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Two grid-based algorithms are presented for contouring functions of two variables over square plotting areas. The
algorithms are simple to code, and achieve considerable efficiency through the use of quadtree techniques to produce
non-uniform subdivisions of the plotting areas. One algorithm uses curvature properties of the functions being plotted to
produce plotting cells of optimal size, and their relative speeds depend on the complexity of the functions. Both

algorithms can be adapted for plotting over rectangular areas.
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1. INTRODUCTION

Methods for contouring functions of two variables are of
two general types: grid methods and contour-following
methods. Grid methods are the most widely used because
of their simplicity,’ %, and work by defining a grid over
the plotting area and then plotting the contours in each
cell in the grid. It is most common to use a grid that is
fine enough to allow a linear approximation to the
function to be used over the individual cells, although
quadratic approximations can also be used.®* A dis-
advantage of most grid methods is that they require very
fine grids to cover areas where the contours have high
curvature.

Contour-following methods use one or more points on
a contour (usually located by using a coarse grid) to
predict where another point on the contour lies.*® They
may require the first and second partial derivatives of the
function to be calculated at each step,® and can be
complicated to code compared with grid methods. They
do, however, have the advantage of providing a plotting
step size which varies continuously with the curvature of
the contours.

We present here two algorithms that have the
advantage of grid methods in being simple to code, but
do not share their disadvantage of using a uniformly fine
grid to plot highly curved contours. The algorithms are
grid methods that use quadtrees to provide an adaptive
subdivision of the plotting area. This produces grids
which are either fine only in the neighbourhood of a
contour, or whose size varies with the curvature of the
contour. Before discussing the algorithms themselves,
Section 2 discusses some of the plotting details that occur
within the individual grid cells.

2. PLOTTING DETAILS

The functions we wish to contour are of the form
z=fix,y), and the algorithms plot a series of level
contours where

Sfix,y)—c=0 )

and c is the contour level. Plotting is done in the
individual cells (or quadrants) created by the quadtrees,
and point sampling is used to detect the presence of a
contour in a cell. The function (1) is evaluated at the four

corners of a cell, and unless all four values have the same
sign a contour segment is present. A danger with all
point-sampling techniques is that contour segments can
be missed. For example, this technique can miss a
contour that intersects one or more sides of a cell twice,
and will miss small closed contours that do not intersect
the cell sides. When plotting arbitrary functions it is
difficult to guarantee that all contour segments will be
detected. Exceptions are polynomial functions, where
Descartes’ rule of signs can be used to detect the
existance of a contour no matter what the signs are at the
cell corners.

In practice, the cell sizes should be chosen to ensure,
whenever possible, that:

(1) all contours or contour segments above a certain
size (physical extent in the plotting area) are detected ;

(2) with one exception (discussed below), at most a
single contour segment exists in each cell;

(3) the contours may be approximated within the cells
for plotting purposes by straight-line segments.

There are no guarantees that these conditions will
always be satisfied. Both algorithms produce two grids:
one for searching for the contours and another for
plotting them. The size of the search grid is set by the
user to try to satisfy conditions (1) and (2) above. Since
the size of the plotting grid will usually satisfy condition
(3) (by user specification or program control), the
algorithms are required to plot a single straight-line
segment in each plotting cell. The intersection of the
contour and a plotting cell edge is found by the method
of false position.

If the plotting grid is not fine enough, degenerate cells
can occur in which the contour intersects each side of the
cell. These are shown in Fig. 1(a), and grid methods must
decide which of the two configurations shown is correct.
This is normally done by further subdividing the cell, but
degenerate cells can alternatively be used to plot saddle
points. Since contour lines cross in this case, degenerate
cells will occur no matter how fine the grid is. The
algorithms discussed here treat degenerate cells as saddle
points as shown in Fig. 1(b). This allows the plotting of
all saddlepoints except those whose position and orien-
tation are such that two contour lines cross the same side
of the plotting cell, or skewed configurations, as shown
in Fig. 1(c). These would be either drawn incorrectly or
missed entirely by the point sampling.
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Figure 1. Plotting cells. (a) The two possible configurations
where the contour crosses each of the four sides of a plotting
cell. (b) A saddle point. (c) A skewed saddle point that the point
sampling would miss.

3. QUADTREE SUBDIVISION
ALGORITHMS

Quadtrees have many uses in computer science and have
found a number of applications in computer graphics
and image processing. Samet’ provides a comprehensive
survey of the types and uses of quadtrees. Quadtrees are
often used as data structures, but the algorithms here use
them only for the adaptive and recursive subdivision of
the plotting area.

Before discussing the quadtree algorithms, we discuss
some of the disadvantages of traditional grid methods.
Fig. 2 shows some contours of x*+3?*—c =0 in the
range ¢ =0.1(0.1)7.6 produced by a traditional grid
algorithm, and this figure highlights a major disadvantage
of these methods. Although the outer contours are
drawn reasonably well, the inner contours (which should
all be circles), are drawn extremely poorly because here
the plotting area was subdivided into a 16 x 16 grid for
plotting purposes. This is adequate for the outer contours
but is much too coarse for the inner contours, and only
samples the innermost contour four times, resulting in a
gross violation of condition (3).

If a finer 64 x 64 grid is used, the inner circles are
drawn well (see Fig. 3), but too many steps are used for
the outer circles. However, this is not the worst feature of
the traditional algorithm. The worst feature is that for
each contour the same uniformly fine grid is used
throughout the plotting area. As a consequence, each
contour exists in only a small minority of cells, which
results in much wasted computation checking function
values. The algorithm can be improved by restricting the
number of empty cells that must be checked.

Algorithm 1, which appears in Fig. 4 as a Pascal
procedure, contains such an improvement. The input
parameter depth corresponds to the depth in the tree,
with the root node depth = 0 corresponding to the entire
plotting area. The other input parameters are the lower
left-hand coordinates x and y of the plotting area (which
is square), and its size d. The quantities search_depth and
plot_depth are user supplied, and subdivision is auto-
matically carried down to the level search_depth, without
checking if a contour is present in any quadrant. The
user decides how fine a grid is necessary to search for
contours and sets search_depth accordingly. Once

y
3.0
7.6
-3.0 X
-3.0 3.0
Figure 2. Contours of Aflx,y)=x’+y’—c=0 with

¢ = 0.1(0.1) 7.6 plotted with a traditional grid algorithm using
a 16 x 16 grid.

7.6

-3.0 x
-3.0 3.0
Figure 3. Contours of fix,y) = x’+y?*—c = 0 with c in the
range ¢ = 0.1(0.1) 7.6 plotted with a traditional grid algorithm
using a 64 x 64 grid.

search_depth is reached, the function contour_present
point samples the function to check the presence of a
contour in the quadrants. Any quadrant containing a
contour segment is further subdivided down to
plot_depth, where plot_depth > search_depth. The user
sets plot_depth to give smooth contours according to
condition (3) of Section 2, but here the fine subdivision
of the plotting area only occurs in the neighbourhood of
the contour. The procedure contour_present does the
point sampling and the procedure plot performs the
plotting as described in the previous section.

Fig. 3 was reproduced by Algorithm 1 with
search_depth = 2 and plot_depth = 6, and Fig. 5 shows
the grids used for the ¢ = 0.1 and ¢ = 7.6 contours. The
dashed lines are the search grid, which is coarser than
would be normally used in practice, but works in this
case because all the contours are centred on the origin.
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procedure create_tree (depth : integer ;
xyd :real )

procedure subdivide ;
begin
create_tree (depth+1,x,y,d/2) ;
create_tree (depth+1 x+d/2,y,d/2) ;
create_tree (depth+1.x+d/2,y+d/2,d/2) ;
create_tree (depth+1 x,y+d/2,d/2)
end;
begin {create_tree}
if depth < search_depth
then subdivide
else if contour_present (x,y,d)
then if depth < plot_depth
then subdivide
else plot (x,y,d)

end ; {create_tree}
Figure 4. Algorithm 1 as discussed in the text.

The solid squares are the plotting cells, each of which
contains a contour segment. These are the sarae size as
the cells used for Fig. 3, but now only cover a small
fraction of the plotting area.

Algorithm 1 still shares one of the disadvantages of
traditional grid methods. The plot depth is the same for
all contours, and so again if plot_depth is large enough to
draw highly curved contours (the inner circles ‘a this
case), too many steps will be used to draw contours with
lower curvature (the outer circles). Algorithm 2
overcomes this problem and appears in Fig. 6. Here the
plot depth is no longer a user-supplied constant, but at
each level below search_level the function radius decides
whether to plot the contour or further subdivide the
quadrant. This function calculates the radius of curvature
R of fix,y) in the (x,y) plane in each quadrant that
contains a contour segment. The expression is

R = (L2410 =2 S oy + 12, )

which is evaluated at the centre of the quadrant and then
compared with the quadrant size. Subdivision stops
when R is greater than some user-specified multiple n of
the quadrant size d. The level of subdivision thus
depends on the local curvature of the function, and
automatically provides plotting step lengths that are
inversely proportional to the radius of curvature of the
contours. Time is required to evaluate the derivatives in
expression (2), but this is more than offset by being able
to use coarser plotting grids (see timings in following
section).

The contours of Fig. 3 were repeated with Algorithm
2 using search_depth = 2 and n = 5. As the contours are
very similar in appearance to Fig. 3 there is no point in
repeating them here, but Fig. 7 shows the search grid, the
plotting cells for the inner and outer contours, and these
two contours. The steps used for the outer contour are
much larger than those used in Fig. 3, but the steps used
for the inner contour are smaller (see Fig. 5). This
illustrates the following property of these algorithms: the
plotting cell sizes and consequently the step sizes are
quantised as size/2™, m > 0. The quadtree algorithms
thus do not produce the continuously varying step sizes
that some of the contour-following algorithms do. The
parameters used in Fig. 7 resulted in one further

Figure 5. The contours ¢ = 0.1 and ¢ = 7.6 from Fig. 3 drawn
by Algorithm 1, with search_depth = 2 and plot_depth = 6,
together with the search grids (dashed lines) and the plotting
cells (small solid squares).

procedure create_tree (depth : integer ;
x,y,d :real )

procedure subdivide ;
begin
create_tree (depth+1x,y,d/2) ;
create_tree (depth+1x+d/2,y,d/2) ;
create_tree (depth+1,x+d/2,y+d/2,d/2) ;
create_tree (depth+1.x,y+d/2,d/2)
end;

begin {create tree}
if depth < search_depth
then subdivide
else if contour_present (x,y,d)
then if radius (x,y,d} < n*d
then subdivide ’
else plot (x,y,d)

end ; {create_tree}

Figure 6. Algorithm 2 as discussed in the text.

subdivision being made when plotting the ¢ = 0.1 contour
than was used in Figs 3 and 5.

Fig. 8 shows some contours of cos (x) sin (y) — ¢ plotted
with Algorithm 2 for contours in the range ¢ = —0.9
(0.1)0.9. The parameters used were search_depth = 4
and n = 6, and this figure shows several saddle points on
the ¢ = 0 contour. In order to plot this contour correctly,
the plotting area was set t0o—4.000 < x < 4.001,
—4.000 < y < 4.001. This makes no difference to the
appearance of the contours, but prevents the ¢ =0
contour lying exactly along a quadrant edge. This
situation could be handled with additional logic in the
contour_present and plot functions.

A question that naturally arises in this context is the
following. Is it possible to use curvature information to
vary the search depth with the curvature of the function?
Such an algorithm would have the advantage of using a
fine search grid only in regions of high curvature. To
achieve this one may be tempted to replace the expression
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Figure 7. The contours ¢ = 0.1 and ¢ = 7.6 of x>+)y*—c =0
produced by Algorithm 2 with search_depth =2 and n =5,
together with the plotting cells.
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Figure 8. Contours of cos (x) sin (x) — ¢ = 0 with c in the range
c=—0.9(0.1)0.9 as plotted by Algorithm 2 with
search_depth = 4 and n = 6.

depth < search_depth in Algorithm 2 with radius
(x,y,d) < mxd where m is a user-supplied constant
satisfying m < n. This results in a very unrobust algorithm
as can be seen by considering x*+ y*— ¢ again, for which
R = (x®+)?):. Since the procedure radius evaluates R at
the centre of a quadrant, radius will return R = +/2d for
any quadrant that has a corner at the origin. Conse-
quently radius (x,y,d) < mxd will always be true when
m > 4/2,leading to infinite recursion and stack overflow.
This technique has been tried with other functions too,
usually with unpredictable results, and so Algorithm 2 is
safer with its user-supplied constant search_depth.
Further research may reveal a robust method for auto-
matically varying the search depth.

4. TIMING TESTS

To asses the relative speed of the algorithms, several
timing tests were performed, and the results appear in

Table 1. Three algorithms were compared: Algorithms 1
and 2 and Algorithm 0, which is a traditional grid
method. The code for this is not produced here because
it is simply a set of nested for loops, which call a version
of plot (x, y, d) modified to do the point sampling, as well
as the plotting.

~Table 1. Results of timing tests for the indicated algorithms

and figures
Algorithm Fig. 3 Fig. 8 Fig. 9
0 10 61 —
1 4.5 16.3 33
2 24 14.8 18

Times are those required to perform the calculations only, and
all times are in seconds.

The tests were performed on a Prime 750, and Table 1
lists the figures that were timed. Compared with
Algorithm 0, Algorithm 1 is approximately twice as fast
for Fig. 3 and approximately four times as fast for Fig.
8. The difference in relative speeds probably arises from
the use of recursion in Algorithm 1, which extracts a time
penalty. This time penalty is more noticeable in Fig. 3,
where the function evaluations take much less time than
in Fig. 8. The last row shows the results for Algorithm 2,
where for Fig. 3 it is approximately twice as fast as
Algorithm 1, but for Fig. 8 the increase in speed is only
10%. In Fig. 8 the time taken for the derivative
calculations of cos x sin y reduce the relative efficiency of
Algorithm 2.

As a final example, Algorithms 1 and 2 were used to
draw some contours of the incomplete gamma function

x—ll xz
*(a,x) = fe*”“‘ldt
=),

To evaluate this we used the series®

o« —x)*

5 0"
(a+n)n!

n=0

Y*(a,x) = |x] < o0

I(a)

with a relative error of 107°. The factor 1/I'(a) was
approximated by the first 15 terms of the polynomial
expansion given on page 256 of Abramowitz and Stegun,®
using the first seven significant digits, as all calculations
were carried out in single precision. This gave sufficient
accuracy for plotting purposes provided a > —2. The
plotting area had to be chosen so that the subdivision
would avoid the evaluation of y*(a, x) at negative integer
values of a. This was done by setting the plotting area to

—-40<x<10, —1.000<a<2.001

Algorithm 1 was used with search_depth =4 and
plot_depth = 6, Algorithm 2 was used with search_
depth =4 and n =10, and Fig. 9 shows the contours
from Algorithm 2. As Table 1 shows, Algorithm 2 is
almost twice as fast as Algorithm 1. The explanation is
that these contours are not highly curved, resulting in
less subdivisions in Algorithm 2. The relative speed of
Algorithms 1 and 2 is thus highly dependent on the
nature of the contours being plotted.
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Figure 9. Contours of the incomplete gamma function v* (a,x)

in the range —6.0(1.0)12.0 as plotted by Algorithm 2 with
search_depth = 4 and n = 10.

However, plotting y*(a, x) highlights the major dis-
advantage of Algorithm 2 from the user’s point of view:
namely the effort that may be involved to calculate the
partial derivatives of the function being plotted. This was
trivial for flx, y) = x*+ y*—c and f(x, y) = cos (x) sin (x)
— ¢, but involved some effort for y*(a, x) where code had
to be written to evaluate nine separate series. The result is
a faster algorithm, and contours with adaptive step
lengths, but this hardly compensates for the extra
programming effort involved.

5. RECTANGULAR PLOTS

Both algorithms can be adapted to plot over rectangular
regions of the (x, y) plane, and Fig. 10 displays Algorithm
3, a version of Algorithm 1 adapted to do this. Here dx
and dy are the extents of the plotting area in the x and y
directions respectively.

Fig. 11 shows some contours of the function

cos(x+yp)+sin(x+y)/[(x—2)*+(y—1)*]—c=0

plotted with search_depth = 4 and plot_depth = 6. Since
each plotting cell in this algorithm has the same aspect
ratio as the plotting area, plotting areas with aspect
ratios significantly different from unity should be
avoided. They can lead to unsatisfactory plots with
significantly longer steps in the direction of longest
dimension. The aspect ratio of Fig. 10 is 1.25, and for
plots with aspect ratios larger than about 1.33, separate
plots side by side would be better.

6. CONCLUDING REMARKS

This paper presents some grid-based algorithms which
satisfy the following criteria for contouring functions of
two variables: they are as simple to code as existing grid
methods, and are more efficient.

Algorithms 1 and 2 in Figs 4 and 6 satisfy these
criteria. The code for subdividing the plotting area is
extremely simple, and the code for carrying out the
plotting is no more complicated than for existing grid
methods. The timing results in Table 1 show these

procedure create_tree (depth :integer ;
xy,dx,dy :real )

procedure subdivide ;
begin
create_tree (depth+1 x,y,dx/2,dy/2) ;
create_tree (depth+1 x+dx/2,y, dx/2,dy/2 ) ;
create_tree (depth+1 x+d/2,y+d/2, dx/2,dy/2 ) ;
create_tree (depth+1x,y+d/2, dx/2,dy/2 )
end;

begin { create_tree }
if depth < search_depth
then subdivide
else if contour_present (x,y,dx,dy)
then if depth < plot_depth
then subdivide
else plot (x,y,dx,dy)
end; ({create_tree)

Figure 10. Algorithm 3: a version of Algorithm 1 for plotting
over rectangular areas of the (x,y) plane.

@@3 '

-1.0 40

Figure 11. Contours of cos (x + y) +sin (x + p)/[(x —2)*+ (y — 1)}
—c =0 for c in the range ¢ = —2(0.125)30 as plotted by
Algorithm 3 with search_depth = 4 and plot_depth = 6.

algorithms to be significantly more efficient than tradi-
tional grid methods. This efficiency is achieved by using
quadtrees to provide a non-uniform subdivision of the
plotting area. Which algorithm is best? This depends on
the functions being plotted. Algorithm 2 produces
contour segments whose lengths are adapted to the local
curvature and is faster than Algorithm 1 for all functions
that have been tested. However, it may involve con-
siderable programming effort to evaluate the partial
derivatives of the function. This must be performed for
each function to be plotted and can be a significant
overhead for complicated functions, particularly when
numerical techniques must be employed. However, this
overhead could be avoided by using a computer algebra
system as a preprocessor to calculate the partial
derivatives.

Both algorithms evaluate the function values a number
of times at the same (x, y) values, and for functions that
take a significant time to evaluate their efficiency could
be further improved by maintaining information about
where the function has been evaluated, and its values.
This information could be used to avoid the multiple
evaluations, but at the cost of considerably increasing the
complexity of the code.

The algorithms are recursive, and since recursion is
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not a required control structure,® they could be coded
iteratively. This would have the advantage of enabling
them to be written in languages such as FORTRAN 77
or BASIC, but the code would lose the simplicity and
elegance of the recursive versions.

Both algorithms can be adapted for plotting over
rectangular areas, as discussed in Section 5.
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