p)xt, (26)

Therefore:
PxQ™' = cos(q) *cos(p)+b,/p *sin(p) *sin (q)

+[cos(g) * b, /p *sin (p) —cos (p) * sin (q)] * 1,
+[c,/p*sin(p) xcos (q)] * 1,

+[c,/p*sin(q) *sin(p)] * 1, 27
Projection of V(P) along V(Q) = b,/p *sin (p)
from equations (9) and (26). (28)

Projection of P along ¢, i.e. in the common direction
S(P), S(Q), = cos (p). (29)

From (28) and (29) the magnitude squared of the
projection of P in PS(Q), the plane defined by V(Q) and

S(Q):

J, = b,/p*b,/p*sin(p)*sin (p) + cos (p) * cos (p) (30)

and the angle made by the projection of P relative to ¢,:

k,, = tan"'{b,/p * tan (p)} 31

The angle made by the projection of Q in the same plane
relative to ¢,:
ko =4 (32)

After multiplication, and from equation (27), the
projection of V(P+xQ') along

V(Q) = cos(q) *b,/p *sin (p) —cos (p) *sin (q) (33)
The projection of PxQ! along
ty = cos(q) xcos (p)+b,/p *sin (p) *sin (q) 34

From (33) and (34) the magnitude squared of the
projection of (PxQ7!):

Ju = [cos(g) x b, /p * sin (p) —cos (p) * sin (¢)]*
+[cos (q) xcos (p) +b,/p *sin (p) *sin(@)]* (35)

Equation (35) is identical to equation (19) apart from
two signs swapped, and is solved in the same manner to
yleld jn = jo‘

The angle made by the projection of PxQ~" in PS(Q),
from equations (33) and (34), and relative to ¢,, is:

k, = tan~'{[cos (q) * b,/p * sin (p) —cos (p) * sin (¢)]/
[cos (q) cos (p) +b,/p * sin (p) * sin ()]}
= tan™' {[b,*tan (p) —tan (q)]/
[14+b,/p*tan(p) * tan (q)]}
—k,, "k, (36)

A.8 Results of post-multiplying P by Q' for the
imaginary plane PV(Q)

The results of pre-multiplying P by Q and post-
multiplying P by Q! are identical in the plane PV(Q), as
we now show.

The magnitude square of the projection of P in PV(Q),
i.e. at right angles to V(Q) in imaginary space is the
component along ¢,:

l, = {c,/p*sin (p)}*
The angle made by this projection relative to ¢, is zero:

(38)

(37

my =10

396 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

TESSERAL QUATERNIONS FOR THE OCTTREE

After multiplication, from equation (27), the magnitude
square of the projection of (PxQ') in PV(Q):

I, = {c,/p *sin(p) * cos (q)}*
+{c,/p *sin(q) *sin (p)}* (39)

which simplifies to yield /, = /,. The angle made by this
projection relative to ¢, is:

tan {[c,/p *sin (p) *sin (¢g)]/[c,/p * sin (p) x cos (9)]}
(40)

q
m,+q from equation (38).

A.9 Proofs for the behaviour of Q¢
Let O be:
R =cos(r)+b,/r*sin(r)*t,+c,/rxsin(r)* 1,
+d,/r*sin(r) 1,
Then, from the definition of quaternion multiplication:
O = R+R = cos®(r) —sin?(r) + 2 * cos (r) * sin (r)*
[b,/r*t,+c,[rxt,+d [rxt)
= COS(2+r)—sin (2+r) x[b,/rxt,+c,/r 1,
+d,/ret,]

Thus r = ¢g/2, and the orientation of V(R) is the same as
that of V(Q).

A.10 Mathematical background for the iterative square
root

That the function:

Q) =0+0-T (41)
where Q and T are quaternions is differentiable with
respect to Q may be proved via a generalisation of the
Cauchy-Riemann relations following the method of
Jeffreys and Jeffreys,? page 337. Taylor’s Formula then

applies, and in particular Newton’s Method for the
extraction of a square root on setting f{Q) = 0:

Qn+1 = Qn —f(Qn) /f,(Qn)
Therefore, on substitution for Q) and f/(Q) from
equation (41):

Qnin=0,—(2,20,—T)/(2%Q,) (42)

We start by proving that, if T'is close to the multiplicative
unity, 1, then a solution of f{Q) = 0 will also be close
to 1.

Let T=1+d.
Let O = 1+e.
(1+e)—1—d =0 and
e=—1+(1+d)y

But T'is close to 1, and so we may expand the square root
in powers of d, neglecting all powers higher than 1.
e=—1 +(1+d/2)

We now choose the positive sign, noting as we do that
this will constrain our algorithm to find only the square
root near to 1. We obtain:

e=d/2

and clearly Q is also close to 1.
We are thus justified in making our initial estimate for
0, Q,, 1, and equation (42) gives us:

Then

1+T
Q1=T

We immediately see that Q, is close to 1, and further
iterations of the exact equation (42) will produce a value
for every Q,, close to 1. We are thus justified in setting the
Q, in the denominator in powers of e,,, and neglecting all
powers higher than 1. We obtain:

Qn+1 = Qn _(Qn*Qn - T)/z_en*(Qn*Qn)_ T)/z

But (Q,*Q,—T) is itself of order e,, and thus the final
approximation is:

Onin = 0, —(2,x0,—T)/2

REFERENCES FOR THE APPENDICES

1. B. Spain, Vector Analysis. Van Nostrand, London (1965).
2. H. Jeffreys and B. Jeffreys, Methods of Mathematical
Physics. Cambridge University Press (1962).

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 397

20z Iudy 01 uo 1senb Aq Ze€£081/98€/G/€€/81o1e/|ulwoo/wod dnorolwsepeoe//:sdiy wolj papeojumoq

