Kron’s Method of Tearing on a Transputer Array

K.BOWDEN

Computer Centre, Polytechnic of East London, Longbridge Road, Dagenham, Essex RM8 24S

Kron’s Method is a means of decomposing physical systems into subsystems with the particular property that the
subsystems overlap on their boundaries. It is found that the solution of typical engineering problems is facilitated by
this decomposition or tearing. Computational time and memory requirements are both improved, and the technique has
the advantage that the individual subsystems can be resolved under change of input conditions or structure and the
overall solution updated without the need for a global resolution. The technique is efficient on sequential machines but is
ideally suited to MIMD (multiple-instruction multiple-data) machines such as those that can be constructed from the
Inmos transputer. This paper discusses the implementation, in Occam, of direct, non-iterative methods of solution of
torn systems on a network of pipelined transputers. In particular the software has been used to solve Laplace’s equation

on a finite difference mesh.

Received September 1989, revised May 1990

1. INTRODUCTION

A number of workers have recently been solving field
problems on transputer arrays using variations on the
finite difference and finite element methods. The former
method, and sometimes the latter, traditionally use the
iterative (indirect) method of solution called relaxation.
The iteration converges stably towards an exact answer
and thus takes an amount of time related to the required
accuracy of the solution. Conversely (if the equations are
linear) direct methods involve either the solution of a set
of simultaneous equations by, for example, the
Gauss—Seidel method, or a matrix inversion. These
methods are exact and ‘finite’ in that the solution time is
not related to the accuracy required, which depends only
on the wordlength of the machine in use and the
numerical stability of the algorithm. Matrix inversion is,
in general, slower than Gauss-Seidel and involves the
storage of a (very large) matrix inverse —hence it is
almost never used in practice — but it does have the
advantage that, once the inverse is known, solutions can
be obtained for any number of sets of boundary
conditions (right-hand sides). Newer direct methods such
as the Marching Algorithms" * © are quicker and require
less storage but are numerically unstable.

To solve these problems on a distributed array of
processors the technique used by most investigators is
to decompose the problem geographically into a number
of adjacent regions which are then mapped on to
adjacent processors in the computational array. A small
area of overlap is defined between the information held
on adjacent processors (for an n-dimensional problem
this region may be n-1-dimensional and will normally
constitute at least the boundary of the region). This, in
fact, is a special case of the technique known as Kron’s
method of tearing. A global iteration is then performed,
each processor calculating a solution for the region it
represents, then passing the solution for the area of
overlap to its neighbours, receiving in turn their version
of the solution. The process is repeated until, hopefully,
it converges to a solution. Thus this is an indirect global
solution. This paper investigates the possibility of using
a direct global method, based on Kron’s method of
tearing, on a transputer array, and suggests variations of

it which may overcome the problems encountered. The
processor topology does not map directly on to the
physical decomposition of the system itself but to the
form of the algorithm. This is known as structural
decomposition. It is interesting that Wait,* champion of
the iterative schemes, comments that ‘iterative methods
can never be as robust as direct methods’. Also that he
finds that the iterative solution converges better if the
overlap between subsystems is more than one element
thick.

Kron’s method of tearing, or Diakoptics, as he called
it,> was invented and developed by Gabriel Kron in the
1950s and 1960s. It was intended both as a general
philosophy and as a method of solution of general
physical systems. Kron showed that by splitting up a
system into a number of parts, solving the problem on
each part separately, and then combining the subsystem
solutions into an overall solution, an exact answer could
be obtained, with a saving both of computational time
and storage space over a direct matrix inversion, even on
a sequential computer. Kron died in 1968, and interest in
his research died out in the following decade. This author
has been involved in a study of Kron’s method for a
number of years, and realised that with the advent of
MIMD (multiple-instruction, multiple-data) distributed
machines such as the Transputer array, Kron’s method
was the ideal form of solution for these architectures, as
a direct mapping from the decomposed, or torn, problem
to the processor array can be achieved. Moreover, a
further saving in computational time can be achieved of
just under # times, where #n is the number of processors.
A particular feature of Kron’s method is the area of
overlap between adjacent regions, which he called the
intersection network (the method was originally aimed at
the solution of torn electrical networks). The solution of
the intersection network has to be achieved before the
subregions can be solved, thus an increase in speed of n
can never quite be achieved. Kron’s method would
normally involve the direct solution of a set of matrix
equations, including the inversion of the subsystem
matrix for each region and the inversion of the system
matrix of the intersection network. The solution method,
however, was not specifically defined by the method of
tearing (in order to cater for nonlinear systems), so that

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 453

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

K. BOWDEN

the indirect global methods of solution mentioned in the
previous paragraph, such as Wait’s,* are actually special
cases of Kron’s method.

As stated above, Kron’s method was designed to be a
general method of decomposition and solution of
physical systems (i.e. ones with a topology of some sort);
however, this paper looks at both the general case and
the solution of a particular field problem, that of the
Laplacian on an area shaped like a Maltese cross. The
problem will be divided into four regions — four identical
ones and a square central region. The latter overlaps (or
touches) the four surrounding regions on each of its
edges. The solution will be by direct solution of the finite
difference equations, involving discretising the problem
by overlaying it with a regular Cartesian grid. We will
not go into a discussion of computational times, as they
can easily be estimated for direct methods for any
particular problem, but will concentrate on a discussion
of how the problem was implemented on a five-transputer
array (obtained as part of the 1988 SERC loan scheme),
and how the method could be developed to the stage
where it could become a practical solution scheme
competing with the currently more efficient iterative
methods, and the advantages that would obtain if this
were possible.

2. THE ALGORITHM

It is well known that the solution of Laplace’s equation
involves the inversion of a matrix of the following form
(or the solution of the associated set of equations).

ac[¢ "1 O
-1 4 -1

0 -1 4 -1 ...

-1 4 -1

-1 4

For a region decomposed into subproblems the A
matrix becomes reordered. Instead of just scanning along
the points of the grid to choose the order in which the
equations are written down, points in each subregion are
grouped together. This results in a block diagonal system
matrix, where each block has the form of 4 above.
Finally, we group the elements of the intersection
network, the set of all subsystem overlaps, as the last
group of equations with system matrix B. The
interconnections between this group and the subsystem
equations are given by the elements of the subsystem
matrices shown as C below. The system equations of a
problem decomposed into n subproblems are as shown
below.

FA(1)
A(2)
A(3)

[C(1)" C(2)" C(3)’

This form can be obtained for any linear system which
can be physically decomposed into adjacent subsystems
and where the equations are essentially local. We term
this a physical system. These conditions are related to
Huygens’ principle and to holography and are necessary
and sufficient for the applicability of Kron’s method.
They will be discussed in detail elsewhere. Such problems
are found in all branches of engineering and physics and
even in economics. Kron derived a very efficient direct
solution for these as follows. Writing the equations as

P MEN
C’ Bfly c
where 4, b, x and C are the appropriate block matrices,
the intersection matrix y is given by
y=/B(c—Cx)
x=/A(b—Cy)

where

and /A is the normal matrix inverse, from which it is easy
to show that

y=/(B—C’/AC) (c—C’/Ab)
x=/A(b—Cy)

So by calculating the intersection first, we are led to a
solution for each x(i) in terms of y. Expanding back out
we get

and

as above.

Y=/(B—E C(i)'/A(i)C(i))(C—Enl C(i)'/A(i)b(i))

i=1 i=1
and

x(i)=/A(i)(b(i)—C(i)y) for i=1,...,n,
which are the equations we shall implemernit on our
transputer array.

3. THE IMPLEMENTATION

The system with which we were supplied consisted of an
IBM PC AT clone made by Tandon hosting a Microway
B004 board with one T414 and 2 Mb memory and a
B003 board with four T414s each with 256 Kb. The TDS
operating system with its folding editor along with
Occam II, FORTRAN, C and Pascal compilers and
harness software and manuals were also supplied. The
algorithm was coded in Occam. As each transputer has
four links which can be connected to its neighbours, the
first problem was to decide on the best processor topology
for implementing the above equations. The only constraint
is that the host processor in the PC (which simply acts as
a front end for input and output of information, i.e.
screen, keyboard and disc handling) must be connected
to the transputer on the B004 board, which can then be

C(L)[*(1)]_[b(1)]
c)llx2)| |v2)
c(3) || x(3) b(3)
A(n) C(n)|| x(n) b(n)
cm)y B |l v 1| ¢

454 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

KRON’S METHOD OF TEARING ON A TRANSPUTER ARRAY

hard-wired to the other processors in any topology
desired by the user. Two versions of the software were
implemented. In the first n was equal to 5 and each
subsystem was mapped on to a different processor. This
was inefficient in that some of the subsystem matrices are
identical, and thus different processors were simul-
taneously doing identical jobs during the solution
process. In the second version the user was allowed to
specify that some of the subsystems were identical, and
the system would only solve each individual system
matrix once, thus leaving three processors unused in our
example problem. The hardware we had available would
thus solve any problem with up to five different subsystem
matrices. The techniques described in this paper will

Host processor Intel 80286 — 2 Mb RAM 20 Mb disc

level |
1 2 Mb RAM - T414 (BOO4 board)
a AN
2 T414 - 256 Kb T414 —256Kb T414 —256 Kb
71N\ 71N 71\
3 T414 T414 T414 T414 T414 T414 T414 T414 T414

[I I | l I | I [
RAM RAM RAM RAM RAM RAM RAM RAM RAM

work on any MIMD processor array, but our description
will be limited to our implementation on the one described
above.

Topologies which are in common use for this sort of
problem include trees, square meshes, pipelines and
rings. The square mesh is the usual topology for processor
arrays for the global indirect solutions mentioned above.
The region itself is decomposed using a square mesh and
then the subregions map naturally on to the Transputer
network. Experience with tree structures (each subtree
can have three branches) reportedly has not been very
satisfactory. The decomposition topology for the region
to be solved by Kron’s method is arbitrary and need not
map in a geographical kind of way on to the processor
array. Investigation of the equations above show the
following.

(1) A series of subsystem matrix inverses should be
carried out in parallel if possible and the matrices
C(i) /A() C(i) and C(i)’/ A(i) b(i) formed.

(2) The two summations must be carried out. The
data for each subsystem are initially local to its own
processor (MIMD systems have no global memory).

(3) The intersection vector y must be formed on some
processor in the system and then transmitted to every
other processor ready for the final stage (or alternatively
_ calculated simultaneously on each processor).

(4) The subsystem solutions x(i) are formed locally in
parallel and then transmitted along with y to the host
processor for output.

We could add an initial stage.

(0) The subsystem matrices and connection matrices
must be set up and transmitted to the local processors.

It should be noted that as the connection matrices C(i)
consist largely of zeros and otherwise of ones, they were
not stored explicitly but only as an incidence table. Thus
multiplication by C(i) consists of a reordering of the

multiplicand, implemented simply by adding a level of
indirection.

It would seem from first sight that a tree structure

would be ideal for this problem. The main communi-
cation tasks involved in the above process are: getting
the initial subsystem information out to the local
processors; getting the matrix inverses back to the main
processor (B004) for summation (if that is where we
choose to do it); getting the intersection vector back to
the local processors and getting the subsystem solutions
back to the main processor. (Note that due to the
shortage of processors it was decided to use the main
processor as a subsystem solver as well.) A tree-structure
topology would look like this (in the general case).
The system shown has three levels and 13 transputers;
our system would consist of the first two levels of this
network. It can be seen that getting data to and from the
local processors would be fairly efficient with the high
degree of connectivity in this system. In fact it can be
seen that the bottleneck in this system is getting data in
and out of the main (B004) processor. Extrapolating
from this it can be seen in fact that during the data
communication periods of the algorithm there is no
advantage in having any topology with a higher degree
of connectivity than a pipeline. The main processor
churns out information. The others either take it in or
pass it on. Provided the algorithm for making this
decision is extremely simple a pipeline is a good topology.
It also turns out that a pipeline is an excellent topology
for carrying out the summations, which is the other non-
local procedure that we must perform.

Pipelined transputers
Host processor Intel 80286 —2 Mb
RAM 20Mb disc

I
2Mb RAM—T414 (BOO4 board)

I
T414 — 256 Kb

T414 — 256 Kb

T414 — 255 Kb

I
T414 — 256 Kb

As an aside it should be pointed out that there is another
way in which the approach taken in this work is very
different from that of other algorithms implemented on
transputer networks. The conventional approach to all
this multiprocessor computing and information trans-
mission is to have a number of processes running on each
processor. So in the pipeline we could have one processor
reading data, one deciding what to do with it, one
sending data off to the next processor in the chain and
others performing computations. This approach is very
necessary for non-finite, iterative algorithms in which the
order of computation is often influenced by the data
itself. It is also extremely robust and proof against a
number of different kinds of error, if possibly rather

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 455

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

K. BOWDEN

inefficient. However Kron’s method is finite, with a well-
defined order of operations. Thus, provided there are no
errors in the program or data, the code will always be
executed in the same order and we may use only one
strictly defined process on each processor. Of course if
anything goes wrong with this system it will crash in the
normal impenetrable way that transputers do, making
debugging the software extremely difficult. However,
once it works the code will be extremely efficient because
there are not the overheads of running multiple processes.
There are no decisions about which data to keep and
which to throw away. Everything is known in advance.

Back to the pipeline and consider the summation
process. We have to add a number of equally sized
matrices on a pipeline of processors with local memory.
It is easy to see that the following process is optimal.

(1) Pass the first element from the first processor to
the second and add (to the first element).

(2) Pass the second element from the first processor to
the second processor and add (to the second element).
Simultaneously pass the first element (already a sum)
from the second processor to the third and add.

(3) Pass the third element from the first processor to
the second processor and add (to the third element).
Simultaneously pass the second element (already a sum)
from the second processor to the third and add.
Simultaneously pass the first element (already a sum)
from the third processor to the fourth and add.

(4) And so on down the pipeline until all the processors
are working flat out simultaneously. Pass, add, pass, add.
Continue until the (m, m)th element where m x m is the
size of the arrays. The first processor will stop trans-
mitting. The second processor will stop processing,
followed by the third and fourth and so on down the line
until finally the required sum is stored in the last
processor in the chain.

In practice it was arranged that this process was
performed with the processors in the reverse order to
that described so that the sum ended up in the main
processor. A similar procedure was then carried out to
obtain the sum of the C(i)’/A(i) b(i).

So the main loop on the main processor looks like this

getsubsysteminverse(z,m[4],n[4])
i: =0
WHILE i<ni
SEQ
j: =0
WHILE j<ni
SEQ
chanO ? zi[i][J]
--get element from pipeline on
--channel(0)
IF
c[i]=0
SKIP
TRUE
IF
c[J]=0
SKIP
TRUE
zi[1][§]1: =2i[1][J]~—
z[ce[i]—1][c[J]—1]
--build C’/AC
jJi=j+1
ir=1i41

which is the last processor in the pipeline. A similar bit
of code for C(i)’/ A(i) b(i) contains the line

bi[i]: =bi[i]+(z [c[i]1—-1][J]1*b[j])
--build C’/Ab

For the intermediate three processors the code looks like
this

getsubsysteminverse(z,m[k],n[k])
i: =0
WHILE i<ni
SEQ
j: =0
WHILE j<ni
REAL32 zi:
SEQ
chanj ? zi
--get element from

--pipeline
IF
c[i]=0
--if no entry in C
--matrix

chanjml ! zi
--then pass straight on
--down pipeline
TRUE
IF
c[j]=0--ditto
chanjml ! zi
TRUE
chanjml ! :
zi—z[c[i]—1][c[j]—1]
--else build C’/AC
jr=j+1
ir=1i+41
where chanj is channel () and chanjm1 is channel (j—1).

The code for the tail (i.e. first) processor in the pipeline
is

getsubsysteminverse(z,m[0],n[0])
i: =0

WHILE i<ni
SEQ
j: =0
WHILE j<ni
SEQ
IF
c[i]=0
channm2 ! zi[i][]]
TRUE
IF
c[jl1=0
channm2 ! z[i][]]
TRUE
channm?2 ! (zi[i][Jj]-—
z[c[i]—=1][c[J]—1]
--build C’/AC
Jr=j+1
ir=1i4+1

where channm?2 is channel (n—2). Fig. 1 shows the
processor interconnections with the actual Inmos channel
and link assignments. Fig. 2 shows the actual system

456 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

KRON’S METHOD OF TEARING ON A TRANSPUTER ARRAY

HOST
Tandon AT
2 Mb RAM
20 Mb disc
PC link \
I
BOG4 | BOO3 A l T
l .
Y link 0 : link 1 link 0
4 0 | 5 1 4 0
|
— 1 : | 4 2 p | —
link 1 | link 0 link 2 link 3 link 1
T 414/0 ! ! T 414/1 T 4142
- 2MbRAM 5 | : 0 256Kb 6 fa— 3 256Kb 5 |e—
i 37 2 6
, ! :
1 1 i \ link 2 link 2
link 3 link 3
6 2 7 3
—15 3= - 6 op—e
link T} T 41474 fink 3 k21 a1 link O
<«— 256Kb - 2 256Kb 4|a—
15

" Figure 1. The actual hardware configuration used. The link between T414/1 and T414/4 was hard-wired on to the board but was not
used by the algorithm.

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
1]4-1 -1 | -1 -1 x1 | = 0
2 -1 4-1] -1 | -1 x2 0
3 -1 4 -1 -1 -1 x3 0
| |
4 |-1]4-1 |-1 -1 x4 0
s -1 -1 4 -1 -1 x5 0
6 -1 -1 4] -1 -1 x6 0
| |
7 1-1 | 4-1 -1 -1 x7 0
8 | -1 |-1 4-1 -1 x8 0
9 I -1 -1 4 -1 -1| [x9 0
10 4-1 -1 x10 3+ 4
11 -1 4-1 -1 x11 5
12 -1 4 -1 x12 6+ 17
________ P
13 -1 | 4-1 -1 x13 2
14 -1 -1 4 -1 -1 x14 0
15 -1 -1 4 -1 x15 8
16 4-1 -1 x16 30431
17 -1 4-1] -1 x17
18 -1 4 -1 x18 27428
________ |mmm———
19 -1 | 4 -1 -1 x19 32
20 -1 [-1 4 -1 -1 x20 0
21 -1 -1 4 -1 x21 26
22 4-1 -1 x22 11412
23 -1 4-1] -1 x23
24 -1 cl -1 x24 14415
25 -1 | 4 -1 -1 x25 10
26 -1 |-1 4 -1 -1 x26 0
27 -1 -1 4 -1 x27 16
28 4 -1 -1 x28 22+23
29 -1 4 -1 -1 x29 21
30 -1 4 -1 x30 19420
31 -1 4 -1 -1 x31 24
32 -1 -1 4 -1 -1 x32 0
33 -1 -1 4 -1 |x33 18
34 |-1 | | 1-1 | | 4 -1 x34 1
35 -1 | | | -1 | | -1 4 -1 x35 0
36 —1} I = -1 I I -1 4 x36 9
37 |-1 1 | | -1 | 4 -1 x37 1
38 -1 | 1 | -1 | -1 4 -1 x38 0
39 : {-1 I | -1 I -1 4 x39 25
| m—m—-] |eeea-
40 -1 | | | 1-1 4 -1 x40 9
41 | -1j | 1 | -1 -1 4 -1 x41 0
42 I I -1 : I I -1 -1 4 x42 17
43 | -1 ! | | -1 4 -1 x43 25
44 | I -1 | | | -1 -1 4 -1| |x44 0
45 | | -1 I | I -1 -1 4] |x45 17

1 2 3 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Figure 2. Finite-difference equations for the Laplacian on a 2-D cross.

THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990 457

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

K. BOWDEN

3 10 1} 12 .
9 3 /14/15 g
7 "
3 32 1//%!’35//’36\9 10 11
/ — |
29 (< \\\\§\\§§§%h L 13
1 2 \ 23
NN -
28 8 N \\4 \ \ \15 14

31

24

28

18

3& 33
\
29

30

19

22

[y

20

Figure 3. Topology and contoured potentials. The diagram shows the finite-difference grid with 45 nodes superimposed on a Maltese
cross shape. The boundary conditions consist of a ramp potential rising clockwise round the cross. The system was torn into five pieces

along the dashed lines. The solution grid is shown contoured by

matrix for the Maltese cross and Fig. 3 shows the
physical configuration and potential solution.

4. CONCLUSIONS

The program implements Kron’s method of tearing on
a five-transporter array connected in a pipeline. It
currently solves Laplace’s equation on a Maltese cross by
the finite-difference method with 45 nodes. The boundary
conditions consist of a linear ramp potential travelling
around the boundary and ending in a discontinuity. The
system is torn into five parts, each of which is solved
separately and in parallel, and then the overall solution
is reconstructed from the parts. The method worked well

the NAG graphics library.

with an improvement in computational time of almost »n
over purely sequential code, as was expected. A second
version of the program allows for the fact that some of
the subsystems may be identical and, in the case of the
Maltese cross solves the problem with only two different
subsystems on two processors.

The great problem with direct methods such as this is
the creation and storage of large subsystem matrix
inverses. This is alleviated by the existence of large
numbers of identical subsystems as in our example, but
exacerbated if this situation cannot be achieved, as in
systems with complicated or irregular, non-symmetric
boundaries. If it were possible to calculate just an
element, or even a submatrix of the subsystem inverse

458 THE COMPUTER JOURNAL, VOL. 33, NO. 5, 1990

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

KRON’S METHOD OF TEARING ON A TRANSPUTER ARRAY

efficiently, the problem would be alleviated. In fact a
formula for the ijth element of the inverse of the matrix

- 4 -1 0 7]

A=l 1 4 -1
0 -1 4 -1
1 4 -1
-1
i -1 a4l

is not hard to find, although a solution of this form for

A —I
—I A —-I

—I

has not been found.

However there are a set of techniques published by this
author and others, known as marching algorithms, ¢
which have been found to help further as far as
computational time is concerned. In essence they give a
stepwise, direct, recursive solution to the block inverse
above, based on Chebyshev-like polynomial matrices.
The process works quite well for the solution of
rectangular finite-difference blocks. Unfortunately, how-
ever, the numerical accuracy decreases dramatically with
the number of steps, and more than twenty steps is
impracticable with the word length of typical modern
computers. This problem can be overcome by tearing the
problem into strips twenty mesh points wide or less. The
length of the strips (and hence the size of the submatrices)
is not important. The algorithm described above has
been modified to use the marching algorithm to solve the
submatrices and found to work satisfactorily on systems
torn into narrow sections as described.

The marching algorithm, however, still does not solve
the problem of storing the subsystem matrix inverses.
Furthermore, it is only applicable to finite-difference-
type systems, and we are looking for a general algorithm

REFERENCES

1. K. Bowden, A direct solution of the discretised form of
Laplace’s equation. Matrix and Tensor Quarterly, pp.
93-96 (March 1982).

2. K. Bowden, A direct solution to the block tridiagonal
matrix inversion problem. International Journal of General
Systems 15, 185-198 (May 1989).

3. G. Kron, Diakoptics: The Piecewise Solution of Large-
Scale Systems. Macdonald, London (1963).

4. R. Wait, Overlapping block methods for solving
tridiagonal systems on transputer arrays. Thesis, University
of Liverpool (December 1987).

suitable for any of the wide range of systems to which
Kron’s method is applicable. Kron’s method essentially
uses Schur’s lemma to find the inverse of the partitioned-
system matrix. Assuming matrix inversion takes longer
than matrix multiplication, it is easy to show that for a
square two-dimensional region the optimal number of
subsystems to minimise solution time using Schur’s
lemma is in the order of m3 where m is the total number
of mesh points. (This is assuming that we can make the
subsystems all identical.) So for a 1000 x 1000 grid the
optimal number of subsystems is 1,000,000é =100, i.e. a
10x 10 array of subsystems of 99 x99 points each
(allowing 1 for the intersection). Remarkably this formula
appears to be largely independent of the matrix inversion
algorithm. It turns out, however, that rather than dividing
the system into lots of little bits, it is more efficient to
initially tear into a few large subsystems and then tear
these up into smaller ones and so on. The optimal level
of nesting depends in general both on the problem and
on the hardware available to solve it. A (non-trivial)
algorithm for n-level tearing has been derived and will be
published elsewhere. It is hoped that future work will
include the implementation of this on a transputer array.

Finally it is hoped that, in the future, techniques
developed and described in this paper could form part of
an analysis package linked to an engineering draughting
(electrical, mechanical or otherwise) system. Many
modern draughting packages build up complex as-
semblies from discrete system parts, rectangles, boxes,
circles and spheres, etc. Stress analysis (for example) on
these simple components is relatively easy. Component
solutions can then easily be combined to give overall
system solutions. Indeed, libraries of components with
their solutions could be built up ready to assemble into
products for which overall solutions would be im-
mediately available.

Acknowledgement

Thanks to Smita Patel for so efficiently coding the
marching algorithm.

5. T. Durham, Working out the algebra of algebras. Com-
puting (19 March 1987).

6. R.E. Bank and D.J. Rose, Marching algorithms for
elliptic boundary value problems. I. The constant coefficient
case. SIAM Journal of Numerical Analysis, 14 (5) (1977).

7. K. Bowden, Homological structure of optimal systems.
Thesis, University of Sheffield (December 1983).

8. P. Atkin, Performance Maximisation. Inmos Technical
Note 17 (March 1987).

THE COMPUTER JOURNAL, VOL. 33, NO. §, 1990 459

¥20Z Iudy 01 uo 1senb Aq 88108Y/€SH/G/EE/e1oe/|Uulwoo/wod dnorolwspeoe//:sdiy wolj papeojumoq

