Separating Graphics from Application in the Design of User

Interfaces

F. NEELAMKAVIL* AND O. MULLARNEY

Interactive Graphics Systems Group, Department of Computer Science, Trinity College Dublin, Ireland

Until recently work in the area of User Interface development has been almost entirely ad hoc. Implementors have had
to rely on their own judgement not only in the area of the interface appearance and dynamics, but also in the internal
structure of interaction management. Considerable confusion exists in defining what constitutes a good User Interface,
and in the management processes required to construct them. Insufficient software foundations and a lack of
SJormalisms, tools and methodologies are contributing factors. To some extent these problems have been addressed by
the User Interface Management System (UIMS) community, primarily for those working on large systems. This paper
describes a methodology, developed as part of the design of a User Interface Manager, aimed at providing
implementors with a structure for building interfaces which are separable from their underlying applications.

Received July 1988, revised May 1989

1. INTRODUCTION

Arguably the most important area of an interactive
software system is the user interface. The user’s sat-
isfaction relies heavily on their appreciation of the nature
of the underlying application and of the interface itself”
and without proper structure in the interface, much of
the functionality of a system will be hidden. The effect of
good interface design is to increase productivity, user
satisfaction and to facilitate full exploitation of the
system beneath. Well structured interfaces should offer
consistency in methods used to complete different tasks,
strong reflection of the nature of the application, and
also allow the user to configure the interface to suit
individual requirements.

Traditionally, the user interface was the last part of the
application development process. It has now been
accepted that the user interface is more important than
just an additional component; it is an integral part of the
whole system. While modern structured software
techniques have made some contributions towards
systematic development of user interfaces, the progress
has been comparatively slow mainly due to the complex,
expensive, dynamic and highly specialised nature of
graphics technology and a lack of widely accepted
international graphics standards.

In the past, graphic interfaces to application software
have been developed using ad hoc and low level
techniques. The interface is frequently buried within the
application code in a manner which both hinders
maintenance, and makes the reuse of the methods within
a different application certainly time consuming, and
often impractical.’® Even in non-graphic interfaces these
methods have resulted in inconsistent interaction
methods and badly structured systems. The production
and maintenance costs are high for systems using
interactive graphics interfaces, demanding up to 50 % of
entire system development time*? and as much as 60 % of
maintenance costs, and so tools and methods are critical
to the development of quality interfaces.

In order to raise interface development from an art to
a science, research has been plentiful'*® in the area of

* To whom correspondence should be addressed.

User Interface Management Systems (UIMSs), tools
which aim to provide support for both the development
and execution of interactive graphic interfaces. In the
course of our work on a User Interface Manager we
developed a methodology for the production of separable
graphics interfaces on top of structured, object oriented,
applications. Our goal was to provide a general structure
for the construction of graphic interfaces around
applications, interfaces which are both separable from
the application and rapidly reconfigurable.

2. INTERACTION TECHNIQUE
LIBRARIES

The traditional method of developing user interfaces is to
let the users build their own interfaces from scratch,
using general graphical libraries such as GINO-F.,®
CORE' and GKS.® The disadvantages of this approach
include: discouraging people from building user
interfaces, generating bad interfaces and producing
inconsistent interaction styles.

The next major development was in providing a set of
tools, called Interaction Technique Libraries (ITLs), to
help the graphics interface developer in building user
interfaces. These are collections of (editable) logical
input and output devices, providing developers with off
the shelf’ techniques for both collection and display of
data by graphic means. These devices not only cut
development time, as not all of the interface needs to be
written from scratch, but can also improve the quality of
an interface as the devices should be consistent in their
design. Indeed, consistency between interaction methods
within a single interface, and across a range of interfaces,
is a critical area in user satisfaction.” In addition, the
containment of the graphics code within a library
naturally separates it from the internals of the underlying
application, making the tasks of debugging and
reconfiguring the interface considerably easier. However,
these tools are designed to ease the task of implemen-
tation, and take no account of the underlying structure.
The appearance of the interfaces constructed by this
approach can strongly reflect the conceptual model
of the designer of the toolkit and may not suit all
applications or users.

THE COMPUTER JOURNAL, VOL. 33, NO. §, 1990 437

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



O.MULLARNEY AND F. NEELAMKAVIL

3. USER INTERFACE MANAGEMENT
SYSTEMS

The name User Interface Management System (UIMS)?°
was coined to describe a system which plays a comparable
role in interface construction as compilers do in code
production. They consist of two main toolsets, the first to
assist in the construction of the interface, and the second
providing runtime support. UIMSs take a formal
description of the interface structure, a form of dialogue
specification (Fig. 1), and from this they build the
application specific component of the interface. This
specification contains information on the flow of control
and data through the interface, and may also contain
some information on its appearance. The UIMS converts
this into an executable form, linking it to an application,
graphics system and possibly an ITL. Forms of extended
Backus-Naur Form (BNF), Augmented Transition
Networks (ATNs) as well as less formal approaches have
been used as methods for the specification of the dialogue,
though they can be shown to overlap in the types of
dialogue they can define.!?

Dialogue specification Application routines

A

Executable application @

Figure 1. Generating and combining Interface and Application.

The aim of UIMS research is to produce interface
compilers, collecting the mechanisms of interaction into
a single system, and apply techniques appropriate to the
communication defined in the dialogue description. With
the burden of graphics programming and device man-
agement removed from the designer’s shoulders, work in
interface development can concentrate on good design of
the form of the communication, using formal methods to
express concepts rather than methods.

One model of the structure of user interface is that
proposed by Foley and Van Dam!® ! which breaksdown
the interface into four major parts: the conceptual,
lexical, syntactic and semantic designs. This model
corresponds quite closely with the Seeheim model of
UIMS’s (Fig. 2), which was developed at the Graphical
Input Interaction Technique (GIIT) meeting®® and is
described in Green (1985).12

94— | Presentation Dialogue Application
Interface
——| Component » Control Model

t e

Figure 2. UIMS structure.

Although not initially proposed as a model for
implementation, but rather a logical breakdown of the
functionality, this scheme has been used in the de-
velopment of a number of research UIMSs. The lower
three levels of Foley and Van Dam’s model are clearly
partitioned in the different modules of this UIMS. The
Presentation Component manages the lexical level of the
interaction, controlling all screen images, whether they
are representations of application objects or the in-

teraction devices of the system. It is driven by the
Dialogue Control module, the syntactic level of the
model. This component orders the interaction by
requesting the Presentation Component to update the
screen or to initiate interaction through a given device.
The results of device interactions are passed back from
the Presentation Component to Dialogue Control where
they are collected, before being bundled as a call to the
Application Interface Model. This is the semantic level of
the UIMS, containing descriptions of the application
data types and a description of all user callable routines.
The lower pipeline in the diagram illustrates that it may
be necessary to have application graphics passed directly
to the Presentation Component, for example in CAD
systems, where elements of the graphics display are not
directly connected to the dialogue.

A number of UIMS’s have been designated and built,
with greater or lesser success, some based on Interactive
Automata'”? and others based on event driven meth-
odology.'?%® UIMSs are large systems and have their
own drawbacks: specification is a complex and arduous
task, and there is no guarantee that what will emerge is
what is required. The best interfaces are still produced by
the equivalent of assembly language programming, with
ITLs filling the role of macro facilities.

4. THE PAPILLON SYSTEM

Our methodology came about during the design of a
Configurable Graphics Subsystem for Computer
Integrated Manufacturing (CIM) under the Papillon
project, supported by the Commission of the European
Communities (CEC). We needed a system configurable
in terms of both underlying application and also interface
structure and appearance. One of the first reactions on
examination of the then existing systems was the
realisation of the generally unstructured nature of
interface construction. Therefore, it was decided to carry
out a thorough examination of methods for separation
of the interface from the application, as this was clearly
a necessary condition for a separable and easily main-
tainable interface. The system design was being con-
ducted using the Vienna Development Method (VDM)? 3
for specification, with implementation in ADA. The
design also stems from the Abstract Data Type (ADT)
form of Object Oriented Design (OOD).* The formalism
of VDM and the structure of ADA are both suited to the
design of large, modular systems of the kind we envisaged.
This design produces structured hierarchical models and
applications, and it was felt unreasonable to lose this
structure in a UIMS which did not follow this design.

Published literature on UIMS design did not contain
much reference to application structure, regarding it as
the least important element of the system. In general
UIMSs have been developed independently of sound
formal methods, and are somewhat unstructured in
implementation ; naturally this leads to high maintenance
costs for the tools themselves. Our aim was to develop
tools to assist in the t%sks of both building an application
and developing an interface on top of it, and therefore
the first step was to investigate possible structures for the
construction of prototypes of the intended system, and
tools to accelerate that task.

The current version of the Papillon prototype system
is application independent and is portable and adaptable

438 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



SEPARATING GRAPHICS FROM APPLICATION

with respect to different applications and hardware. This
is achieved through modular design and the use of
modern software engineering methods. The set of tools
provided simplifies the task of building applications and
supports the automatic generation of user interfaces
without direct coding. The re-use of components is an
important feature of the system and different graphical
user interfaces can be easily generated and evaluated at
run time with no need for recompilation.

5. THE PAPILLON MODEL

The Papillon model was developed in the search for a
methodology for producing structured interface to
applications constructed using ADTs. The model
rearranges the components of the Seeheim model (Fig. 2)
to provide a separable, object oriented interface structure
and consists of five modules (Fig. 3), linked together to
form a complete interface to a single object or ADT. The
acronyms come from the logical function of each module,
the CONtrol, the REQuirements, the SEMantics and the
REPresentation. Each of the REQ, SEM and REP
packages have a similar structure, and they implement
the three identifiable stages of command execution —
acquiring the data, performing the command and
providing feedback. The application interface MODEL
is a representation of the application from the viewpoint
of the user interface and therefore defines the semantics
of the application. This set of five modules must exist for
each ADT in the application, and they are linked
together in the same hierarchy as the objects they act for.
This has the effect of mirroring exactly the application
structure within the interface, and providing logical
connections between user-commands and objects on
which they act.

CON

REQ SEM REP

MODEL

3

Application

Figure 3. The Papillon Model.

In this model the communication between user and
application is directed exclusively through the five
modules of the interface. The collection of data for the
application, and the display of the current condition and
results of user action are all removed from the ap-
plication. The application can be regarded as being
‘pure’, containing no direct calls for communication,
and no graphics code at all. The separation of interface
from application is beneficial in many ways: the

modularity of the interaction code makes it easier to
home in on errors, as the state of the interaction directs
the developer to a specific routine in a specific module. In
addition, development and modification of both ap-
plication and interface can be performed independently,
in the knowledge that the interdependence is minimal.

In the following sections each of the modules is
described in detail, indicating the form that interaction
takes, and how the interface communicates with the
underlying system.

5.1. The CONtrol package

This package forms the first visible element of the model.
For each data type implemented as an ADT, there is a
collection of functions/procedures which may be invoked
to modify or view an object instance. The CON package
implements a directive based interface to those operations
visible to the user (in current implementations this is
done through a Graphical Kernel System Choice device).
This allows the user to operate on the current object class
by selecting from a menu those commands which apply
to object instances. Standard commands for view
manipulation and other application independent
commands (panning, zooming, etc.) are also made
available and allow the user to browse through the
displayed data.

To initiate an action, the required menu option must
be first selected. If this is a command which applies to the
object in its entirety — scheduling of a plan or object
deletion — the REQ, SEM and REP of the current object
class must be invoked in turn to perform the action. The
CON package, having ascertained the users choice, will
call a function in each of the three packages which will
collect any required data, call the ADT (application)
through the Model package to perform the task and then
update the representation of the object instance. Control
will return to the CON package when these calls have
completed.

Commands to edit the fields or sub-objects of the
current level will involve the user moving through the
hierarchy of the interface (Fig. 4). Modification of a field
of an object implies editing the sub-object which makes
up that field. For example, if the object were an object of
type A with a sub-object of type B, then modification of
the field B would require the user to select the ‘EDIT B’
command and indicate in which object the instance of B
to be edited lay. This would pass control from the A’s

A interface

[
L]
Bimeré D \

[] []
D00 e

[] L]

s Makes calls to

C interface

LB |

Lc ]

—— Is modelled using

Figure 4. Interface and object hierarchies.

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 439

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



O.MULLARNEY AND F. NEELAMKAVIL

CON package to the B’s CON, where the editing
functions for B type objects would become available.

5.2. The REQuirements package

This package corresponds (in concert with the CON
package) to one part of the lexical level of the interface,
and to the input portion of the presentation component
of the Seeheim model. The package is used to collect any
other items required for the operation, in most cases
simply collecting the parameters for the object
modification or creation. This process may be interrupted
to drop down a further layer in the hierarchy of objects
in order to create an instance of a sub-object to be used
in the operation being performed on its parent. Initially
the REQ package was simply concerned with collecting
lexical information, ensuring that the syntax of the
command was correct. This delays feedback, in the case
of erroneous input, until the SEM package is called, and
the error detected by the Model. However, by making
the Model package available to the REQ, some limited
semantic checking can also be performed here, producing
more rapid feedback. Calls must be present in the Model
package to allow for the type of checking that the REQ
wishes to do. If the user is directing the application to set
the value of a field, the REQ should be able to call the
Model package to ensure that the value given is a
reasonable one for that type, any more complete checking
— e.g. that the value is reasonable in context — can be left
until later.

5.3. The SEM package

As the name implies, this package implements the
semantic level of the interface. Once the call to the REQ
package has completed successfully, an identical routine
in the SEM package is called by the CON which makes
a call to the underlying application, providing the
parameters collected by the PRE section. All commands
which modify the application data structure are
encapsulated at this level, insulating the application from
the interface. Single commands invoked by the user may
split into a number of calls required to perform the task,
depending on the structure of the underlying model — if
it too is object oriented then the calls will match in
structure, but prototypes of the interface structure have
been built on top of non-object oriented applications.
The SEM package is also responsible for the trapping
of error conditions which may be raised within the
application if the semantic content of the call is invalid.
Error trapping must provide a response to notify the user
of the failure of the call, and also ensure that any
information necessary is passed back to the CON package
to allow the interface to cope gracefully with the error.

5.4. The MODEL package

The model package implements the equivalent of the
Application Interface Module of the Seeheim model. It
contains the definitions of all routines which are
externally visible, and the declarations of application
specific data types which must be used to invoke these
routines. Ideally this level is made up of the package
specification of an ADT, since this encapsulates all the
information that is required, and it is in the most suitable

form, matching the form of the interface above. This
package is called by the SEM package, and as stated
previously, there is no requirement that the visible
functions match those presented to the user, since the
mapping from the users model to the application
structure is managed by the SEM package. Other modules
in the interface may call the Model level, but are
restricted to making inquiry functions, as it is important
in maintenance and debugging to have the application
and interface as separate as possible. As all modifying
calls must pass through the SEM to the Model, tracking
down errors and remodelling the application have
become localised tasks.

5.5. The REPresentation package

This package is perhaps the most interesting in the
model. The function of the package is to provide facilities
for representing the application data model to the user,
and so it is basically the output portion of the
Presentation Component of the Seeheim model. This
representation can be stored in a number of ways,
through user/designer editable graphical data structures,
or simply hardcoded into the package. Whatever the
form, the separation of the representation into a single
package does allow for rapid redesign of the appearance
of the system.

Since the REQ package is invoked in a similar manner
to the others in the model, by being called from the
CON, it will receive as parameters only those that are
passed to the SEM package. For this reason it is
important to ensure that the routines in the Model
package called by the SEM are well designed, and do not
have side-effects. If only those objects received as
parameters are modified, then the REP has simply to
update those objects which appear in the call.

The structure and the method of operation of the REP
module depends on the organisation of the data model.
The question of whether the interface and the application
should share the same data model is a major issue to be
resolved early in the design of the user interface. Shared
data models are highly desirable for efficient implemen-
tation of the emerging direct manipulation interfaces;
however, this can only be done at the expense of
separability which is an important characteristic of a
good user interface. It should be noted that the role of
the user interface and the functionality of the application
undergo many changes during the life time of an
application, and therefore it is important to preserve the
independence of the application and the user interface in
order to facilitate the modification of the application
without affecting the interface and vice versa. The
question of allowing shared or separate data models in
the design of user interfaces is examined further in
Section 6.

5.6. Assembling the Interface

The structure described here is intended to be constructed
for each object in the application hierarchy and the set of
tools provided supports the assembly of the interface
without additional programming. For each object, the
CON package provides access to all of the functions
which may be called to modify an instance of the class,
and the user may climb up and down through the

440 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



SEPARATING GRAPHICS FROM APPLICATION

hierarchy as the creation or selection of sub-objects is
performed. However, this alone cannot be said to provide
a complete user interface. Other tools are necessary to
provide the user with the ability to browse, and to
examine the data to various degrees of detail, as well as
methods to structure the interface and make it more
transparent. The design of this tree of interface elements
must be connected in some way, and this structure
reflected to the user. The method chosen is to have a
window (or GKS workstation in implementation) in
which each level of the hierarchy is viewed. As the user
moves through the tree, downward movements open a
window in which the item of the subclass will be viewed
and edited (Fig. 5), and upward movements close the
window of the level being exited and return control to
the window from which the sub-object access was made.
For each window there is a fixed set of menus and other
devices which may be used, and the objects are always
confined to a single window. This makes the interaction
very ordered, and simplifies the task of managing the
interface. As far as each level is concerned, they exist
autonomously, drawing in their own window (or page of
output), and collecting input through fixed devices. This
paradigm mirrors the object oriented nature of the
application model, and so will closely reflect the users
model of the system if the conversion from real-world to
object structure is a natural one.

)
Network object
= ﬁ]

Figure 5. Window/object correspondence.

Node object

With this structure in place it has been easy to design
a collection of application independent tools which
provide run-time support for the interface. Tools are
provided for panning and zooming, and for manipulating
views of different classes of output pages. Similarly,
general tools which perform other tasks, such as menu
and window layout editors have been developed, which
allow the designer or user to reconfigure elements of the
interface appearance and content to suit their own
particular preferences.

5.7. Evaluation of the Interface Manager

We have presented a methodology which can assist
designers and implementors to achieve separable and
easily reconfigurable graphic based user interfaces.
Insulation of each element in the system from the other
by using a well defined communication path is essential
in reducing the overheads in the development of graphics
systems. It also allows commonly used application
independent tools to be constructed, and used across a
range of systems developed using a common meth-
odology. The techniques described here have been used
in a number of graphics based interfaces, and particularly
in the design and implementation of a graphical editor

(subobject of network object)

which has been used in further development of a User
Interface Manager (UIM).

A number of applications belonging to different fields
were developed using the Papillon Prototype which
incorporates the methodology presented in this paper
and the results are encouraging. An application consists
of several objects and at run time, the application data is
entered either by the user or directly by the ‘driver’
software. Application objects are displayed in their own
windows and the operations on the objects, such as Add,
Delete, Replace, Edit, View, etc are performed by
selecting the appropriate menu item. A typical snapshot
of the runtime system showing the state of a machine in
a machine shop is given in Fig. 6. The user can switch
between windows or open new windows containing
different representations. The structure of the system is
such that the representations can be easily edited at run
time and the interface appearance modified without
recourse to recompilation. Whenever an application
changes the value of an object, that change is auto-
matically reflected in the screen display.

Service code: 61432

Status of machine-2

Machine shop

Replace gasket

— Adjust valveclearance

Check ol level
100 % Machine-2

Loading

Weeks

Figure 6. An Example of Graphics Interface.

However, experiments with the Papillon Prototype
have highlighted the need for a more flexible interface
structure presented to the end user, particularly when we
are dealing with inexperienced users. Large applications
may have many levels within the tree, and traversing this
can be time consuming and possibly confusing in certain
cases. These difficulties are overcome by collapsing the
boundary wherever the logical difference between levels
is weak and by making commands of different levels
available concurrently. When concurrent menus are
available, the user will perceive the options as equally
valid, and the interface can deal with the mapping of
commands to the internal structure. This flatter interface
is used to homogenise objects which are similar in the
users mind, and remove some of the more artificial
boundaries imposed by OOD.

In Conversational Metaphor, the interface is seen as a
conversation or dialogue between a user and the system;
here, an object is represented by a name and
manipulations are specified in some programming
language. The Direct Manipulation Metaphor'®?! is
aimed at providing the user the illusion of directly acting
upon the objects of interaction without the intermediary

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 441

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



O.MULLARNEY AND F. NEELAMKAVIL

of the system. Currently we are in the process of
extending our interface design technique to the area of
Direct Manipulation (DM). This has become one of the
most promising techniques in user interfaces, both
transparent and flexible, and suitable for a broad
spectrum of users with different levels of experience. The
next stage in this research is to develop a direct
manipulation manager, which will sit above the current
level. The modularity of the interface structure so far
developed provides a reliable and structured method for
producing interfaces. Combination of this with an
application independent DM manager would result in a
user interface based on sound methodology, and
exhibiting a direct and easily mastered external view.

6. SHOULD THE INTERFACE SHARE OR
KEEP A SEPARATE DATA MODEL?

We have already mentioned in Section 5.5 some of the
difficulties involved in sharing the same data model by
both the application and the interface. Ideally the data
model from which the representation is derived should
be shared with the application. However, this requires
that the application designer incorporate graphics fields
in all objects, allowing these to be accessed by the REP
package, or that the application model is modified to
include them. This is not always possible, as the interface
may be added to a previously written application which
cannot be modified to suit the interface requirements. An
alternative is to allow the REP to hold a corresponding
data structure which holds only that information which
corresponds to the purely graphical data (e.g. positioning,
colour etc.), and have it query the application model for
the other information it requires (field values etc.). If this
second option is chosen, then the effect of functions with
side effects becomes crucial. The REP module will
inquire about only those objects received as parameters
to the call, assuming that only they can be modified, in
order to update the display. If other objects have been
modified they will not be checked, and so consistency
between appearance and actual state will break down.
The former option of a shared interface/application
model is more desirable, since it allows the possibility of
direct manipulation, with the REQ package being able to
access the shared model in response to user actions. The
REQ package can then use positional information to
determine objects the user selects by pointing and
clicking. However, the nature of shared models runs
contrary to the aim of separability, since the application
should not be concerned with the maintenance of
graphical data, such as the positional information etc.
required by the REP module.

At the present time we are investigating possible
approaches for resolving the problem of combining the
interface and application data models by developing
tools for use in the construction of the application which
incorporate graphics functionality. By including graphics
functionality within the predefined objects used to model
the application data, it is possible to remove much of the
burden of graphics coding, and of update management
from the developer. This provides an elegant solution to
the problem of data sharing which has previously resulted
in the close coupling of application and display routines,
and more recently the problems encountered in UIMS
work.

7. CONCLUDING REMARKS

The Papillon prototype consists of three major
subsystems : Application Building Blocks, Graphics Editors
and the User Interface Generator. These subsystems were
developed at different sites on different machines
operating under different operating systems before
integration into a single system. The configurability,
separability and portability features of the prototype
were tested by first building pure (no graphics) ap-
plication software and then adding graphical user
interface. In particular, we were successful in dem-
onstrating that only a few days’ work is needed to tailor
a graphical user interface to a very large CIM application
(about 50000 lines of code in Ada) developed at a
different site on a different machine.

The research under Papillon project was carried out
over a period of three years. The development of various
tools, techniques, methods and the prototype itself were
periodically reviewed by a group of independent experts,
specially appointed by the CEC. The objective feedback
from the reviewers were always a source of inspiration
and helped the project achieve most of its aims.
The Papillon system is still a prototype which needs
further refinements before full integration into real CIM
environments. A commercial software product based on
the Papillon prototype has recently been announced by
one of the partners in the Papillon consortium. A
number of enhancements to the prototype including
compatibility with non-GKS graphics packages and
support for non-Ada systems are currently underway or
under investigation. It is expected that the refined version
will have applications not only in the integration of CIM
components but also in the development of more general
graphical software.

8. ACKNOWLEDGEMENTS

This work was done as part of the Papillon project,
partly funded by the Commission of the European
Communities under the ESPRIT programme. We are
grateful to M. Mac an Airchinnigh, J. Drumgoole,
P. Hickey and other members of the Papillon consortium
for their contributions and in particular to Chris Chedgey
(Genetics Software Ltd) who played a major role in the
overall development of the Papillon prototype. Our
thanks are also due to Dr R.Zimmermann, Project
Officer, CEC, for his comments, criticisms, advice and
help. Finally, many thanks go to the reviewers for
making several suggestions for improving the quality
and clarity of this paper.

9. REFERENCES

1. ACM SIGGRAPH, Statusreport of the Graphics Standards
Planning Committee. Computer Graphics 13 (3), entire
issue (1979).

2. D. Bjerner and C. B. Jones (eds), The Vienna Development
Method: The Meta-Language. Lecture Notes in Computer
Science 61. Springer-Verlag, Heidelberg (1978).

3. D. Bjorner and C. B. Jones (eds), Formal Specification and
Software Development. Prentice Hall, New Jersey (1982).

4. G. Booch, Software Engineering with ADA. Benjamin/
Cummings, Menlo Park, CA (1983).

442 THE COMPUTER JOURNAL, VOL. 33, NO. §, 1990

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



5.

10.

11.

12.

13.

14.

SEPARATING GRAPHICS FROM APPLICATION

W. Buxton et al., Towards a comprehensive user interface
management system. Computer Graphics 17 (3), 35-42
(1983).

. CAD Centre, GINO-F User’s Guide. Cambridge, England

(1985).

. H. W. Dzida and W. D. Itzfeldt, Factors of User Perceived

Quality of Interactive Systems. Report Nr. 40 of the Institut
Fiir Software Technologie, GMD (1978).

. G. Enderle, K. Kansay, and G. Paff, Computer Graphics

Programming. Springer-Verlag, Heidelberg (1984).

. G. Fischer, Human—computer interaction software : lessons

learned, challenges ahead. IEEE Software 6 (1), 44-52
(1989).

J. Foley and A. Van Dam, Fundamentals of Interactive
Computer Graphics. Addison Wesley, New York (1982).
J. Foley, Models and tools for the designers of user-
computer interfaces. In Theoretical Foundations of Com-
puter Graphics and CAD, edited R. Earnshaw, Springer-
Verlag, Heidelberg (1988).

M. Green, The University of Alberta UIMS. Computer
Graphics, 19 (3), 205-213 (1985).

M. Green, A survey of three dialogue models. ACM
Transactions on Graphics, 5 (3), 244-275 (1986).

H. R. Hartson, and D. Hix, Human computer interface
development: concepts and systems. ACM Computing
Surveys 21 (1), 5-92 (1989).

15.

16.

17.

18.

19.

20.
21.

22.

23.

H. Lieberman, There’s more to menu systems than meets
the screen. Computer Graphics 19 (3), 181-189 (1985).

B. A. Myers, Creating interaction techniques by dem-
onstration. Computer Graphics and Applications 7T (9),
51-60 (1987).

D. R. Olsen, SYNGRAPH: a graphical user interface
generator. Computer Graphics 17 (3), 43-50 (1983).

D. R. Olsen, Pushdown automata for user interface man-
agement. ACM Transactions on Graphics 3 (3), 177-203
(1984).

D. R. Olsen, Input/output linkage in a user interface
management system. Computer Graphics. 19 (3), 43-50
(1985).

G. Pfaff (ed.), User Interface Management Systems.
Springer-Verlag, Heidelberg (1985).

B. Shneiderman, Designing the User Interface. Addison-
Wesley, New York (1987).

J. A.Sutton and R. H. Sprague. A4 Study of Display
Generation and Management in Interactive Business
Applications. IBM San Remo Laboratory, Technical
Report R.J. 2392 (31804) (1978).

J.J. Thomas, Graphical Input Interaction Technique
(GIIT): Workshop Summary. Computer Graphics 17 (1),
5-30 (1983).

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 443

¥20Z Iudy 01 uo 1senb Aq £5108Y/.E1/G/EE 8101/ |ulwoo/woo dnorolwsepeoe//:sdiy wolj papeojumoq



